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The electron capture and P+-decay properties of ' 'Dy (produced in "Ni + Mo irradiations) were

investigated following mass separation of A =145 isobars. A new 6(2)-s activity was identified and as-

signed to the vsI~~
' 'Dy ground state. Its decay to low-spin levels in ' 'Tb indicates that the base state

for low-spin levels in this N= 80 odd-Z nucleus is probably ad3/2 rather than ~s&&2, as is the case for ter-

bium nuclei with N =82, 84, and 86.

PACS number(s): 23.20.Lv, 27.60.+j

The radionuclide ' Dy is a known [1,2] P-delayed pro-
ton precursor. However, little information is available
concerning levels in its [electron capture (EC) +P+]-
decay daughter, ' Tb, with only four y rays having been
observed [3] to follow ' Dy decay. We have investigated
3 =145 isobars with the use of the OASIS on-line-
separator facility [4] following their production in Ni ir-
radiations of Mo. Earlier, we reported [5] on the decay
of ' Er and ' Ho. Here we discuss the identification of
the ' Dy ground state and the characterization of low-
lying single-proton ' Tb levels.

Molybdenum foils, 2.98 mg/cm thick and enriched to
97.37% in Mo, were bombarded with 283-MeV Ni
ion s from the Lawrence Berkeley Laboratory Super-
HII.AC (heavy-ion linear accelerator). Evaporation resi-
dues with 3 = 145 were mass separated and transported
ionoptically to a shielded counting area located 4 m
above the separator. There, the radioactive ions were im-
planted in a fast-cycling tape and transported to a detec-
tor array for charged-particle and photon spectroscopy.
A b,E-E particle telescope and a planar hyperpure Ge
(HPGe) detector faced the radioactive layer, while a 1-
mm-thick plastic scintillator and a 52% Ge detector were
located on the opposite side of the collection tape. A
second 24% Ge detector was placed at 90' relative to the
other detectors, about 45 mm from the radioactive
source. Coincidence events registered in the various
detectors were recorded in an event-by-event mode, while
singles spectra were acquired from all three Ge detectors
concurrently. A time-resolved multispectrum mode was
used for the singles spectra accumulated in the 52% Ge
and HPGe detectors where each tape cycle was divided
into eight equal-time intervals for half-life measurements.

Figure 1 displays our delayed-proton data for ' Dy:
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(a) singles proton spectrum, (b) protons in coincidence
with positrons, and (c) y rays in coincidence with pro-
tons. (Note that previous investigators [1,2] have report-
ed only singles information. ) In Fig. 1(a) the spectrum is
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FIG. 1. Delayed-proton data for ' 'Dy:
spectrum, (b) protons in coincidence with

Gd y rays in coincidence with protons.

(a} singles proton
positrons and (c)
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basically structureless, although there are peaks at about
2.6 and 2.9 MeV (see also Ref. [1]). By requiring positron
coincidences one can enhance the fraction of protons
emitted from low excitation energies, i.e., from levels
found [6] to be associated with the pronounced peaks in
the spectra of the N=81 precursors, ' Dy, ' Er, and
' 'Yb. In the case of ' Dy, there are not very many
positron-proton coincidences because of the isotope's rel-
atively low QEc and the high binding energy of the last
proton in '" Tb, 7.45 and 1.54 MeV [7], respectively.
Despite the poor statistics, it is clear that the spectral
centroid is at a lower energy in Fig. 1(b) than in Fig. 1(a);
there is also an indication in Fig. 1(b) of an enhancement
of the 2.6- and 2.9-MeV peaks relative to the rest of the
spectrum.

In Fig. 1(c) one sees a 743-keV y ray, so that some of
the delayed protons feed the 6rst excited 2+ level in

Gd located at 743.0 keV. A comparison of the intensi-
ty of this coincident y ray with the total number of ob-
served protons [Fig. 1(a)] tells us that 56% of the protons
proceed to the ' Gd ground state with the remainder po-
pulating the 2+ level. This intensity ratio, as we note
below, demonstrates that there are states in ' Dy with
rather different spins that emit P-delayed protons. On
the basis of systematics [5] for odd-A even-Z nuclei in
this mass region, the likely levels are the vs»2 and vh &&/z

states. Statistical-model calculations predict that 91% of
the protons associated with the s»2 state would proceed
to the ' Gd ground state, while 71% of the protons from
the h»/2 level would populate the 2+ 743.0-keV ' Gd
state. From experiment and calculation one then con-
cludes that the s, /z and h»/z

' Dy states each accounts
for roughly 50% of the observed protons.

Based on our singles and coincidence y-ray data, we
were able to assign 38 transitions to the decay of ' Dy.
Among these transitions, we identi6ed a 108.1-keV y ray
which decays with a 6(2)-s half-life rather than the
14.5(10)-s value that we observed for most of the other in-
tense ' Dy transitions. Because the bulk of the y-ray de-
cay strength decreases in intensity with the 14.5-s half-life
(which agrees with published [3] values for ' Dy), it must
represent the decay of the h»/2 state (expected to have
the much larger production yield in a heavy-ion-induced
reaction), while the new 6-s half-life must be due to the
decay of the s, /2 leve1.

In nuclei near the 82-neutron shell and beyond the
Z =64 subshell closure, the three lowest-lying levels are
the s, /2 d3/2 and h „/2 proton states; the ds/2 and g7/2
proton states lie above them and increase steadily in exci-
tation energy with increasing atomic number. Thus the
6-s 108.1-keV y ray, associated with the s&/2 state in

Dy, was the likely candidate to be the transition con-
necting the s, /2 and d3/2 states in ' Tb. Coincidence
spectra shown in Fig. 2 (together with intensity data sum-
marized in Table I) establish the 108.1-keV transition
to be at the base of a three y-ray cascade,
184.5—+145.1~108.1 keV. There is also a crossover
transition, 253.1 keV, which is coincidence with the
184.5-keV y ray [Fig. 2(a)] but not with the other two. A
sequence of four states 0.0, 108.1, 253.1, and 437.7 keV is
then established, and on the basis of single-proton level
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systematics [8] for N =82 and 84 odd-A Tb, Ho, and Tm
nuclei, one would propose for them assignments of s, /2,
d3/2, d5/2, and g7/z respectively. The signature for these
states in the N = 82 and 84 nuclei, as in our case, is the
observation of three y rays (predominantly M 1 in charac-
ter) in cascade which connect the g7/2~d5/Q~d3/2
~s, /z levels. In ' Tb, however, we also observe an in-
tense 437.7-keV y ray (see Table I), which is not seen in
coincidence with any other transition. It thus appears to
deexcite the 437.7-keV level directly to the base state (ei-
ther ground or first excited state) for the ' Tb low-spin
levels. The presence of the 437.7- and 253.1-keV cross-
overs then requires the base state to be d3/2 and not s&/2
and the level sequence in this N =80 nucleus to be d3/z,
s&/2, ds/2 and g7/p.

This suggested spin sequence is supported by the as-

TABLE I. Energies (Ey) and relative intensities (Iy, IcE) for
' 'Tb transitions associated with the decay of 6-s ' 'Dy:

E (keV)

108.1(1)
145.1(1)
184.5(1)
253.1(1)
437.7(2)

Iy (rel. )

100b

77(5)
45(9)
48(9)

109(15)

Multipolarity'

(M1)
(E2)
(M1)
(M1)
(E2)

Iy +I«(rel. )

277
130(9)
64(13)
56(13)
111(15)

'Assumed multipolarity for ICE determination.
Normalization point for Iy and IcE.
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FIG. 2. Gamma-ray spectra observed in coincidence with the
following transitions in ' Tb: (a) 184.5 keV, (b) 145.1 keV, and
(c) 108.1 keV. Transitions assigned to ' Dy decay are labeled
by energy, while the peak labeled as "Tb" belongs to the intense
257.7-keV y ray which follows '4'Tb (EC+P+l decay.
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signment for the only other known low-spin base state in
odd-Z even-X nuclei with Z ~ 65 and N ~ 80, namely, the
direct-proton-emitting isomer in ' Tm which lies -70
keV above the h ],/2 ground state. The 360-ps half-life of
this isomer, when compared with barrier-penetration
half-life calculations for protons originating from various
orbitals, has been found (see, e.g. , Ref. [9]) to agree much
better with a d3/2 assignment than with an s, /2 assign-

ment.
Figure 3 shows a tentative partial-decay scheme for
Dy which summarizes the discussion presented in the

previous two paragraphs. The 118-keV separation energy
between the h»/2 and s»2 states in the ' Dy parent is
taken from Ref. [5]. We were unable to see any other y
rays in coincidence with the five transitions shown in Fig.
3, so that the feeding to the g7/2, d»2, and s, /2 levels
from higher-lying states (populated directly or indirectly
in the decays of the s, &2 ground state and h»&2 isomer)
must be fragmented. Evidence for mixed feedings to the
d5/2 and g7/2 levels from states at higher energies comes
from the fact that the half-lives of the four deexciting
transitions are intermediate between 6 and 14.5 s, name-
ly, 8(2) s for the 145.1- and 253.1-keV y rays and 11(3) s
for the 184.5- and 437.7-keV y rays. Also, we have not
been able to deduce levels which deexcite to both the g7/2
and h»&2 (expected to be the base for high-spin levels in
'" Tb) proton states. For this reason we cannot establish
whether the d3/2 or the h»/z level is the ' Tb ground
state as we have done [10], for example, in the case of

Ho states populated in ' Er decay where, based on
deexcitations from these linchpin levels, it was deter-
mined that the s, /2 isomer was 49.0 keV above the h»/2
ground state.
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