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Null tests of time-reversal invariance
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Because null tests of parity conservation exist in nuclear and particle reactions, it has been possible to
measure very precisely the (weak-interaction) parity nonconserving contribution to the process. There
is, however, a proof of the nonexistence of a comparable null test of time-reversal invariance. As a re-

sult, reaction tests of T symmetry have, at best, achieved precisions several orders of magnitude below

that of the tests of P symmetry. Since transmission experiments are not included in the nonexistence

proof, the existing formalism used to describe spin observables in neutron transmission experiments has

been expanded to include explicitly the target spin. Through this formalism, the time-reversal-violating

(and parity nonconserving) forward scattering amplitudes are identi6ed, along with the corresponding
spin observables. It is noted that new and more precise tests of T symmetry are provided in transmission

experiments, and that such investigations are applicable more generally in nuclear and particle physics.

PACS number(s): 11.30.Er, 24.70.+s, 25.40.Dn

I. INTRODUCTION

It has been proved that there exists no null test of
time-reversal invariance (TRI) in nuclear and particle
physics in any reaction with two particles in and two par-
ticles out [1]. That is, there exists no single experimental
observable which is required to be zero by TRI. This fol-
lows from the fact that TRI equates a reaction observable
to an observable in the inverse reaction, and so the
difference (or sum) of the two is zero. Even in elastic
scattering, which is its own inverse reaction, two different
observables are related by TRI, e.g. , the polarization and
the analyzing power, so that Py Ay 0. Because of this
requirement to compare two experimental observables,
one of which is often difficult to measure with precision,
it is easy to understand why such tests of T symmetry
have rarely attained the 1% level of experimental error.
In strong contrast, since null tests of parity conservation
are available, e.g. , the longitudinal analyzing power
A, =O from P symmetry, the weak-interaction parity-
nonconserving (PNC} contribution to 2, in pp scattering
has been determined with the remarkable precision of
+2X10 [2,3]. Thus it is clear that a comparable null
test of TRI would permit an improvement in experimen-
tal precision of several orders of magnitude.

Since transmission experiments, which correspond to
forward scattering, are neither explicitly included nor ex-
cluded in the proof of the nonexistence of a null test of
TRI, it is of considerable interest to examine the possibil-
ities for such a test there. Transmission experiments with
slow neutrons have shown remarkable enhancements in
two PNC observables, the neutron spin rotation [4] and
the neutron analyzing power A, [5]. These enhance-
ments are explained in terms of close-lying parity-mixed
nuclear levels and the p-wave barrier hindrance of the
parity-conserving transitions, and Stodolsky [6] and
Kabir [7] have suggested that nuclear effects might also
provide enhancements in time-reversal-violating (TRV)
neutron transmission observables which become accessi-

ble with polarized targets. They have developed a for-
malism to describe the spin aspects of coherent neutron
transmission and show that, in principle, a straightfor-
ward null test of TRI (and PNC} is a transmission asym-
metry associated with the reversal of the neutron or tar-
get spin. They also note, however, that the spin-spin
(pseudomagnetic) interaction causes a coherent rotation
of the neutron spin around the target polarization direc-
tion, and this rotation, followed by an enhanced PNC
analyzing power A„could provide a nonzero value of
this asymmetry and, thus, a false signal of TRV. They
have suggested some other TRV observables to be mea-
sured, but these are not null-test observables. They in-
volve two observables and can be viewed as the
polarized-target transmission analogues of the difference
between the polarization and analyzing power, which is
required to be zero by TRI.

Since the neutron-scattering amplitude builds up
coherently in the forward direction only for wavelengths
A, ))R, where R is the radius of the scattering nucleus
[8], this condition is fulfilled only in slow (s-wave) neu-
tron transmission. Thus it is important to look for a
TRV observable in ordinary transmission experiments
(without the limitation to slow neutrons), where the
coherent spin rotation is absent and the only experimen-
tal observable is the (spin-dependent) total cross section.
For example, recent measurements near 10 MeV have
been made of the total-cross-section spin-correlation
coefficient

o„(++) —o„(+—)

cr (++ )+o. (+—)

in the transmission of polarized neutrons through a
vector-polarized holmium target [9]. In Eq. (1), taking z
along the beam direction, cr„~(++ ) [o„(+—)] is the
total cross section with the projectile and target trans-
verse polarizations p„,p =1 (p„, —p =1) [10]. Since
A& y is a PNC and TRV experimental observable, as wil 1
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be shown in Sec. II, this is a null test of both I' and T
symmetry. Having determined that their experimental
result was consistent with zero at the 5X 10 (2cr ) level,
the authors suggested that it would be more appropriate
to investigate the low-energy (neutron) regime where
PNC resonance enhancements have been seen. In this re-
gard, Gould et al. [11]have reviewed the formalism that
describes PNC and TRV terms in low-energy resonance
total cross sections with polarized neutrons and/or polar-
ized targets. It should be noted that this formalism does
not apply for coherent neutron transmission, since the
appropriate neutron spin rotations are not included.

Clearly, it is important to examine the question of a
TRV observable in the morc ordinary and widespread
possibilities for charged-particle transmission experi-
ments in nuclear and particle physics at all energies.
Here one would be giving up the potential for enhance-
ments from nuclear effects, but the improvement by
several orders of magnitude in the experimental precision
that can be attained in a nul/ test of T symmetry is an
equally definite, and more certain, "enhancement. "

II. FORMALISM

In his treatment of coherent transmission through a
polarized target, Stodolsky [6] describes the forward-
scattering matrix simply in the 2X2 neutron spin space
with no explicit inclusion of the corresponding target
spin-space matrix. Since both projectile and target polar-
izations are required in order to provide a TRV term in
the forward-scattering matrix, I choose to follow the pro-
cedure that is standard for (nonforward) scattering. That
is, the corresponding observable, the spin-correlation
coefficient, is given by

A. k(8)=TrMS SkM /TrMM (2)

where S~. (Sk ) is the projectile (target) spin operator cor-
responding to polarization in the j (k) direction and
M(8) is the transition matrix which connects the initial
and final spin states Xf =MX,. [12]. Since Sk operates in
the target spin space, it is clear that M must encompass
the combined projectile-target spin space. In order to
identify, then, a TRV observable in (noncoherent)
transmission experiments, I consider in detail, as proto-
types, the cases with spin- —,

' projectile and spin- —,
' or spin-

1 targets.

M(8) g a kcT so k, J,k o, x,y, z, cT —1

j,k

(3)

Choosing the projectile helicity frame, unit vectors along
the coordinate axes are taken to be

A. Spin structure —'+ —'~ —'+ —'
2 2 2 2

In the simplest case with spin- —,
' projectile and target,

the 4X4 M matrix can be expanded in terms of direct
products of the 2 X2 projectile and target Pauli spin ma-
trices o, and o.k, respectively [13],

ox ~y ~z .

T o oy o

The 16 M-matrix amplitudes aj. k in Eq. (3),

a«, a,x,a„a„ax„a,axy, a»,
yo~ yx~ yy~ yz~ zo~ zx~ zy~azz

(5)

can then be classified, from (5), according to their P
and/or T symmetry. That is, an amplitude is

PNC (TRV) if n +n, (n„) is odd,

where n„(n, ) is the number of x (z) subscripts [14].
Since J„the z component of total angular momentum,

is conserved and the orbital component l, =0 in forward
scattering, the total (channel) helicity s, is conserved
there. The equivalent condition is that M(0) be invariant
with respect to rotation around the z axis, 8, Imposing
this condition on Eq. (3), with o o. k =cr ok, —resu. lt. s in
the forward-scattering matrix with its PNC and TRV
term a

M(0)=a, ,+a, ,o,o, +a, ,o,o,
+a „(o o +oro~)+a, ,o,o,
+a„(cr„o~—o o„),

where the y axis is now identified with the transverse tar-
get polarization [10]. The fourth and sixth terms come,
respectively, from the R, -invariant forms (o i o2) and
k.(o., X cr 2). Since the TRV amplitudes a, and a, „van-
ish in forward scattering, there can be no test of TRI
alone in a transmission experiment with a spin- —, projec-
tile and target. However, the amplitude a„y suggests
that a corresponding PNC and TRV observable is avail-
able in the incoherent transmission experiments that are
available in nuclear and particle physics. Here one uses a
treatment that features transmitted intensities rather than
amplitudes, and the spin-dependent observables, i.e., the
total cross sections, are then related to the spin-
dependent forward-scattering amplitudes by the optical
theorem.

The transmission factor, defined as the ratio of
transmitted to incident beam intensities through a target
of areal density d (number of nuclei per cm ), is

I(d)/I(0)—:T(d) =exp[ —o Td] =exp[ —cr ],—
where o.z. is the unpolarized total cross section and thus
o. is a dimensionless "total cross section" which includes
the areal density factor d. The corresponding spin-
dependent cross sections are

o k=o(1+p,p„A „), j,k=x,y, z, (10)

where k; and kf are along the initial and final momenta
of the projectile. Then, with o =ca.x, etc., we have the
following transformations under the P, T symmetry
operations:

~x oy oz

z=k, , y=k, Xkf, x=y Xz, (4) where p. (pk ) is the projectile (target) polarization along
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the j (k) direction and A. k is the corresponding (total-
cross-section) spin-correlation coeKcient, which is
essentially defined by this equation. Then, with
o k(++) [o k(+ —)] defined as the cross section for
the pure spin states p. =pk = 1 (p = —

pk = 1), we have

the only terms from M(0) [Eq. (8)] that survive in Eq.
(20) are the terms a, k and a k, once the polarizations
p,pk have been selected. For our purpose here, to identi-
fy a PNC/TRV observable corresponding to the ampli-
tude a„~, the appropriate choice is p, =p„,pk =p~ (or
vice versa), for which

~j, k
=

2 [exp[ og, k(++ )]+exp[ oj,k(+ (12a)

o k(++)=o k( ——)=o(1+A „),
oj k(+ —)=oj k( —+)=a(1—A. k) .

Using these spin-dependent cross sections, the corre-
sponding transmission factors are defined as

o. A „=KIma

Then, with

o =K Ima, ,
A„~ =Im a„ /Im a, ,

(22)

(23)

(24)

and

gkexp[ —o k (+ + ) ]—exp[ —o. .
k (+ —) ]Jk

exp[ o~k(+—+ ) ]+exp[ —cr .
k (+ —

) ]
(12b)

Thus T k is the transmission factor for a completely po-
larized beam transmitted through an unpolarized target
(and vice versa), while b, TJ k is the transmission asym
metry of the polarized beam for opposite states of the tar-
get polarization. Using Eq. (11),

T. k =e cosh o A k,
hT~ k= —tanho Ajk .

(13a)

(13b}

4~
or(pj. ,pk)= Im Tr[p~ kM(0)], (14)

where p k is the density matrix representing the initial
polarizations and or(pj, pk) is the corresponding total
cross section. The normalization Tr p = 1 has been
chosen. Then, in the established notation,

, k =-,'(o, +p, o, )e(o, +pkok ),
and so

(15)

p~ k(+ +)=—,'(1+o
1o,+o,o k+o Jo k ) .

Taking

4md

k

Eq. (14) becomes

(16)

(17)

We now use the spin-dependent form of the optical
theorem [15] to express o Aik in terms of the imaginary
part of the corresponding forward-scattering amplitude.
That is,

Thus the spin-correlation coefficient A „ is the observ-
able to measure as a true null test for a combined PNC
and TRY effect, since the amplitude a vanishes when
either symmetry holds. Finally, the corresponding
transmission asymmetry, which is the directly rneasure-
able quantity, is

AT„~= —tanh(IC Ima )~—X Ima for a„&&1 .

(25)

This is also the simplest experimentally, for which high
precision can be achieved.

There is one, important, case for which a rneasurernent
of A does not provide a null test of the P, T sym-
metries, and that is for the case of identical projectile and
target particles, e.g., proton-proton scattering [16]. The
identical-particle interchange in the scattering matrix
[Eq. (8)] corresponds to o„cr ~outcr„, and the last term
changes its sign. Thus the amplitude a„and the corre-
sponding observable A are required to be zero by this
identical-particle symmetry.

B. Spin structure 2 + 1~ 2 + 1

Since it is clear from the foregoing development that
there is no uniquely TRV forward-scattering amplitude in
the —,'+ —,

' ~—,'+ —,
' spin system, it is important to examine

the suggestion [17] for an additional T-odd, P-even term
in the forward-scattering matrix of the form
k (cr XI)(k I), with target spin I ~ 1 since I represents
an alignment. Since the simplest M(0) matrix that can
furnish such a term is that for a system with the spin
structure —,

' + 1~—,
' + 1, one can proceed then in the same

manner as in Sec. II A. Equation (3) now becomes the
6 X 6 matrix

cr~ k =IF Im Tr[p) kM(0)],
and with

(18) M(8)=g a, ko, Pk+ g a, , o,g P,
j,k j, lm

(26)

o AJ k
= —,'[o . k(++ ) —o J k(+ —)],

we have

cr A~. k
=

—,'K Im Tr[(cr, o.„+o,o k )M (0) ] . .

Then noting that

Tr[(o, ok)(cr,'ok )]=4~,,'8kk'

(19}

(20)

(21)

j,k =o,x,y, z, lm =xx,yy, xy, xz,yz,
with the sum over lm limited to the five independent
terms. The Pk (P& ) are the vector, rank-1 (tensor,
rank-2) components of the spin-1 matrix operator [12].
Thus the 16-term first sum combined with the 20-term
second sum provides the required 36 terms of the M ma-
trix. Imposing R, invariance, the forward-scattering ma-
trix reduces to 10 terms,
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M(0)=a, , +a, ,cr,P, +a, ,o,P, +a„„(o„P+o P )+a, ,u, P, +a„(o P cr—P„)
(27)

The first six terms are the equivalent of Eq. (8), and the
additional four terms arise from the R, -invariant forms
(k I), (k o)(k I), (k I)(o"I), and k (cr XI)(k.I), re-
spectively, and each of these latter terms has the I factor
that provides the spin-1 tensor operator PI in Eq. (27).
Then, from (7), a„, is the T-odd, P-even amplitude that
has been the object of this development. So, in following
the same procedure as for the —,'+ —,'~ —,'+ —,

' spin system
in Sec. II A, one would like to choose the density matrix
representing the spin-1 polarization as

Pyz 3(Po+ 3PyzPyz

where p, is the target tensor polarization, i.e., alignment
along the y =z direction. However, unlike the situation
for vector polarization, one cannot isolate the tensor
component p, . As prepared in a polarized-ion source,
where the quantization (3) axis is an axis of cylindrical
symmetry, the sole vector and tensor components are pz
and p33 respectively. When the axis is aligned along the
direction y =z in the chosen projectile helicity frame, the
polarization components are [12]

3 3 1 +1
2 2 " 2 2

(31)

And with

+ ,'o, Py,—)M(0)]. (32)

—,'Tr[(o P, )(cr P& )=65"5~, ~~~

the result corresponding to Eq. (24) is

Ax, yz g
Iiil Qx, yz /I +o,o

(33)

(34)

As the notation indicates, this is the spin-correlation
coefficient for the beam polarization p in combination
with the target tensor polarization p „as is shown in Fig.
1, and the corresponding transmission asymmetry is

Then, taking p3= —,', p33 +1, which is a combination
available from a polarized-ion source, the result corre-
sponding to Eq. (20) is

p =0, 1
pxx = p =0,

~~x,yz 4K Im az yz for ax,yz (35)

1
Py= ~2Jy3 &

1
pyy

=
4p33 ~

1
pzz= 4p33 ~

=3
pyz= 4p33 ~

p, =0 .

= Z

Thus the spin-1 target density matrix

Pr= ,'[P, + ,'PyP +—2P,P, + —,'(Pyy——P„)—(Pyy P„)—
+ ,'P P„„+', py, P—y,], —

for p3 =p33 1, becomes

(29)

(30)

Although these results have been derived for the
specific case of a spin-1 target, they are valid generally for
the case of rank-2 tensor polarization of a target of spin
I ~ 1. A very recent determination of this spin-
correlation coefficient has been made in the transmission
of 2-MeV polarized neutrons through an aligned ' Ho
target with I= ,' [18],and the—result, (1+6)X 10, clear-

ly demonstrates the improvement that has been achieved
in tests of T symmetry by using this null-test observable.
It is also clear that a further improvement in precision of
more than two orders of magnitude can be attained in
such transmission experiments with proton beams at
higher energies, since this has already been demonstrated
in the analogous null tests of P symmetry.

Even though I have described this observable A, in
terms of a polarized spin- —,

' projectile and a tensor-
polarized target, the present experimental facilities may
be better suited to using "reverse kinematics, " for exam-
ple, a tensor-polarized deuteron beam and a polarized
proton target. This follows from the fact that proton tar-
gets have achieved significantly higher polarizations than
have tensor-polarized deuteron targets, and deuteron
beams of high tensor polarization are available.

III. SUMMARY

FIG. 1. Experimental arrangement for the measurement of
the total-cross-section spin-correlation coefficient A„~,. The
beam in the z direction, with polarization p, is transmitted
through the target with tensor polarization p~„ i.e., alignment
along the direction y=z. This is symbolic only. Other tensor
polarization components are present, as is described in the text,
but they do not contribute in the determination of A ~, .

The complete spin-space scattering matrix has been
used in order to identify unambiguously the T-odd
and/or P-odd forward-scattering amplitudes. These then
provide, via the spin-dependent optical theorem, the
total-cross-section observables that constitute null tests of
the corresponding symmetries. Although these spin-
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dependent total cross sections are often measured via
transmission experiments, they can also be determined
from measurements of the scattered Aux of particles in-
tegrated over the experimentally accessible solid angle
(see, e.g., [2,3]). It is important to realize that precision
in the determination of the absolute total cross section is
not essential. The relevant precision is that attained in
the ratio of the cross sections for the opposite spin orien-
tations.

An especially important result is that the TRV observ-
able is directly proportional to the imaginary part of the
corresponding TRV forward-scattering amplitude, in
contrast to the situation that exists for the standard (non-
forward) scattering experiments. There, T symmetry
tests can be accomplished only via comparison of two
separate observables, e.g., P —A, where that difference
is given in terms of a TRV amplitude in a bilinear com-
bination with a TRI amplitude. As a result, there have
been instances where the (unknown) TRI amplitude
turned out to be so small that no significant test of TRI
had, in fact, been made [20]. This kind of ambiguity does

not exist in this null test, and one can directly state the
precise level to which the (imaginary part of the) T-odd
amplitude has been determined.
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