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Exclusive process H(e, e 'p)N' as a tool for investigation of the quark structure of the deuteron
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The exclusive H(e, e'p)N* process at CEBAF energies, with the missing mass coincidence technique,
offers the opportunity to reveal the baryon-baryon (BB) composition of the deuteron and to reconstruct
the deuteron six-quark wave function. As an example, we project out two different kinds of currently
discussed six-quark functions into various BB channels including such baryons as n, p, 4, N(1440),
N(1520), and N(1535). Spectroscopic factors and momentum distributions are calculated using the
nonrelativistic quark model. The results are that the hA component in the deuteron is almost entirely
connected with the six-quark configuration s while the channels with N(1440), N(1520), and N(1535)
display the configuration s p .

PACS number(s): 24.85.+p

I. INTRODUCTION

One of the dominating views of the nucleon structure is
that nonperturbative @CD effects produce, first of all, the
constituent mass m —

—,'m& of an individual quark as a
result of its coupling to the virtual collective vacuum ex-
citations. Here, the nucleon quark radius equals approxi-
mately 0.5 —0.6 fm.

On face value it seems that the quark degrees of free-
dom may be seen in both elastic and inelastic form fac-
tors of electron scattering on the deuteron providing the
momentum transfer is large enough. However, the quark
microscopic calculations [1,2] show that the nucleon-
nucleon overlap region r ~ 0.5 fm is characterized by a
destructive interference of quark configurations s and
s p which results in the shape of form factors, typical
for traditional repulsive core NN potentials. So, there is
only evidence that quark concepts are compatible with
electron form factors, low-energy N¹cattering phase
shifts, etc. [1—3].

An illuminative demonstration of the essential role of
the excited quark configurations is the possibility to de-
scribe the N¹cattering data (differential cross section
and vector polarizations) within a rather broad energy
range 0(E&,b 5 GeV based on deep attractive poten-
tials with forbidden states [4]. These potentials are con-
nected to the quark configuration s p producing the no-
dal S-wave function of relative motion of two nucleons.

Of course, it is important to search for more and more
convincing manifestations of quark concepts in the NN
system. One of the possible ways was outlined in our pre-
liminary communications [5,6] and is presented in this
paper.

*Present address: Institute of Theoretical Physics, University
of Tubingen, D-7400 Tubingen, Germany.

Low-energy nuclear physics deals with cluster proper-
ties of nuclei having a shell-model structure. The theory
of clustering, which is presented in Refs. [7,8], leads to
rather successful experiments on the quasielastic knock-
out of clusters from the light nuclei by fast protons or
electrons with the energies 100—300 MeV [9]. First, the
spectroscopic factors S"(i,f ) ("partial probabilities, "
their sum is not normalized to unity) to find cluster x in
the nucleus A were measured, where i and f mean initial
state of the nucleus A and final state of the nucleus
A —x, respectively. Second, cluster momentum distribu-
tions were also measured. At higher proton bombarding
energies (up to 1 GeV) and correspondingly higher ener-
gies of knocked-out clusters, where the knock-out process
results from the nuclear interior instead of the nuclear
surface, the amplitudes of deexcitation of virtually excit-
ed clusters during the quasielastic knock-out process
(e.g. , a"~a) can be measured and result in very unusual
properties of quasielastic form factors [7,8]. One of the
experimental results [9] gives the simplest evidence of
such deexcitation. The essential property of high-energy
quasielastic knock-out is that final-state exchange terms
are of no importance due to the large values of momenta
of fast particles x or A —x in the final state. In the
present paper we use this idea to try to make quark
effects measurable.

The six-quark wave function of the deuteron, due to
the essential contribution of the s p configuration, shows
very rich cluster properties. So, together with the NN,
Ah, and CC components as the well-known characteris-
tics of the s configuration, there are many different clus-
ter components NN*, NN**, N*N*, hA*, hA*', A*A*,
CC*,. . . where one or two oscillator quanta of excitation
are concentrated on the internal Jacobi coordinates of the
3q cluster. Here, one-quantum excitations N* have nega-
tive parities [N (1520) and N, (1535)] while the
lowest of the two-quantum states N*' is Roper resonance
N, +(1440), etc. It is important that the b, b, component
of the s p configuration is one order of magnitude small-
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er than that ofs .
The appearance of orbitally excited baryons in

baryon-baryon (BB) composition of the deuteron was not-
ed first in Ref. [10] where some qualitative estimates of
S~z factors were also done within the six-quark cluster
model. Our Ref. [5] has dealt with "realistic" six-quark
configurations but the simplest baryonic wave functions
were used to calculate spectroscopic factors SzB for BB
components with N(1440), N(1520), or N(1535) as one
of baryons. However, it appears [6] that the mixing of
different three-quark configurations in baryonic wave
functions [11] can have a very remarkable influence on
S~~ factors, the extended and improved series of which
was calculated in the following paper [6].

Collecting the knowledge of our work, in the present
paper we emphasize that there is an interesting opportun-
ity to observe the baryon-baryon composition of deu-
teron, to measure the spectroscopic factors SzB and
momentum distributions in various BB channels. In fact,
it means that there is an experimental opportunity of
displaying the composition of quark configurations in
deuteron. Namely, we propose the exclusive process of
the quasielastic knock-out of protons from deuterons by
electrons H(e, e'p)R, where various states of the reso-
nance spectator R can be identified by coincidence mea-
surernent of fast final particles. The final proton must
have an energy above 1 GeV to avoid the admixture with
the process where the slow resonance R is excited off nu-
cleon by incident photon in the deuteron (this process is

connected with the usual NN component in the deuteron)
and at the same time the resonance-spectator R must be
quite slow to avoid the inhuence of final-state meson ex-
change triangle diagrams with the resulting redistribution
of excited baryons.

We shall see that the specific features of quark struc-
ture of virtual baryons sometimes result in the interesting
situations when the factorization approximation is no
longer valid, the knock-out amplitudes with and without
deexcitation are interfering, and the experimentally ob-
servable recoil momentum distribution appears to have
some unexpected shape.

As an important ingredient of our theoretical presenta-
tion we outline the formalism of spectroscopic factors
SiiB (which can be easily generalized, for example, to 12q
bag, etc.) and deliver the necessary numerical values.

II. MICROSCOPIC FORMALISM
FOR H(e, e'p )R PROCESS

The diagram describing the quasielastic process under
discussion is presented in Fig. 1 where the spectator reso-
nance R can be identified with the baryonic states
b, (1232), N(1440), N(1520), N(1535), etc. The dashed
circle represents the matrix element of the nuclear
(quark) electromagnetic current. If the four-momentum
transfer q is reasonably small (in quark scale), we can
neglect the contribution of sea quarks and write down
this matrix element as

6 6

jg;= g J g dr;exp(iq. r„)[g~(r„.. . , r6)j'(k)P„(r, , . . . , r6)],
k=1 i=1

p (2)

where f is the symbol of final state and j (k) is the
operator of the electromagnetic current of quark k. In
the nonrelativistic approximation its components look
like X [(k„+k„')(k +k' )+g„,q2]

1 p R

(4)

pi+ pf i+P
2m 2m

(2')

where m is the constituent quark mass, and e and p
operators of the electric charge and of the magnetic mo-
ment, e =p= —,'e+ —,'e~3. The primary relativistic expres-
sion (Dirac particle without anomalous magnetic ino-
ment) is

Here, the integration over recoil momentum kii (which is
not fixed directly but is fixed by four-momentum conser-
vation) is carried out, and the matrix element of current
(1) no longer contains the factor (2m. ) 5(k + king

—q). Ex-

p(Y )

pg+pP
Jg " pg 14(p;) (3)

The cross section averaged over initial spin states and
summed up on final ones can be expressed as

FIG. 1. general diagram corresponding to the H(e, e'p)R
process.
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pression (1) contains everything that we are interested in
the quark structure of deuteron. Let us go into some de-
tails of it. The final-state wave function of p+R system
is

Its normalization
—1/2 —1/2

ff(rl ' r6} exp(i(kp+kR ) Rc)
X 3 I y (1,2, 3 }ya(4, 5, 6)y' '(r) I, (5)

where yz(1, 2, 3) and yz(4, 5, 6) are internal three-quark
wave functions of the baryons and the coordinate system
is demonstrated in Fig. 2 and quark antisymmetrizer is

6
A=

3 g( —1YP . (6)

PR
~2=- „=3i
(

1

F'

FIG. 2. Jacobi coordinates of the six-quark system.

be above 1 GeV, with recoil momentum value being small
enough (typically, no more than a few hundred MeV/e).
As result, the exchange terms, i.e., the terms of the
second class, are suppressed due to a big value of momen-
tum of mutual motion p-R. So, considering the quasielas-
tic region we can write

3
6I

3't3'!

1

&2O jf, = f g dr, exp(iq. r, )[exp[ —i(k +ka ) Rc]

assumes that y' '(r) is not antisymmetric with respect to
baryon permutations, and preserves the asymptotics of
the mutual motion wave function y' '(r} outside the
overlap region of the composite particles p and R. The
operator P comprises all possible quark permutations. In
the case of antisymmetric function g' ' we should omit
out of (6) two- and three-quark exchange terms and re-
place the normalization factor by

' —1/2

3t3!2 &1O

As long as the initial state is antisyrnmetric over permu-
tations of quarks, and the interaction operator is sym-
metric we can replace [7] the antisymmetrizer A in Eq.
(5) by a simple identity factor

1/2
6 1/2

6!
3 3l3f

The matrix element (1) contains terms of two classes.
The first of them corresponds to absorption of a virtual
photon on one of quarks of the emitted proton while res-
onance R is a spectator. The second class of terms is evi-
dently just the opposite: a photon with high momentum
is absorbed by a nucleon (y'+N +R ) or some o—ther
baryon (y*+N'~R ), while a very fast outgoing proton
is a spectator. In this case the cross section is determined
by the large momentum of the outgoing proton k, and is
proportional to ~g&&(k )~, where /zan(k) is a deuteron
NN wave function in the momentum representation. We
are interested in the quasielastic kinematical region
where the first class terms dominate over the second class
ones. Here, the energy of the knocked-out proton must

I

1/2
6!

3!3!
q&*(1,2, 3 )yR (4, 5, 6)

Xy' '*(r)3j'(1)gd(1,2, . . . , 6)],
where the factor 3 is due to identity of quarks.

Due to a large momentum transfer q„, in the already
discussed kinematical region and, as a consequence, large
relative momentum p-R in the final state, we can ignore
the eFect of distortions and use plane waves to describe
outgoing baryons. In this respect, the situation is analo-
gous to that of the understood process H(e, e'p)n in the
quasielastic region [12], where the effect of distortion is
small at smaller outgoing proton energies.

The plane-wave approximation evidently means

'(r)~exp(iQ r),
m~k —m k~

Q
mp+mg

and necessary transformation from single-particle coordi-
nates r; to cluster Jacobi coordinates has to be done in
accordance with Fig. 2.

For the sake of convenience let us insert into the ma-
trix element (7), just after the current operator, the clo-
sure representation of unit:

y f d Kg ig, (1,2, 3),K, ) (p, (1,2, 3),K, ~
=1,

B,M~

where the summation is carried out over all excited states
of 3q-cluster 8, its spins and spin projections, etc. , and
KB means the cluster center-of-mass momentum.

As a result,

jf;=(2m) ~ g f dR„dg„dp~ exp(iq r, )[exp'( i' RR)y—*(1,2, 3)3j (l)yz(1, 2, 3)exp( —ikz R )]
B,M~

R (2 )3/2

' 1/2

X fdr exp(ikR r) 6!
(q)~(1,2, 3)y~(4, 5, 6)

~ fd(1, 2, . . . , 6});
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i.e., the matrix element is now divided into two blocks. The first of them,

j'z = f dR~dg~dp~ exp(iq r, )[exp( i—k~ R~)y~(1, 2, 3)3j (l)pz(1, 2, 3)exp( i—kit. R„)], (10)

is the matrix element of the hadron current for the pro-
cess e+B~e'+p, where —k~ is the momentum of ini-
tial virtual off-shell cluster B and k is the final momen-
tum of proton. In the second block

y~ ~ (r)= 6!
3!3!2

1/2

(q&g, (1,2, 3)yii (4, 5, 6)I

Xy„(1, . . . , 6)) . (13)

1
C»~(K~ ) = », «exp(ik&. r)~ ~~(r),

(2m) i

1/2
d 6!
BR ( (y (1,2, 3)y (4, 5, 6)I

Xt/t~(1, 2, . . . , 6))

we see the function with the specific identity factor ap-
pearing due to the many ways one can build up cluster B
of quarks with different numbers: 1, 2, 3 or 1, 2, 4, etc.

This function is observable in the H(e, e'p)R process
(as well as in other knock-out processes) and is normal-
ized to the spectroscopic factor

1 f IC'gg (r)I dr
Md M~M

» +, X f I+:.(k. )I'dk.
d MdMBMR

(12)

The matrix element (9) can be presented by the general-
ized pole diagram of Fig. 3, where inelastic knock-out
amplitudes e+8 ~e'+p (8&p ) are incorporated, which
means that we are going beyond the simplest impulse ap-
proximation. We shall see that these inelasticities can
sometimes play the dominating role. The baryon-baryon
composition of deuteron is just defined by Eq. (11), in
particular, the "probabilities of population" of various
B-R channels are defined by spectroscopic factors. This
rich panorama is originated in microscopical quark treat-
ment of both deuteron and baryons.

If we want to compare a B,-B2 "relative motion wave
function" in the deuteron with a quantity derived from a
microscopic six-quark deuteron wave function
fz(1, . . . , 6), we should use

The additional factor of 2 ' is motivated by the fact
that gz(1, . . . , 6) is antisymmetric under the interchange
of baryons 8, and Bz (even if they are not identical), be-
cause it is antisymmetric under the interchange
(1,2,3)~(4,5,6). But if we describe the process
H(e, e'B~ )Bz on the baryon level instead of the quark

level and use an antisymmetric B&B2 wave function in
the initial state, we must multiply the reaction matrix ele-
ment by 2'~ [see the discussion found after formula (6)].
Hence, the full "structure part" of matrix element (1) will
again be (11).

But we should underline the fact that (13), in some
sense, differs from the usual B&-B2 Fock component. In
the latter baryons are regarded as elementary structure-
less particles and the square of the norm of each line in
the deuteron Fock column is the probability of the given
baryon-baryon component. The total probability for all
possible components is unity. In our case, only the wave
functions on the quark level are probability amplitudes
1t~(1, . . . , 6), y~ (1,2, 3), and qrii (4, 5, 6), such that each

is antisymmetric and normalized to unity. 1t~ ~ (r),
1 2

strictly speaking, has no such interpretation. Only in the
limit where the size of each cluster B; approaches zero, in
both the bra part of (13) and in the six-quark deuteron
wave function, the function Pz ii (r) has a direct proba-

1 2

bility interpretation and corresponds literally to the given
B&B2 component in the deuteron Fock column.

The specific interest from the viewpoint of BB spec-
troscopy can be seen in such channels of H(e, e'p)R re-
action when the sum over 8 in Eq. (9) is reduced to one
term only. Here, the expression (4) describing cross sec-
tion can be written down in the usual form as product of
cross section of basic process e+B~e'+p and B-R
momentum distribution in the deuteron. So, this momen-
tum distribution can be extracted from experiment by the
usual straightforward procedure.

Indeed, if we write down all the spin projections, we
can present the block of currents in Eq. (4) as

1

(2~)3»„+1
d p R

1 j"~(K,M; —K~, M~ )g e (K,M; —K~,M~ )4ii~ (K~;M~, M~, Mq )2Jd+1 M M Md p R

Mj M~

X 4&~~ (K~;Mii, M~, Mg ), (14)

with some evident simplification due to orthonorrnality of Clebsch-Gordan coefficients:
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1 1
@sit(KIti', MgiMd)@sp (KgiMg~MIi Md ) =& g I@ps(KsiMg, Mg, Md )I

d R d R

The remaining couPling in Eq. (14) between blocks jpz jpz and I@&~ I by means of summation over Projections Ms
can be originated only in a small spin-orbital contribution to the transitional charge density jpii and is neglected (see
Ref. [12] with discussion of process A (e,e'p ) A —1 for details). As a result, we can present Eq. (4) as

d 0
dk'dk

2

[(k„+k„')(k,+k' )+g„,q ] g j "~j 's g I@iis(KIi )I 5(Ef E; —co—) .

It is natural here to pick out the cross section of a free (inelastic) scattering of ultrarelativistic electron on baryon 8
with momentum —kz.

o,~, = [(k„+k„')(k +k', )+g„q~] g j p~j ~ .
2Z, +1

p B

(16)

This expression when multiplied to the energy-conserving delta function for the e+B—+e +p process gives just the lab-
oratory system cross section

2
O ea e'p

d 0'd c'

if k~ =0.
So, Eq. (15) can be rewritten as

d 0'

dk'dk
~eB e'p(~e&q~Kp ) 1

I @gg (Kg ) I'&(Ef —E; —~),
d+ MBMRMd

where the momentum distribution

1 Ie,', (K, )I'
d+ MBMRMd

is a characteristic of B-R component in deuteron and its normalization

S,"„=f dK.„p(K, )

(18)

(19)

is the corresponding spectroscopic factor, Szz =2N&z, where Nzz is the "effective number" of a given B-R pair in
deuteron.

III. BARYON-BARYON CONTENT
OF THE SIX-QUARK WAVE FUNCTION

OF DEUTERON

As noted in the preceding section, the quark-cluster
content of six-quark composite system has to be explored
by means of Eq. (11).

As far as the binding energy of the baryon-baryon
components under consideration in the deuteron exceed
0.5 GeV, they are localized within the spatial region of
very essential nucleon-nucleon overlap r & 1 —1.3 fm.
Here, the six-quark wave function can be expanded over
the simplest shell-model quark configurations s and s p
with different symmetries, i.e.,

As usual Young schemes [f]» and [f]cs characterize
the spatial and color-spin parts of wave function [13,14],
all the remaining symmetries are defined by the quantum
numbers of deuteron.

The calculations [2] do not include quark
configurations ls p [6]x[2 ]cs) and s»[6]x[2 ]cs)
which are important when projecting onto various BB
channels. To use the results [2] and to take into account
these configurations we can consider the identities [13]

e'

Is [6]x[2 ]cs&, Is~p [6)x[2 )cs&

ls'p'[42]»[42]„&, ls'p'[42]»[321)cs &,

ls'p'[421xl:2'lcs &, ls'p'[42)xl:31']cs &

ls p [42]»[21 ]cs), ls 2s[6]x[2 ]cs) .

(20)

FICJ. 3. Pole diagram corresponding to the e + 2 ~e'+p ele-
mentary process and the spectator particle N*.
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A [gz(1,2, 3)gz(4, 5 6)c'o (r))s=& T=o
10
9

1/2

ls'[6)x[2')cs &TisM (21)

1/2
9

41

81
205

g [yz(1, 2, 3)f iv(4, 5, 6)C 2, (r))s=i T=o
1/2 i r

410
405

1/2

$2$ 1

6

' 1/2
5

6
' 1/2

s "p [6]x[2 ]cs
TISM

Is p [42)x[321]cs&TisM

' 1/2

ls p [42lx[42)cs &TisM+
4 2

1

41

' 1/2
2Is'p'[42]x[2']cs &TisM ls'p'[42)x[31') cs &TisM

.

Here, symbol TISM (translation-invariant shell model)
means the exclusion of nonphysical c.m. oscillations,

p+ Is [3]x[21)csL =OS = ,' T= —,
'

& T—isM (23)

and 4o, (r) and 42, (r) are usual oscillator wave functions
' —3/4

4&o, (r) =&4m ~b2 3 r
exp —— I'oo(r ),

4 g2
(24)

1/2
3(r)=2$

r
1 — 4o, (r) .

$2

(26)

we can say that the expansion under investigation corre-
sponds to approximate representation of function g(r) at
r ~ 1 —1.3 fm as the superposition of oscillator functions
(24) and (25}.

Considering the resonating group method (RGM) repre-
sentation of six-quark deuteron wave function [3]

gz(6q ) = A [yN(1, 2, 3)pe(4, 5,6}g(r)],

In the above formulas (21), (22), and (26) it is implied
that antisymmetrization operator 3 is normalized as

3 6
1 —g gP,, (27)

~=i J=4

The numerical results can be very sensitive to the specific
features of microscopic quark model under consideration,
and it is just one of the central points. For instance,
well-known calculations [3] are based on (renormalized)
one-gluon exchange between quarks and pion exchange in
combination with RGM ansatz for two nucleons in the
deuteron. Here, ~v g appears to be rather close to theA 1/2

traditional "realistic" wave functions (e.g., Paris poten-
tial) and the short-range part of the function y which we
are interested in can be obtained from Paris wave func-
tion by the action of the inverse operator 8' (8 is the
nonlocal normalization operator of ROM which refiects
antisymmetrization on quarks, i.e., the quark exchange
between nucleons when they move "slowly" in deuteron).
In total, the model under discussion can be characterized
by the wave function of the next kind:

» . 6}l,~l —1.3 fm O. lg19ls [6)x[2 )cs&TisM 0 11911[(6)' s'» (6 }' s p 1[6]x[2 )cs &TisM

+0.1634ls p [42]x[42]cs&»SM
—O. »73 ls'P '[42)x[3211cs&TisM

—O. O53gls'P'[42]x[2']cs &TisM+o o464ls'P'[42]x[31']cs &TisM

+O.O»7ls'p'[42]x[»')cs &TisM ~ (28)

Here, s configuration has the weight 3.3% with its variation between 2.5% and 3.3% for different sets of initial param-
eters.

Each quark configuration entering deuteron wave function (28) can be presented by means of the Talmi-Moshinsky-
Smirnov (TMS) transformation in combination with fractional parentage technique as a superposition of various cluster
components

ls p aLST&TIsM X f'8 B „I(&B (1,2, 3)yB (4, 56)4„&(r):LST) .
Bl,S~,nl

(29)
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Here, e means all the necessary set of quantum numbers
(including symmetries [f]», [f]cs, etc.) to define the
six-quark state unambiguously and I ~ ~ „& is the corre-

sponding spectroscopic amplitude. Its square multiplied
by the identity factor just gives the "probability" to find
the B,B2 component in the quark configuration under
discussion. Further, @„&(r) is the oscillator wave func-
tion (n is the number of excitation quanta) of the baryon-
baryon mutual motion and summation in Eq. (29) is car-
ried out over all baryonic internal states and quantum
numbers nh of mutual motion.

The specific feature of expansion (29) is that the an-

tisymmetric six-quark wave function is expanded into the
sum of orthogonal but not fully antisymmetric terms.
Each term is antisymmetric only within the cluster B

&

and B2 (using the "fast" process we deal with the "instan-
taneous portrait" of virtual baryons in 6q system —see
Introduction).

The formalism of spectroscopic amplitudes I z
can be characterized as follows (our previous scheme

[14,15] is modified here to include the internal excitations
of baryons).

First, in the common notations, we use the reduction
chain

SU(24)»csT &SU(6}csX SU(4}»TD

D SU(6)cs X SU(2)» X SU(2) r &SU(3)c X SU(2)s X SU(2)» X SU(2) T . (30)

Here, the physically important CS symmetry is con-
sidered and, in addition the Young schemes [f]cs and

[f)»T are to be mutually conjugated in what simplifies
the numerical procedures.

Second, the expression for amplitude I is of factoriz-
able form

a XCST CS XT X+cs xTFc.s+x ~ TF +p ~T$$M (31)

which corresponds to the reduction (30). Here, we mean
scalar factors of SU(n ) group Clebsch-Gordan
coefficients [14,15], e.g. ,

[f]c [f]s [f]cs
([f'c)Xf["1c) (f[' )sXf["ls ) (If') csXf[" )cs) (32)

z, XCST
~ CS.XT

If'les I-f lcs

[~les

and, in particular,
1/2

Pi ri r2 kl 2 (r1+ r2 } r3,

p2 r4 5 42 (r4+ r5 ) r6

r =
—,
'

( r, +r2+ r3 ) ——,
' (r4+ r5+ r6),

(34)

where it is implied that [f ]»csT = [16].
Further, factor I,+ describes division of the quark

configuration s "p "[f]» into subsystems s "p" [f']» and
s" p" [f")». If the orbital Young scheme [f]» has no
more than two rows, it is possible to use quasispin for-
malism [14,15], which enables us to reduce the above fac-
tor to the usual Clebsch-Gordan coefficient

~If l~ ff'lg & l:f"lg
+p 5 p fl

Z
k

p
n

)& 5 k p n

=(lm ~l'm', l "m "), (33)

where l=f i f2, m =k n, l'=f', —f—2 and so on. Fi-—
nally, the last factor, I'TisM(TMS coefficient) [7,8] de-
scribes the transformation of the many-particle shell-
model wave function to cluster Jacobi coordinates with
the excluded c.m. motion

and the distribution of n oscillator quanta over various
Jacobi coordinates. Resulting amplitudes I ~ ~ „& for

colorless channels are given in Table I. Here we com-
ment briefiy on these data. It is well known [14,18] that
quark configuration s is a superposition of three cluster
components q&~qr~Cp (r) Ipglpg@p (r), and q&cycC&0, (r).
If we deal with the quark configuration s p —s 2s, it is
possible to distribute two oscillator quanta of excitation
over various Jacobi coordinates —both internal coordi-
nates of clusters B, and B2 and the coordinate of their
relative motion. Thus, side by side with three of the
above components, expansion (29) will contain many new
components

V ~*+~*@0,(r»

**%%@0(r} 'pA'pA'p2 (r} p **'pa@0 (r}

*'pdL@1 (r} 'p *'p @0 (r} 'pc pc p2 (r)

I' **Pc@0.(r) m *O'c@1 (r)
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TABLE I. Spectroscopic amplitudes for six-quark configurations $, $ p, and $'2$ in deuteron with
L =0, S= 1, T=O; the orbital momenta, spins, and isospins of cluster components are to be converted
to total values L =0, S=1, T=O.

(
5 )1/2$52$
6

TISM s [6]x ( 6
)' s"p

nfiguration [2']cs [6]+[2']cs [42]cs [321]cs

s p [42]x

[2']cs I:31']cs [21']cs

q w q ~~'0, (r)

q xq wc'2, (r)

qvqq)q+o, (r)

q ~q ~+2.(r)

q)~(p p+1p(r)

y gp~+1p(r)

q gq& g+p, (r)

q q „C„(r)
q) g gq)~+0, (r)

(
1 )1/2
9

—( —')'"45

(
1 )1/2

45

(
4 )1/2

225

(
2 )1/2

45

2 )1/2
45

(
1 )1/2

50

2025

(, '„)' '

(
32 )1/2

2025

( 2o25 )

(
8 )1/2

2025

(
1 )1/2 (

64 )1/2
25 2025

(
64 )1/2

2025

—( —')'"324

5 )1/2
324

(
10 )1/2

324

1 )1/2
3240

(
1 )1/2

3240

2 )1/2
405

(
I

)
I/2

810

1 )1/2
810

( 16zo )

( 16'2o
)'"

(
4 )1/2
81

a~=Is'[3]x[1 ]csL=0 s=
2

T=2 &TisM ~

(PNe= Is P [21]x[21]csL=1,S=—,', T= ,' &TisM, —

(35)

(36)

AN~«= Isp [3]x[21]csL=O, S=—,', T= ,' &TisM . —(37)

where the number of asterisks means the number of inter-
nal excitation quanta in a baryon. In the first approxima-
tion

Sg~ —-(4—6) X 10

SNN(1440) =(2—4) X 10

SNN()535) —(1.5 —2) X 10
d = d

SNN(1520) ——2SNN(1535)

SN( )535)N( )535) —(2—3 ) X 10d —4

d
SN(152pN(152p)

——10SN(1535)N(1535)
~d ~ Q&d

N(1520)N (1535) —owN (1535)N(1535)

X(T)t, T, t, I00&'.

This approximation seems, in general, to be reasonable
for our purposes as far as, for example, the corrections to
wave functions (35) and (36) give an effect of the order of
10—30% to amplitudes for BB channels with b, or X'
where N* is either N (1520) or N) &2

(1535) [6].
However, the model under consideration has an interest-
ing property that for the particular case of projecting
wave function (28) by means of Eq. (29) into the XN*'
channel where X" is Roper resonance N, +(1440) the
interference of configuration

' 1/2 ' 1/2

s 2s — — s p [6]x[2 ]cs&

with the sum of others is negative and the two amplitudes
almost cancel each other. So we refine wave function (37)
taking into account the small admixture

Is [3]x[21]csL=0 S=
p

T=
2 &TISM

according to Ref. [2) (the rest of the correcting terms give
a small effect).

Spectroscopic factors calculated by the method men-
tioned above have the following values (see also Ref. [6]):

Other calculated spectroscopic factors SN(1440)N(1440),
d d .

—5
SN(1440)N(1520), and SN(1440)N(1535) are of the order of 10
All the above values, to be compact, correspond to sum-
mation over all the possible charge distributions between
baryons 8, and 82. So, if each charge is fixed, we must
multiply given numbers to (T, t), T2t2IOO), where T„t,
is the isospin of baryon 81 and its projection, etc.

One final important remark is that AA component in
deuteron is practically entirely called forth by s
configuration (the infiuence of the s p configuration is
one order of magnitude less). On the contrary, all the
components containing negative-parity baryon with one
oscillator quantum of internal excitation are caused en-
tirely by configuration s p .

It is reasonable to repeat that the example of wave
function (28) under discussion corresponds well to deute-
ron M1 and other electromagnetic form factors as its
most valuable experimental foundation [1]. However,
XX-scattering data taken in the broad energy range
0 (E1,b & 6 GeV are well described by deep attractive XX
potentials with forbidden states [4] which correspond to
the nodal wave function 4zs(r) of the deuteron ground
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state [4,16]. This fact is natural to ascribe to quark
configuration

&'S '[42]x[42]cs

where the color magnetic interaction of quarks creates
the powerful NN attraction which is just able to compen-
sate the energy loss due to excitation of two quarks into p
state [15].

This model does not contain the hh component in
deuteron at all, and spectroscopic factors Sz z for BB

1 2

pairs with orbitally excited baryons with negative parity
should grow approximately 2—4 times as much as numer-
ical values discussed above (the sum of squared
coefficients in formula (28) now equals the probability of
configuration s p [42]x[42]cs }. But the value of
S&&~ &~0~ decreases two times as far as this value is condi-
tioned mainly by the small admixture of the s com-
ponent in the N(1440).

In this connection it is interesting to mention that
there exists one old inclusive experiment y+d ~A+X
[24] which showed the 3% hb, probability in the deu-
teron which is in good agreement with our result,
Nzz ——(2—3) X 10 . But there is a lot of skepticism in
the literature [17] concerning the experiments of the in-
clusive character. We propose the exclusive experiment
which can be helpful in ascertaining the baryon-baryon
composition of deuteron including the problem of the Ah
component and as a result to find out the structure of the
six-quark shell-model configurations in deuteron.

Finally, note that we used a six-quark shell expansion
of the deuteron wave function, which is valid only at
quite short ranges (r ~ 1 —1.3 fm}. Of course, the asymp-
totics of the 4h, NN*, . . . components, which do not
possess six-quark origin, stretch far distances up to 2—2. 5
fm. On the other hand, the inhuence of these asymptotic
parts on the spectroscopic factors is small [25].

a,~,p =4mo'M, «4 FI. + z +tg —I' T, (40)
2 2 2

where I'T is determined by the q-transverse component of
current and IL by the timelike component:

p2 'T T
4~(2J + 1 )

~ ~Ps~Pii
8 MBMB p

1 ~ 0 -0*
4~(2J +1) M~MB p

(42)

Here the q-transversal component of electromagnetic
current for our case of the p ~p transition is

-T ~ T
e

(P +Py) &M, M,

ppN(1440)(K R } ~NN((440) l +NN( (440)«g }I'l I00«g ) I',
(39)

where function 'INN(, 440~(k ) is normalized to unity. The
shape of the momentum distribution presented by expres-
sion l%'NN(, 440~(k ) l

is shown in Fig. 4. It is calculated by
means of microscopic projection procedure (12) with the
wave function (28). As it was noted above, the wave
function (PNN(, 440~(k) is the superposition of oscillator
functions 40, (k) and @2,(k). In fact, it is rather close to
the result of the calculation with the deep attractive
NN(1440) potential [19], i.e., to the result of the second
model under consideration (six-quark function
s p [42]x[42]cs}. Therefore, the two models differ only
by the value of the cross section (not by their form).

Here we finally comment on the cross section of
electron-proton elastic scattering o, , We can
separate in Eq. (16) the longitudinal and transversal form
factors and write

IV. CONSIDERATION
OF SPECIFIC TRANSITIONS where

+ —M i ((r Xq) —M,.),1 . PI
2 ~ 2m, 2

(43)

A. Description of process H{e,e'p )N(1440) flY7

O, G,

This reaction is called forth by the NN(1440) com-
ponent in deuteron where the proton serves as a virtual
cluster 8 [see formulas (9), (16)—(18), and Fig. 3] with
elastic electron-proton scattering e+p ~e'+p being pri-
mary fast process:

~ep

dk'de /&2

05

03

0,2

0, It

2

4O) I

— 10
8

— 10

XPpN(1440)( & } ( f (38)

Momentum distribution ppN((440((Ki() is defined by f«-
mulas (11},(12), (18), and (19). Its normalization can be
clarified by the formula

6
g, fm'

10

FIG. 4. NN(1440) relative motion wave function in deuteron
(left scale) and its square (right scale).
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2

G (q')= 1—
0 7 1 Qe+2

G~(q') =I,GE(q') .

—2

The charge component of the current is defined by the
charge operator e . As a result of the above definitions
we can write

I GE(q')
FT= m' K2

R

(KR.q)'

q

2+,G~(q')
2m'

(45)

Fl =(1/4m)GE(q ) . (46)

After substitution of these two expressions into formula
(40) when kR =0 (free proton) we get the well-known
Rosenbluth formula (within the recoil factor). If kR&0
the difference from the Rosenbluth formula is caused by
the contribution into Eq. (45) of the convective current.

Here we remind the reader also that the expression for
hadronic current written above and, as result, expressions
for FT and FL are perfectly reproduced in the quark
model (10) with the use of quark currents (2) and (2') and
the s function for the nucleon (m~ =

—,'mR ). Here, [M~
=3

and the partial Fourier transform of internal nucleon
density distribution

„(q)= &q ~(p, g) lexp( —i-', q g)lq ~(p, g) & (47)

serves as form factor GE(q ). It equals exp( bq /6) if-
the oscillator s function is chosen for the nucleon, and
the observed values of GE(q ) are reproduced satisfacto-
rily in the momentum transfer range q (2—3 GeV/c
when b =0.5 —Oe6 fm.

(p, +pf) =2[(KRq)(q/q ) —KR j

due to the conservation law —KR +q= K~ (see Fig. 1 for
notations) and eR and [MR are set by the modified electric
and magnetic form factors of proton, respectively:

GE(q')
e =GE(q )=

(1—
q /4m )'

I" =GM(q')=
GM(q')

i) M (1 2/4m 2)i/2
P

B. Process H(e, e'p )5

This process in the kinematical region of quasielastic
knock-out (see Sec. II above) is originated from the b, b.
component in deuteron (the contribution of b, *b, and
b, **A, components is small). So it is of principal impor-
tance for the inspection of various quark models. The
primary fast process here is the inelastic electron scatter-
ings e+6—+e +p with the quark spin-isospin Aip. The
expression for differential cross-section, therefore, looks
like

o.,g, ~((I]„q„,K„)
pqq(KR )5(Ef F.,

—co)—
dk'dK

and the corresponding momentum distribution (which
has the sense at KR ~ 0.4—0.5 GeV/c) can be presented
by the formula

padKR ) ~(()h I c'os(li'R ) I I
I oo(KR ) I' (49)

The "reduced" distribution I@o,(1(R)l normalized to
unity is shown in Fig. 5. Its oscillatorlike shape is con-
nected with the large value of deuteron binding energy in
the b, b, -channel (localization of system at small distance).
Something similar was noted in connection with Fig.
4—the approximation of the NN(1440)-momentum dis-
tribution by the superposition of the two lowest oscillator
functions appears to be rather close to the "perfect" one,
i.e., calculated within the NN(1440) potential model [19).
The wrong character for the Gaussian asymptotics (in-
stead of the pole one) occurs here practically only at
kR =0.7 GeV/c.

The primary (elementary) process e+b, ~e'+p can be
classified as an almost pure M, transition and, as a result,
the longitudinal form factor FL in Eq. (40) can be neglect-
ed. The transversal form factor calculated by means of
the quark currents (2) and (2') can be written as

In total, the expected cross section value of process

H(e, e'p )N(1440)

integrated over momentum distribution equals 10 of
that for the "basic" process H(e, e'p)n and depends on
the model considered (see above).

1
FT VN 1~2~3

2 Iql'
~(q) .

m

3 4

erp(iq r;)P(() [rr((), q] qe((, 2, 3))
i =1 2m

(50)

If the oscillator s functions are chosen for X and 6
then the form factor of transition

,(q) =
& q „(p,g ) I exp( —i—', q g ) I q ~(p, g ) & (51)

has the same q dependence exp( —
—,'b q ) as the elastic

form factor p —+p (see above). Of course such q depen-
dence of both form factors is not realistic if we have in
mind the broad range of momentum transfer. Therefore,
it is reasonable to just use the experimentally measured
form factor of electroexcitation N~b, [20] which de-
creases with increasing q somewhat more steep than nu-
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Indeed, the spectators N(1520) and N(1535) have one
oscillator quantum of internal excitation. So the reac-
tions considered are connected with two di6'erent cluster
components of six-quark configuration s p, namely,
qrzy, N,~(r) and y +y, 4o, (r). Evidently, the second

component contributes to our reactions by mean of ele-
mentary deexcitation process e +X*~e'+ N.

Having in mind process H(e, e'p)N(1520) we can
write expression (9) in terms of baryon-baryon composi-
tion of the deuteron as follows

FIG. 5. Mome@tom distribUtionz 40, (k ) znd @I,(k ).

cleon elastic form factor (44).
The expected cross-section is approximately 10 of

that for process H(e, e'p)n if the common description
(28) of the six-quark deuteron is valid and two orders of
magnitude smaller if the quark state of deuteron is given
by configuration s p [42]x[42]cz.

C. Reactions H(e, e'p )N(1520) and H(e, e'p )N(1535)

-v .v d 'V (g)d
Jfp Jpp +pN( 1520)+JpN( 1520) N( 1520)N( 1520)

1 'V~JpN ( 1535)~N ( 1535 )N (1520) &

and for process H(e, e'p)N(1535)

'V V ~d 'V
Jfi jpp~pN(1535) jpN(1535) ~N(1535)N(1535)

~ V~JpN(1520) ~N(1520)N(1535)

(52)

(53)

These reactions are interesting by their complicated
character —the deexcitation amplitudes of virtually ex-
cited baryons B are of primary importance here and the
rich interference of a few terms corresponding to various
virtual states of these baryons in Eq. (9) appears as a re-
sult.

To go forth we must now compare the magnitudes and q
dependence of matrix elements of hadronic electromag-
netic current both for elastic scattering j and for deex-
citation processes jpN(1520) and jpN(1535) The above
currents can be calculated easily in the nonrelativistic
quark model by means of wave functions (23) and (36) for
nucleon and resonances, respectively:

j,=i((11,—,'M lJ*Mq )e )+(1—1, —,'M~lJ'Mg )e+))
1

q2$ 2

Xexp
6

(P +Pf) i 1 1 „ i(lqlb) q'b'

(54)

(lqlb )exp
.o l q2b 2

pE
(10,—,'Mq

l
J Mq )5

Here, J*=—', for N(1520) and J'=
—,
' for N(1535), Mz and M are projections of J' and proton spin, respectively, e+&

are two q-transversal cyclic unit vectors, and b represents the quark oscillator parameter.

We see immediately that with the exception of the first term in the expression for transversal current j + the struc-
pN

ture of others terms in the expressions for jT + and j + is the same as the structure of analogous terms in j and jpN pN
The literal identity has a place if we substitute

. (Iqlb )
e~ ~ i — exp — bq (—10, —,'Mz

l J*MJ*),3m 6 6
(55)

mq

m
i exp — bq (10,—,

'M—z J*Mz ) .
6

(56)

As a result, the transversal and longitudinal form factors FT and FL in expression (40) for cross sections of processes
e+N(1520)~e'+p and e+N(1535)~e'+p can be written as

F2 T T

4 (2Je+ 1) ~ PN PN

F', (q)+ —q'+K+ —
2

(KR'q)' F', (q)
q

(57)
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F2 1 0 0 — F2
4 (2J»»»+1) ~ pN pN 4~ 2 N ~p (58)

where the transitional form factors F1 Ne (q) and
1,N ~pF, (q) are

d 0
dk'd Kp

~eN(1520)~e'p ( ~e» 9)»» Kp )

/&2 pN(1520)N(1535)(KR )

F, , (q)=exp( —
—,'b q ),

F e (q) = — exp b—q-(Iqlb)

(59)

(60)

X5(Ef E, ——co),.

where the momentum distribution is

d 12
PN(1520)N(1535)( R ) ~N(1520)N(1535) I @Os(+R ) I

(61)

This kind of q-dependence is probably oversimplified,
although it gave some reasonable results for the quark
description of elastic p~p form factor (see above). A
more adequate q dependence can be extracted in the fu-
ture from the planned experiments on electroexcitation of
N(1520) and N(1535) (the present data [21] are still rath-
er fragmentary). Nevertheless, it is important that in the
momentum transfer range ~q~

—1.3 —2 GeV/c, which we
are interested in, the values of deexcitation amplitudes
N(1520)~p and N(1535)~p are comparable to these of
elastic scattering p —+p or even surpass them.

Relative motion functions C&pN(, 520)(KR ) and
4 pN( 1535)(KR ) correspond to the lp state, i e , th. e.y are
going to zero at k~ —+0. The functions

d
@N(1535)N(1535)(KR )

d
@N(1535)N(1520)(KR )

d
@N(1520)(1520)(KR )

correspond, evidently, to the Os state and have just max-
imum at kR =0 (see Fig. 5 for this difference, which can
display itself in the experiments under discussion only if
the momentum of the knocked-out proton is high
enough, i.e., a few CxeV/c ). Considering the above com-
ments exposed after formula (60) and also taking into ac-
count the values of spectroscopic factors we conclude
that in the quasielastic region kR ~ 300 MeV/c the terms
j 4"N(, 520) and j NpN(1535) in Eqs. (52) and (53) can be
neglected and the reactions H(e, e'p )N(1520) and
H(e, e'p)N(1535) proceed here by means of the knock-

out of virtually excited baryon N* accompanied by its
deexcitation. Concerning Eq. (53) it has to be noted also
that the spectroscopic factor for the N(1520)N(1535)
channel is one order of magnitude bigger than for the
N(1535)N(1535) one. Therefore, the last term in Eq. (53)
predominates very much over the others, i.e., the
H(e, e'p)N(1535) reaction in the kinematical region of

the quasielastic peak proceeds through N(1520)N(1535)
component of deuteron with the elementary process
e+N(1520) ~e'+p. As a consequence, the factorization
approximation (17) is valid here; however, its realization
is unusual as far as deexcitation cross section
e+N(1520)~e'+p is picked out instead of the usual
elastic one e+p —+e'+p. So we can present the cross
section of the N(e, e'p )N(1535) process as

X[r (K, )i'. (62)

It has the typical shape of the S-state and is close to that
presented in Fig. 4 (with no deexcitation it was of lp
shape [5]). The predicted cross section is expected to be
approximately 10 of that for process H(e, e'p)n for
both models examined.

Concerning H(e, e'p)N(1520) process it is difficult to
pick out one of two last terms in Eq. (52) and their essen-
tial interference is expected.

As far as we know the model of the baryon-baryon
structure of deuteron exposed here is the only one where
the components with negative parity baryons appear, e.g.,
NN(1520), NN(1535), N(1520)N(1520), etc. (and they
appear on equal footing as the positive parity com-
ponents). This circumstance, most probably, allows us to
explain by a rather simple way the features of g-meson
production in reactions d+y —+d+q and n+p —+d+g
[22] [11-decay of "spectator" N(1535) plays the essential
role here].

V. CONCLUSION

Let us summarize. We have examined the possibility
of the unified microscopic six-quark description of vari-
ous baryon-baryon components in the deuteron consider-
ing the importance of fast exclusive processes of nucleon
quasielastic knock-out. In this way we were able to cal-
culate the spectroscopic factors, i.e., the generalized
"probabilities" to find these components and to calculate
also momentum distributions of baryon-baryon relative
motion here.

Of course, we may try to describe the baryon-baryon
content of deuteron within the standard meson theory
where various baryon-baryon components are generated
only by means of meson exchanges. However, each
separate component here needs its individual vertex con-
stants and phenomenological form factors in each vertex
mNN*, pNN*, ~N*N*, etc. As a result, this description
has really no heuristic power [23].

In the quark microscopic approach all the parameters
of qq interaction and of the quark bases are fixed, in prin-
ciple, by the baryonic excitation spectrum taken in a
broad energy range. It appears to be sufficient to calcu-
late both six-quark wave functions of deuteron including
its projections onto various baryon-baryon components
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and nucleon-nucleon phase shifts, etc. [2]. So the predic-
tive power here seems to be rather convincing.

As a tool for investigating the above baryon-baryonic
components we propose the process H(e, e'p)N' to be
studied with the knocked-out proton being fast and spec-
tator N* slow. This process offers the opportunity to ex-
tract from the exclusive experimental data both the spec-
troscopic factors and the momentum distributions. It is
of importance here that the orbitally excited baryons X*
such as N(1440), N(1520), and N(1535) are just originat-
ing from the excited quark configuration s p -s 2s in the
deuteron, while H(e, e'p)b, process in a very convincing
way answers the question whether a hb-component (i.e.,
s configuration) is present in the deuteron or not.

Very nonstandard shapes of momentum distributions
are expected for the N(1520) and N(1535) spectator par-
ticles which is connected with an interesting interplay of
various quark amplitudes. However, when extracting the
necessary spectroscopic information from H(e, e'p)N
quasielastic experimental data we have to take into ac-
count the "dangerous" competing diagram of Fig. 6.
Here, the final-state baryon N* does not reAect the corre-
sponding baryon-baryon component in deuteron but

e'

FIG. 6. Triangle diagram where N* or b are born due to
meson rescattering.

rejects intermediate meson rescattering. Preliminary
calculations by Yu. I.. Dorodnykh and us, however,
show that this triangle diagram gives a negligible contri-
bution to the reaction amplitude if just the knocked-out
proton is fast (E~ ) 1 GeV) and the spectator N' is slow,
k ~ 400—500 MeV/ .cThis question is planned to be dis-
cussed in our next paper.

The authors express their gratitude to Dr. Yu. M.
Tchuvilsky for valuable discussions concerning "slow"
and "fast" processes.
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