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Observation of ' Er electron capture and P+ decay
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In an investigation of A =146 isobars, produced in ' Ni bombardments of Mo, the electron capture
and P+ decay of the previously unknown isotope ' Er was identified. This nuclidic assignment was
based on the observation of Ho K x rays in coincidence with P-delayed protons as well as in total-
projected coincidence y-ray spectra. From the time distribution of the x-ray events seen in these total-
projected spectra the half-life of ' Er was determined to be 1.7(6) s.

PACS number(s): 23.20.Lv, 27.60.+j

Decay properties of A = 146 nuclides, produced in Ni
+ Mo irradiations and mass separated at the Lawrence
Berkeley Laboratory OASIS on-line facility [1], have
been investigated by using a Si particle and two Ge y-ray
detectors. The first observation of protons emitted fol-
lowing ' Ho electron capture (EC) and P+ decay was re-
ported in [2]. Here we present evidence for the
identification of a new isotope in the same mass chain,
namely ' Er.

A 1.92-mg/cm thick metal foil of Mo (97.4% enrich-
ment) was bombarded with 280-MeV Ni ions from the
SuperHILAC. The beam energy at the center of the tar-
get was calculated to be 262 MeV. After mass separation
the 2=146 products were collected with a programrn-
able tape system and then transported to a counting sta-
tion for radioactive assay. At this station, facing the col-
lected active layer, were a Si particle bE-E telescope and
a hyperpure Ge detector, while on the other side of the
tape there was an n-type Ge detector with a relative
efficiency of 24.3%%uo. Coincidences between P-delayed
protons, y rays, and x rays were recorded in an event-by-
event mode. Events in all detectors were tagged with a
time signal for lifetime information. Singles y-ray data
were also taken with the 24.3% Ge detector. A tape cy-
cling time of 12 s was selected for the experiment keeping
in mind the known half-lives of ' Ho (3.9 s [3]) and its
P-decay daughter ' Dy (29 s [4]).

In Ref. [2], together with information on five other nu-
clei, it was reported that the observed protons at 3=146
ranged in energy from 2.3 to 6.3 MeV and that their aver-
age energy was 4.13(4) MeV. (The spectrum itself is
displayed in a recent thesis [5] together with results of
statistical model calculations. ) Figure 1 shows the low-
energy (5 —200 keV) photon spectrum recorded in coin-
cidence with these P-delayed protons using the n-type Ge
detector. Characteristic Dy E and X& x rays do indeed
dominate the spectrum. However, there is also a peak
whose energy corresponds to that of the Ho K x rays,
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FICs. 1. Low-energy photon spectrum recorded with a 24.3%
Cxe detector in coincidence with P-delayed protons.

indicating that some of the A =146 delayed protons must
follow ' Er electron capture and P+ decay. Evidence for

Er is further displayed in Fig. 2(a) which shows the
same x-ray data in an expanded fashion. Included in the
figure is a curve that represents a calculated fit using a
computer program [6] written to perform fitting to multi-
plets of IC x ray p-ea-ks. The Ho E 47.5-keV peak (with

l

a total of six counts) is clearly visible. Figure 2(b) shows
a similar fit to x rays recorded with the intrinsic Ge
detector in coincidence with delayed protons. Despite
the reduced ef6ciency of this detector one notes that we
did observe a total of two counts at the Ho K -x-ray en-

ergy.
Based on the relative number of Dy and Ho K x rays

1

seen in Figs. 2(a) and 2(b), we estimate that about 10%%uo of
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signed to ' Er. This negative result may simply be a
manifestation of the small number of observed Ho K x

1

rays or it may be an indication that the nuclide's decay
strength may be fragmented over at least several ' Ho
levels. In contrast, the electron capture and P+ decays of
even-even dysprosium, erbium, and ytterbium nuclei with
N=82, 84, and 86 proceed (see, e.g., Ref. [10]) primarily
to single 1+ levels in their respective odd-odd daughters.
The 1 levels in turn deexcite to the isotopes' 2 ground
states via E1 transitions that vary regularly in energy
from nucleus to nucleus as a function of both neutron
and proton number. Now, with the observation of ' Er
electron capture and P+ decay, there is an uninterrupted
chain of known neutron-deficient erbium isotopes out to

Er [11],a nucleus which is located within two or three
mass units of the proton drip line for this even-Z element.
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FIG. 2. K x rays observed in coincidence with P-delayed pro-
tons as recorded with a 24.3% Ge detector [part (a)] and a pla-
nar hyperpure Ge detector [part (b)].
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the P-delayed protons observed earlier [2,5] were due to
Er decay. This percentage is of the same order of mag-

nitude as the ratio of cross sections predicted [7] for the
production of ' Er and ' Ho, namely, 1.3 mb/39 mb=
0.033. However, the fact that the experimental ratio is
larger probably indicates that the '" Er branch for
delayed-proton decay is greater than that of ' Ho. From
atomic mass systematics [8], one deduces a ( QEc —B~ )

window of -6.5 MeV for both isotopes. Indications then
are that there must be angular-momentum hindrances in-
volved in ' Ho delayed-proton emission which make that
mode of decay more favorable for '" Er.

We did not accumulate multispectrum y-ray data. The
only singles information recorded was one spectrum,
measured with the 24.3% Ge detector, whose energy
range extended to about 2.5 MeV and whose energy gain
made it very difBcult for us to observe Ho K x rays. Thus
we had to rely on the time-tagged coincidence data to ob-
serve the presence of these x rays. Figures 3(a) and 3(b)
show all coincident x rays recorded in the n-type Ge
detector during the first and second three seconds of
counting, respectively. A small peak at the Ho K -x-ray

energy does appear in Fig. 3(a) but not in Fig. 3(b). Its in-
tensity distribution as a function of time yielded a half-
life of 1.7(6) s for ' Er. In agreement with this value, a
maximum likelihood analysis of the eight x-ray events
[Figs. 2(a) and 2(b)] seen in coincidence with delayed pro-
tons results in a half-life of 1.9+0 6 s. These experimental
determinations are to be compared with the prediction of
about 1 s for the ' Er half-life from the gross theory of P
decay [9].

A search for y rays in coincidence with these Ho E x
rays did not reveal any transitions which could be as-
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FIG. 3. Total projected coincidence K-x-ray spectra accumu-
lated with a 24.3/o Ge detector. Parts (a) and (b) show data
recorded during the first and second three seconds of counting,
respectively.
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