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Inelastic electron scattering from the three-nucleon bound states with polarization
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Spin-dependent inelastic electron scattering from polarized He is studied. The theoretical description
uses the plane-wave impulse approximation. A spin-dependent spectral function, which summarizes all
of the nuclear structure information on the process, is introduced. The formalism is developed for in-
clusive processes in all kinematic regimes of inelastic electron scattering. A comparison between
theoretical predictions and experimental data is carried out in the region of quasifree scattering. The use
of a polarized 'He target as a neutron spin target is discussed.
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I. INTRODUCTION

Inelastic electron scattering from the three-nucleon
bound states He and H attracts special experimental
and theoretical attention. Data for inclusive processes
cover the kinematic regimes of quasielastic scattering
[1—3], quasifree pion production [1], and deep-inelastic
[3,4] scattering. They refer to unpolarized electron
beams and spin-averaged targets. The theoretical
description [5—8] is usually in the plane-wave impulse ap-
proximation (PWIA); the inclusion [9,10] of the final-
state interaction for quasielastic scattering has just be-
gun.

The present paper extends the theoretical PWIA
description of Ref. [6] to inclusive processes with polar-
ized electron beams and polarized He and H targets. A
polarized He target is especially interesting as a possible
substitute for a polarized neutron target [11]. Section II
discusses the general properties of the nuclear current
tensor with polarization of the target and defines the nu-
clear structure functions. Section III derives the nuclear

current tensor for the three-nucleon bound states in
PWIA. The notion of a spin-dependent spectral function
is introduced. It is the actual technical backbone of the
theoretical description. Its properties and its practical
computation are discussed. Examples for He spin struc-
ture functions are given. Section IV derives the polarized
cross sections for inclusive processes. Section V com-
pares theoretical predictions and experimental data for
inelastic electron scattering in the kinematic regime of
quasielastic scattering. The problem of extracting elec-
tromagnetic neutron properties from those experiments is
discussed. Section VI contains conclusions with a discus-
sion of possible extensions of the results obtained so far.

II. GENERAL PROPERTIES OF
THE NUCLEAR CURRENT TENSOR

The current tensor Wt~'(Q, Pz ) of a target A with mass
m ~, four-momentum P„, and polarization n „ is required
for the description of inclusive processes; it is defined by

&n, lW","(Q,Pg)In' &=(2~)' " g 1 d'Px&I'gnglJg~(0)II'xP~&&'(Px —
Q —P~)&I'~PXIJ~(0)II', n, &

Ply p
(2.1)

in terms of the nuclear current J~z (0) at time-space point 0; the proton charge ez is split off from the current. General
final states ~PzPX & of c.m. momentum Px can be reached in the scattering process, Px describing discrete quantum
numbers and also the modes of internal nuclear excitation; they are not observed in inclusive processes. The momen-
tum transfer to the target nucleus is Q. The current tensor is Hermitian and conserved, it preserves parity and time-
reversal invariance. Its Lorentz structure is built from the three four-vectors Q, P„, and n „which satisfy P„=m„,
n „=—1, and (P„n„)=0. The current tensor has the general form

QPQV W~" (Q, Q.P„lmq )
&n~~W~'(Q P~)~n~ &= —g" Wi"(O' Q P~~rn~)+P ~P ~Q2 my

+i@""PQ n„p
Gi" (Q', Q P.~m. ) G,"(Q',Q.P„Im, )

+[(Q P~)n~p —«n~)P~p]7' g mz

(2.2a)
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for a spin- —,
' nucleus with

(2.2b)

G i"(O' Q PA /

i mA [(Q'. )P.'Q".'—(Q.P. )g P,' j
A

W,"( Q, Q .P„/m „)

1

2
—g„, &n, lW", (Q,P, )ln, &,

In Eq. (2.2a) g"" is the metric tensor with
g = —g"=—g = —g =1 and e" ~ the totally an-
tisymmetric tensor in four dimensions with
60&23: 6:I The notation & n „l

W"„'(Q, PA ) l
n A

indicates that the current tensor Wz&'(Q, PA ) is con-
sidered an operator in spin space.

The spin-averaged structure functions 8'& and 8'2
and the spin structure functions G& and G2 determine
the current tensor. In turn, they determine the cross sec-
tion of the inclusive processes which are described by the
current tensor. The structure functions are real-valued
Lorentz scalars and therefore depend on the scalars Q
and (Q P„). .The dependence of the current tensor on
the polarization vector nA must be linear for spin- —,

' tar-
gets; the dependence on the pseudoscalar (Q.nA ) is ex-
plicitly split off from the spin structure functions. The
structure functions can be obtained from a given current
tensor by contraction with other tensors, i.e., the spin-
averaged structure functions by

~„,&n„l W~ (g,P, )ln, &

P„(Q'+(Q n„) ) —(Q PA )' ' (2.3c)

G2" (O' Q PA/mA)
3

i mA
I(g nA. )(g P„)g nA

2 Q (Q n„)
—l:Q'+(Q', )'jg P! l.„,&., l

w;.(g,P, )l., &

P„'(Q'+(Q n„)').—(Q.PA )' (2.3d)

The derivation of Eq. (2.3) exploits the identity
e„„@"'~= 2(g rg—&I' g~g& —). Current conservation

Q& W~~'(Q, PA ) = W~~ (Q,P„)Q,=0 will be used when
evaluating Eqs. (2.3). The result (2.3) for the spin struc-
ture functions appears to introduce a dependence on the
polarization vector n„. That dependence is fake and
disappears on further analysis.

Without loss of generality, the nuclear center of mass
(c.m. ) system is chosen such that the three four-momenta
which build up the Lorentz structure of the nuclear
current tensor become

W2" (Q, Q P„/m„)

(2.3a) PA =(mA, O),

nA =(O, nA, o, nA),

Q=(g', o, o, lql) .

(2.4a)

(2.4b)

(2.4c)

1 mA
2

p 2
3 —g„, (n„l W~ (g,P„)ln„&

(2.3b)

and the spin structure functions by

The polarization vector n A is spacelike and does not have
a time component in the c.m. frame, since (P„nA )=0. .
The unit vectors e; of that frame are defined by e3=Q,
e2=(e3XnA )/le3Xn„ l, and e, =e2Xe3. In that nuclear
c.m. system the structure functions of Eqs. (2.3) take the
particular forms

W) (Q' Q.PA/~A)= —,'&nA
l
WA'(Q PA)+ WA'(Q, PA)lnA &

4 2

W2 (Q Q PA/mA) 4 (nAlWA(QPA)lnA & 2 (nAlWA(QPA)+WA(Q PA)lnA &

2 2

(2.5a)

(2.5b)

G,"(Q,Q P„/m„)= ——
2 &

(n„ l W„(Q,P„)—WA (Q, PA )lnA &I ~ A A 2 +2 ~ + A A ~ A A ~ A A

0
+ (n„lW„'(Q,P„)—W '(Q, P„)ln„&

nA mA
(2.5c)

+, &n. lW,"(Q,P. ) —W,"(Q,P. )ln. & (2.5d)
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In the results of Eq. (2.5) all nuclear tensor matrix ele-
ments involving the third component of the current are
eliminated in favor of matrix elements involving the
charge density by current conservation, i.e., by
W„' (Q,P„}=O'W„'"(Q, P„}/IQ I

and by W"„'(Q,P„}
= W~z (Q, P„)Q /IQI. In the c.m. system the structure
functions are related to the frame-dependent nuclear
response functions, i.e., the spin-averaged transverse and
longitudinal ones RT and RI, and the spin-dependent
transverse and mixed transverse-longitudinal ones Rz-
and RTI., by

Wi" (Q, Q P~/m„)= —,'Rz.(Q, Q ),
n4

Wq"(Q, Q.Pq/m~)= Rl(Q, Q )

(2.6a)

21Q R (QzQo) (2.6b)

Gi" (Q, Q.P~/m~ )

2 2
1 ma Q —

p o

m, lQI+-""'Q Q '

0+Q R (QzQo)
7?l g

(2.6c)

Those nuclear response functions [12] can directly be
computed from the nuclear current tensor according to

RT(Q', Q'}:=&n~ IW~'(Q, P~ }+WQ (Q PA)in+ &

(2.7a)

Rg(Q', Q }:=o& ~nl Wf(Q, Pg ) I gn&, (2.7b)

R (Q', Q'):= i, (n„lW—„"(Q,P„)2 0. . 1

n&

G~ (Q, Q P„/mq)
2 0

V'-' (Q' Q'}+R (Q' Q'}
Q& IQI

(2.6d)

III. THE NUCLEAR CURRENT TENSOR IN PWIA

The nuclear current tensor is calculated in PWIA as an
operator in nuclear spin space, i.e.,

(s„'
I
W"„'(Q,P„)Is„ &

Jd p~ o J dE(s~l Wg(, )(Q~,p~)ls~&
I

N sNSN

X & sos z I
S ( p~Et~ ) I szs z & .

(3.1)

The derivation follows Ref. [6] and is given in Appendix
A. It is carried out in the nuclear c.m. system defined in
Eq. (2.4). PWIA approximates the complicated
baryon final states IPzPz&, which arise in the definition
(2.1) of the nuclear current tensor, as a tensor product of
single-nucleon states reached through one-nucleon
currents from a bound nucleon and of correlated states
IP& is& if~ i& in the residual (A —1) nucleus. The
residual nucleus is assumed not to participate in
the scattering process. Its correlated states
IP„ is&,fz i& are specified by the momentum Pz
and the spin quantum number sz i, with fz i describ-
ing the remaining discrete quantum numbers and the
modes of internal nuclear excitation. E.g., in the three-
nucleon system the correlated states of the (A —1) nu-
cleus are the states of the deuteron and of two-nucleon
scattering. Due to that approximation on final states,
PWIA relates the nuclear current tensor W~z'(Q, Pz ) to
that of the single nucleon WIg, ~(Q~,p~}, which will be

N

discussed in Sec. III A. The kinematics of the scattering
process is illustrated in Fig. 1 for PWIA. The four-
momentum of the struck nucleon is

p&=(Qmz+ p&, pz }; the choice of the time component

as Qm~+p~ is determined by our use of Schrodinger
quantum mechanics for nuclear structure; however, other
choices and o6'-mass-shell choices are possible. The nu-
cleonic spin (isospin) projection is denoted by sz (tN); Q&
is the momentum transfer to the nucleon by the electron
and is difFerent from the momentum transfer Q to the nu-
cleus. The nuclear structure part of W~z'(Q, Pz ) in
PWIA is contained in the spectral function S(p+Et& ). It
will be discussed in Sec. III B. Since it is calculated in the

—W„"(Q,P„)In„ &, (2.7c)

RzL (Q, Q ):= iV'2, —(n„l W„(Q,P„)
1l g

—W„(Q,P~ ) In„ &, (2.7d)
-g ~A-s fA-s

or from the structure functions by inverting Eq. (2.6). In
fact, we obtain the structure functions numerically by
calculating the nuclear response functions according to
Eq. (2.7) first. For an energy loss Q small compared
with the three-momentum transfer IQI we note that Gi"
is dominantly determined by Rz-~, whereas G2 is dom-
inantly determined by Rz-.. That fact will be demonstrat-
ed later on in Figs. 3—6.

FIG. 1. Inelastic electron scattering from a nucleus in the
plane-wave impulse approximation.
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nuclear c.m. system, its dependence on P~ is not nota-
tionally indicated. The spin-independent part of
S (pNEtN ) is identical with the usual spectral function of
Ref. [5] and is interpreted as the probability for finding a
nucleon of isospin tN and of momentum PN in the target
nucleus A, the residual ( A —1) nucleus having a
specified excitation related to the so-called separation en-
ergy E according to Eq. (3.4) later on. Both the nucleon-
ic current tensor Wg, )(QN, pN) and the spectral func-

N

tion S (pNEtN ) are considered operators in spin space.
The quantization axes of the nuclear spin a ~ and of the

nucleonic spin o.
N are chosen along the z direction for the

matrix elements of Eq. (3.1). Thus, general matrix ele-
ments, off diagonal with respect to spin, have to be con-
sidered when describing scattering from an arbitrarily po-
larized target. That fact explains the difference in nota-
tion between Eqs. (3.1) and (2.1); it is further discussed in
Sec. III C.

A. The nucleonic current tensor

The nucleonic current tensor has the form

WPV ( tN ) ( QN & PN )
QN mN

+ te' N~ sI) &N
PlN

N(t~ )
G2 QN QN PN~ N+ [(QN.PN )s&(trN) [QN s—(nN)]PN

PlN
(3.2a)

with

QN PN
PN PN 2 QN &

N
(3.2b)

N(t~) 2G) (QN&QN PN~mN)

2 1+7
s(trN):=

PN ~N

mN

PN ~N
pCTN+ p PN

mN( mN +PN )
(3.2c)

X2mN5(2QN pN+QN), (3.3c)

N(t~)
QN QN PN N)

=r[GM (QN)] 2mN5(2QN. pN+QN),
N(t~)

(QN QN PN~mN)

(3.3a)

[G N (Q2 )]2+ [G N (g2 )]2

1+7
X 2mN5(2QN pN+ QN ), (3.3b)

It is derived in Appendix B. It is written as an operator
in spin space, the operator character being provided by
the spin- —,

' operator o N boosted to s(o N) according to Eq.
(3.2c). All its diagonal and nondiagonal spin matrix ele-
ments required for the nuclear current tensor (3.1) can be
obtained from Eq. (3.2a). The nucleonic current tensor
depends on the two spin-averaged structure functions

7r( t& ) N(tN )8 ~ and 8'2 and on the two spin structure func-
N(tN N(tN

tions G
&

and G2 . For elastic scattering from the
nucleon, the structure functions are determined by the

N(tN ) N(t~)
elastic Sachs form factors GE and G~, respective-
ly, i.e.,

N(t~)
(QN QN PN&mN. )

4 1+7

X2mN5(2QN pN+QN), (3.3d)

B. The nuclear spectral function

The spin-dependent matrix elements of the nuclear
spectral function are defined by

with r= —QN2/4mN2 being non-negative. For inelastic

scattering from the nucleon, the structure functions have
to account for experimental data in a corresponding way.
That is done in Ref. [6] for the spin-averaged structure

N(tN) N(tN)
functions 8'& and 8'2 and for the kinematic
domains of quasifree pion production and deep-inelastic
scattering.
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Ns&~S(pNEtN)~~Nsz &=A g 5(E+E„—ez i(f~ i))

X(P~s~IPN~N~N(P~ pN)sw if~ i&&pNsNrN(P~ pN)&w —if' —iIPws„& .

(3.4)

The on-mass-shell energies of the ( A —1)- and A-nucleon
systems are approximated such that the respective four-
momenta read

P~ —pN), (3.Sa)

P„=(QA mN+P~+Eg, P~), (3.5b)

S(pNEtN) 2 [fo(PNEtN)+ fi(PNErN)cJN o ~

+f2(PNE N)[( N PN)(o A PN)

Ez being the trinucleon bound-state energy and
ez i(fz i ) the excitation energy of the residual
( A —1)-nucleon system. The 5 function 5(E +E„—ez i(fz i)) is introduced in order to make the spec-
tral function formally independent from the quantum
numbers fz i of excitation in the residual (A —1) nu-
cleus. The spectral function is an operator in the nu-
cleonic and in the nuclear spin space. Furthermore, it
depends on the momentum p&, the separation energy E,
and the isospin tz of the nucleon. Since it is calculated in
the nuclear c.m. system, P„=O. In this paper the spec-
tral function is determined for the three-nucleon bound
state He', the corresponding spectral function of H can
be obtained from that of He by symmetry relations
without additional calculation. The dependence of the
spectral function on the isospin label t„of the nucleus
will therefore be suppressed in the notation.

The tensor structure of the nuclear current tensor (3.1)
in PWIA is carried by the nucleonic current tensor (3.2a).
Thus, the spectral function is a Lorentz scalar. In the nu-
clear c.m. system it is a scalar with respect to rotati. ons
and parity. The spectral function therefore has the gen-
eral operator form

Eq. (3.6). Thus, only the spin-averaged contribution
f0(PNEtN ) and the two spin-dependent contributions
f i (PN«N ) and f2(PNEtN ) make up the full spectral func-
tion S(pNEtN) according to Eq. (3.6). They do not de
pend on the full three-dimensional vector p&, but just on
its magnitude PN =

~pN ~, not to be confused with the cor-
responding four-vector for which the same symbo1 is
used.

The spectral function S(pNEtN) has a singular part
due to its contribution from the deuteron carrying the en-
ergy 5 function of Eq. (3.4) and a smooth part due to its
contribution from the two-nucleon scattering states for
which the energy 5 function is integrated out by the sum-
mation over f~, . Thus, the spectral function allows us
to di8'erentiate between two-body and three-body final
states. The practical procedure for computing the spin-
independent and spin-dependent contributions to the
spectral function of Eq. (3.6), its isospin dependence, and
sum rules are given in Appendix C.

Reference [13] suggests closure as a reliable approxi-
mation for the exact spectral function S (pNEtN ) and usese„,(f„,)=0 as average excitation energy for the re-
sidual two-nucleon system. In that approximation the
sum on sz i and fz i can be carried out in Eq. (3.4)
analytically. The approximated spectral function takes
the same singular form as for the two-body breakup with
a proton-deuteron final state in scattering from He, i.e.,
it becomes a product of the 5 function 5(E+Ez ) and of
the nucleon density p(pNtN) according to Eq. (Cll) of
Appendix C. That approximated spectral function does
not distinguish between two-body and three-body final
states any longer.

C. Convolution formulas for structure functions

The target nucleus of spin —,
' is—in its c.m. system—

characterized by the general polarization vector n„, i.e.,

T~N ~A]I (3.6)
(3.7a)

(3.7b)
in spin space. The considered nucleus and the nucleon
are both spin- —,

' particles. The only nontrivial proper sca-
lars, which can be constructed from the three vectors
p&, a&, and a A available in the c.m. system and which
are at most linear in the spin operators, are o.N-cr A and
[(oN pN)(o A.p.N) 3crN cr z]. —T—he o.ther possible sca-
lars o N pN, o'z pN, and .(pN Xo N) cr A are of pseud. osca-
lar nature and so do not contribute to the expansion of

The polarization state
~
n „& is expanded in terms of spin

states ~s„& with the z axis as quantization axis, i.e.,
l&~ & =g,„ls~ &(s~ ~n~ &. The operator p„ is the corre-

sponding density matrix; it keeps the form (3.7b) with
nz 1, even if the polarization is not realized by a pure
state. For the polarization (3.7) the nuclear current ten-
sor takes the form
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&n iW"„(Q,P„)in &=Tr[W"„(Q,P„)p„(n )], (3.8a)

pj~ V

(nAiW"„(Q, PA)inA)=g f d pN fdE «N QN.PNimN)

I XJ X +(tN)+
2 W2 (QN&QN PN™N) fo(PNEtN)

m~

+ I ( QN 'PN )SB(pNEtN n A ) [QN '@PNEtNn A ) ]PNB]

X(tN )
(QN, QN PNimN)

X
3t?l ~

(3.8b)

The result (3.8) for the nuclear current tensor W~z'(Q, PA ) is derived from of Eq. (3.1); Eq. (3.1) needs the nucleonic
current tensor (3.2) and the spectral function (3.6). For compactness of notation, the four-vector

+(pNEtNn A ) =Tr[~(~N)~(pNE4 )p A (n A ) l

@PNEtNnA )=~(nA )[f&(PN«N ) ,'f2(PN«—N —)]+~(pN)(n A pN )f2(pN«N )

(3.9a)

(3.9b)

is introduced which contains all spin-dependent nuclear structure information; it uses the spin operator s (crN) of Eq.
(3.2c) and the vectors n A and pN boosted by the nucleon momentum pN as o N in Eq. (3.2c), i.e.,

s(nA )= Px na P+'ng
,n~+ p PN

mN( mN +PN )
(3.9c)

IPNI „PN
PN iPN

N1~ Pl~
(3.9d)

In contrast to Eq. (3.8a) the Tr in Eq. (3.9a) refers to nucleonic and nuclear spin summations. In the nucleonic current
tensor (3.2) the momentum transfer QN =Q+PA PA &

—
pN to —the nucleon is different from the momentum transfer

to the whole nucleus, i.e., it becomes

QN=(Q +AmN E —Q(A —1) mN+—pN
—

PN, Q} (3.10)

in the c.m. system with PA =0. It depends on the integration variables of Eq. (3.8), i.e., on the separation energy E and

on the momentum pz of the struck nucleon.
The nuclear current tensor W&A"(Q, PA ) in PWIA does not satisfy current conservation, i.e., Q„W"„(Q,PA )WO and

W~A'(Q, PA )Q„WO for the nuclear current tensor of Eq. (3.8). When calculating the nuclear structure functions

W,",Wz, G &", and Gz we therefore take the PWIA nuclear current tensor of Eq. (3.8) only for those longitudinal ma-

trix elements needed in Eqs. (2.5) after current conservation is already exploited. That procedure is called scheme (A)
and is admittedly a recipe; arguments for that recipe and alternatives are given in Appendix D. The following convolu-
tion formulas result for the structure functions in scheme (A), i.e.,

WiA(Q', Q PAimA)=r f d'P. ,"fdE W", ""'(Q.', QN PNimN)
N JN

(3.11a)
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(Q', Q pAymA)=g f d'p„, f dE.
N

N(t~)
(QN'QN PN™N) Q

mN
L

2 Q4 PN QN
N

2 2

IQ xpN I

Q
Q2

N(t~) O' Q'—~, "(QN, gN PN&mN) 2
1—

Q' QN
fO(.PN«N» (3.11b)

m

2 X fd'PN . fdE —,g"+, (QNg" —IQlg")
mA rtA mA rtA

1 QN&QN PN N
~ pN tNnA

mN

+ j(QN pN)Sn(pNEtNnA )

—
[QN @PN«NnA»N ]

mN
(3.1 1c)

G,"(Q', Q PA ~m A) =—
2

", y fd'p„," fdE g' ', g"+, (gNg" —IQlg")
nA n

G& (Q»QN PN~mN)
X 4 (pNEtNn„)

mN

+ l (QN PN )~a(PNE N A )

[QN @p—NEtN.nA»N ]
mN

(3.11d)

In the integration on pN only the terms in
S(pNEtNnA )[4 (pNEtNn„)] proportion~1 to nA [rtA']
survive. Thus, the dependence of the spin structure func-
tions G, and G2" on the polarization vector n„drops
out. This fact is made explicit in Eq. (D2) of Appendix
D, which is used in the numerical analysis. Sample re-
sults for the nuclear structure functions in the region of
quasielastic scattering are given in Fig. 2; the employed
nuclear structure model is described in Sec. V. The
correspondence between the spin structure functions G

A
1

and G2 and the nuclear responses RTL and RT, respec-
tively, is demonstrated in Figs. 3—6.

2.0

1.0

0.0
50

1.0

100

Ij'", [fml

150
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0.0
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D. Theoretical uncertainties

What is the accuracy of theoretical predictions in
PWIA? PWIA is quite successful in describing unpolar-
ized inclusive processes. With respect to the small and
therefore possibly sensitive spin-dependent observables,
this paper cannot explore the validity of PWIA. We can
only give uncertainties arising (i) from approximations in
the calculation of the spectral function and (ii) from the
inequivalent extraction schemes for structure functions
and responses.

(i) Blankleider and Woloshyn [13]use closure approxi-
mation when calculating the spin-dependent spectral

0.5

0.0

-0.5
50 100 150

A[M eVl

-5
200 50 100 150

A[M eVl

200

FIG. 2. 'He structure functions 8',",8'~, G, , and 6& as a
function of energy loss Q=Q for a four-momentum transfer

Q = —0. 16 CxeV . The theoretical result is based on Eqs. (3.11)
and (D2).
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FIG. 3. He spin structure functions 6&" and 62 and spin-
dependent responses RTL and Rz" as a function of energy loss
Q= Q for a four-momentum transfer Q = —0. 16 GeV . Com-
pared are results based on the exact spectral function of Eq.
(3.4) in Sec. III B (indicated by solid curves) and on the approxi-
mated spectral function of Eq. (C11) in Appendix C (indicated
by dashed curves). The calculation uses the favored extraction
scheme (A) for the spin structure functions and spin-dependent
responses according to Eqs. (3.11) and (D2).

FIG. 5. He spin structure functions 6& and 62" and spin-
dependent responses RTL and RT as a function of energy loss
0=Q for a four-momentum transfer Q = —0. 16 GeV2. Com-
pared are results based on the three distinct extraction schemes,
i.e., scheme (A) of Eqs. (3.11) and (D2) (indicated by solid
curves), scheme (B) of Eq. (D3) (indicated by dashed curves),
and scheme (C) of Eq. (D7) (indicated by dotted curves). The
unapproximated spectral function of Eq. (3.4) in Sec. IIIB is
used. The solid and dashed curves are indistinguishable for G2
and RT.
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FIG. 4. He spin structure function G &" and the spin-
dependent response Rzi as a function of energy loss Q=Q for
a four-momentum transfer Q2= —0. 16 GeV . Compared are
results based on the full spectral function (left side) and closure
(right side) using extraction scheme (A) for both. The total re-
sult (solid curve) is compared with the respective (dotted curve)
and proton (dashed curve) contributions.

FIG. 6. He spin structure function G &" and the spin-
dependent response Rzi as a function of energy loss Q=Q for
a four-momentum transfer Q = —0. 16 GeV . Compared are
results based on the full spectral function using extraction
scheme (A) (left side) and closure using extraction scheme (C)
(right side). In each case the full result (solid curve) is com-
pared with the respective neutron (dotted curve) and proton
(dashed curve) contributions.
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function according to Sec. III B and to Appendix C. The
approximated spectral function SBw(p&Et&) is defined in

Eq. (Cl 1). Figure 3 proves that —in the considered kine-
matic regime —closure is for 6

&
and R +I only a

moderately accurate approximation. Figure 4 traces the
deficiency of closure back to the proton contribution to
6& and RzL, since only for the proton can the residual
two-nucleon system be in bound and in scattering states,
and closure does not differentiate between them. With
respect to the other structure functions 8'&, 8'z", and
62, closure is a Inuch better approximation. Figure 3
does not prove that point for 8'," and 8'z", since it is
known from Ref. [13].

(ii) In Fig. 5 results for the He spin structure functions
and spin-dependent responses are compared using the
unapproximated spectral function of Sec. III B but
different extraction schemes, i.e., scheme (A) of Sec. III C
and schemes (8) and (C) of Appendix D. In contrast to
scheme (A), scheme (8) takes all spatial current com-
ponents of the nuclear current tensor form W"„'(Q,P„) in
PWIA and constructs the charge components from
current conservation; scheme (C}does not use the nuclear
current tensor for extracting the spin structure functions,
but only part of it. We are worried about scheme (C),

which in our view suffers from irreparable inconsistencies
as discussed in Appendix D. Thus, the large deviation
between the results according to schemes (A) and (8) on
one side and (C) on the other side do not reflect true
theoretical error bars, but rather the shortcomings of the
extraction scheme (C). In contrast we take the deviation
between the results based on the extraction schemes (A)
and (8) as an indication for theoretical error bars. Figure
6 notes that the combination of closure approximation
for the spectral function and of extraction scheme (C) in-
correctly overemphasizes the weight of neutron contribu-
tions to the structure function 6&" and to the spin-
dependent response RzL. . That combination is used in
Ref. [13].

In the result section we choose the favored extraction
scheme (A) and the unapproximated spectral function of
Sec. III B for the theoretical predictions.

IV. CROSS SECTION FOR SPIN-DEPENDENT
INCLUSIVE ELECTRON SCA'I I'KRING

Electron scattering from the nucleus A is calculated in
one-photon exchange. The fully exclusive spin-dependent
cross section has the form

e4
1 d k,'

do(n„n~, P»)= ~ (n, ~ri„(Q,k, )~n, &Q' 4+(k, P„) —m, m„

X2Pg (2~)'& P g ng l&~~(o) IP»P» &d'P»(2~)'&'(P» Q P, ) & P—»P»—I&;(0)IP, n „& .

The covariant form of the cross section is not manifest in Eq. (4.1). The final-state phase space

d ke d P»
(2m) 5(P» — P~)—

2k,' (2m ) 2P»(2m)

(4.1)

is split up and partly recombined with the matrix elements of the nuclear current. The initial and final nuclear states
i e, IPgn~ & and I p»P» &, are normalized to 5 functions; this is the reason for the unusual factors in Eq. (4.1), which
are absent in a relativistic description of states. The dimensionality of the differential cross section d3+»o(n„n„,.p )

depends on the amount of continuous quantum numbers needed for the description of the hadronic final state and can-
not be made explicit in the general case. The electron is relativistic, i.e., k, = ~k, ~; it undergoes the momentum transfer
Q =k, —k,'. The electron current tensor ( n, ~g„„(Q,k, ) ~n, & with initial polarization n, is

( n, ~

ri"'( Q, k, ) ~ n, &
=g u (k, n, )y "u ( k', s,' }u (k', s,

'
)y'u (k, n, )

I
'e

=2[k,'"k;+k,"k,' g"'(k, k,')+im—,e" PQ n, ti] .

When the relativistic electron is longitudinally polarized before scattering, the polarization vector n, is given by

k,
n, =h,

771e

(4.2a)

(4.2b)

(4.2c)

In Eq. (4.1) 4+(k, P, ) —m, m z is the flux factor in the initial state.
For the inclusive process the nuclear final state is unobserved and the cross section (4.1) is summed up with respect to

the final c.m. momentum P» and with respect to the specification P» of internal excitation. Thus, the nuclear current
matrix elements can be combined into the tensor W~ (Q,P„)of Eq. (2.1):

ep 1 d k,'do(n„n„)= 4 (n, ~q„,(Q, k, )(n, &2m~(2n. )(n~ ~W"„(Q,P„)~n„& (4.3)

The cross section is calculated in the laboratory system, i.e., in the nuclear c.m. system with Pz =0. The electron un-
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dergoes the energy loss Q=Q =(Q P„)/m„; its four-momentum in the final state is k,'=(~k,'~, ~k,'~Q,'). The scatter-
ing angle of the electron is 6, ; o~,«=(e /8m. k, ) cos —,'6, /sin —,'6, is the Mott cross section. The target polarization
n„=(O,nz ) is parametrized by either of the two sets of angles (8„,P„)or (8*,$*):

Il„=cscosy „sil18 „+e~siny ~ sin 8„+eL cos8~, (4 4a)

n „=e„cosg*sin8' +e~ sing'sin8*+ e,cos8', (4.4b}

with the unit vectors eL =k„e~=k, Xk,'/~k, Xk, ~, and es=e~XeL and the unit vectors e, =g, e =e~, and
e„=e Xe, according to Fig. 7. We note that for fixed angles (8„,$„)the angles (O', P') are not fixed, but depend on
the momentum transfer Q. With the unit vectors e&, ez, and e3 of Sec. II given entirely by nuclear quantities, the form
(2.4b) for the nuclear polarization vector nz always results, e.g. , n~ =(O, sin8', O, cos8 ) for the polarization. angles
(8,$ ), the angle P being absorbed in the definition of the unit vectors. Once the tensor contractions are carried out
in Eq. (4.3), the spin-dependent difFerential cross section with longitudinal electron polarization is obtained in the nu-
clear c.m. system:

d2 (h„n„)=o~„, Wz (Q, Q)+2tan —,'B,Wi" (Q, &)
dk,'dn, ',

G A(Q2 II)
+2h, tan —,'6, [k, cos8&+k,' (cosB,cos8~+sinB, sin8&cosgz )]

PEg

GA(Q2 ~)—2 k0k,'0[cos8„—(cosB,cos8„+sinB,sin8„cosg„)]
Pl g

(4.5a)

or, equivalently [12],

d2 4 2

, (h„n„)=or „, R (Q, Q)+ —— +tan —,'6, R (Q, A)

+h, tan —,'6, , +ta~'-,'e,
2

Rz (Q, Q)"cos8*+ — RzL (Qz, Q)sin8'cosP'
2 Q2

(4.5b)

In experiments the asymmetry A (k,',0,', n ~ ) is observed. It is defined by

A(k,',0'„n~ ) =
d

, (+l,n„)—, , ( —l, n„)
dj Od~ df

d2 d2
, (+ l, n„)+ ( —l, n„)

dk,' d Q', dk,' d Q',

(4.6)

It takes the explicit form

Gi(Q, Q}
[k,cos8„+k,

' (cosB,cos8„+sinB, sin8„cosg ~ ) ]
Pl g

GA(Q2 ~)
z k, k,' [cos8 „—(cosB,cos8 „+sinB, sin8 ~ cosP ~ ) ]

Pl g

X [&2"(Q, Q)+2 tan —'6, W'& (Q, Q)]
(4.7a)

or equivalently [12],
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A ( k,',0'„n ~ ) = tan —,
' e, + tan —,'8,

' 1/2 2

Rz-(Q, Q)cos8'+ RTL, .(Q, Q)sin8*cosg'
2 Q2

n4
X RL(Q, Q)+ —— +tan —,'e, Rz(Q, Q) (4.7b)

Using the notation n„=n„(8„,$„}=n„(8*,$'}we note the symmetry relations

A (k,', Q'„n~ (8~,P~ ) )= A (k,', Q,', n~ ( —8~,$~ +a.) )= —A (k,', 0'„nq (8~+@,Q„)),
A (k,', Q,',n„(8*,$*))= A (k,',0,',n„(—O', P'+m. ))= —A (k,',0,', n„(8'+n, P'.)),

(4.8a)

(4.8b)

which are employed for combining experimental data.
For later purposes the spin-dependent cross section (4.5)
and the asymmetry (4.7) are given in the two different pa-
rametrizations of the nuclear polarization vector n~ ac-
cording to Eq. (4.4), once combined with the nuclear
structure functions, once with the nuclear responses.

V. RESULTS

A11 theoretical predictions of this paper are based on
the spectral function derived from the Paris potential
[14]. The trinucleon bound-state wave function

~
P z sz )

is taken from Ref. [15], which updates the technique of
Ref. [16]; the wave function is computed from
momentum-space Faddeev equations with 18 distinct
Faddeev channels and expanded into 22 partial-wave

components according to Fig. 1 of Ref. [16]; the mesh is
specialized for the calculation of this paper. The predic-
tions refer to the kinematic regime of quasielastic scatter-
ing. Throughout this paper the elastic proton [p =N( —,')]
and neutron [n =N( —

—,')] structure functions are used

according to Eqs. (3.3) in the form factor parametrization
of Ref. [17],i.e.,

Gg(QN ) =p„r(1+5.6r) 'Gg (QN ),
with the dipole dependence

(5.1a)

GE(QN} G4'(QN)/I p GM(QN)/Pn

=[1—QN/(0. 71 GeV )]

(5.1b)

FIG. 7. Illustration of two different parametrizations for the
target polarization vector n& according to Eq. (4.5). The
scattering plane is defined by the momenta k, and k,' of the in-

coming and outgoing electrons, respectively. On the top, the
parametrization is in terms of the angles (8„,$„); the shaded
area lies in the plane defined by the unit vectors e& and ez', the
projection of n„onto that plane forms the angle p„with the
direction ez. On the bottom, the parametrization is in terms of
the angles (8*,$*); the shaded area lies in the x-y plane; the
projection of n„onto that plane forms the angle P* with the x
direction; the true unit vector e originating from the origin as

e~ and e, is hidden in the figure and is therefore only indicated
by a dashed arrow. %'hen the target polarization lies in the
scattering plane, the angles P„and P* are both zero or m..

In Eq. (5.1) r= —QN/4mN and pz and p„are the proton
and neutron magnetic moments in units of the nuclear
magneton. That simple form factor parametrization is
chosen in order to allow a convenient comparison with
results of Ref. [13]. Using an improved form factor pa-
rametrization instead of Eq. (5.1b) changes the theoreti-
cal results presented in Figs. 9 and 10 by less than 6%.

1heoretical results for the asymmetry in spin-
dependent quasielastic scattering of longitudinally polar-
ized electrons from a polarized He target are calculated.
They refer to measurements under way at MIT/Bates.
First results are given in Refs. [18—21]. The measure-
ments use longitudinally polarized electrons of energy
k, =574 MeV. In both experiments the target polariza-
tion is confined to the scattering plane and kept fixed in
the experiments, i.e., $„=0or m. Even when the polar-
ization angle 0& is fixed, the angle 0 varies with energy
loss for both experiments, since in the experiments energy
loss and momentum transfer Q are related.

In the experiment of Ref. [18] the electrons are scat-
tered under the angle e, =44 for di6'erent values of the
energy loss Q. Thus, the data do not refer to a fixed
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FIG. 8. Four-momentum transfer Q as a function of energy
loss Q=g for electrons with an initial energy k, =574 MeV
and with a scattering angle e, =44' on the left side, polarization
angle 8* of Fig. 7 as a function of energy loss Q=g for elec-
trons with the same initial energy k, =574 MeV, with the same
scattering angle 8,=44' and with a target polarization
(8&,Pz ) =(44.5', 0) confined to the scattering plane on the right
sIde.

four-momentum transfer Q, though its variation over
the measured energy loss is rather small. Figure 8 illus-
trates the small variation of Q for the experiment of
Ref. [18];its value in the quasielastic peak is Q = —0. 16
GeV, the value used in Sec. III for examples of the He
structure functions and responses. Figure 8 also indicates
the variation of the polarization angle 8*. At 8*=m/2
the experiment would see the mixed transverse-
longitudinal response RTL exclusively. That situation is
never reached. The theoretical prediction for that experi-
ment together with the existing experimental data are
given in Fig. 9 and Table I.

In the experiment of Refs. [19—21] the electrons are
scattered under the angle 6,=51.1. In principle they
could be observed as a function of energy loss 0, but only
the asymmetry averaged over energy loss or at a mean
value close to the quasielastic peak is measured. At the
polarization angle 8 =0 the experiment would see the
transverse response RT. exclusively. That situation is al-
most reached. %e are puzzled by the fact that the data

-1050 100 150
AIM eV]

200

of Refs. [19,20] and of Ref. [21] disagree substantially.
Reference [21] also gives one data point for a polarization
angle 8'=m. /2 corresponding to the mixed transverse-
longitudinal response Rzr. exclusively. All data are col-
lected in Table II. The theoretical prediction for those
experiments together with the existing data points are
given in Fig. 10 and Table II.

The spin of He is carried to a large extent by the neu-
tron. The efFective neutron polarization

P& —Pzsz —
2 2

1 —
vz E oz 1 Pgsg

l

(5.2)

in the polarized He is P„=88.1% for the trinucleon
wave function employed in the calculations of this paper.
That value is quite characteristic for wave functions de-

FIG. 9. Asymmetry in inclusive electron scattering from po-
larized 'He as a function of the energy loss Q=Q . The experi-
mental and theoretical results refer to the initial electron energy
k, =574 MeV and the scattering angle 6,=44'. The experi-
mental data are from Ref. [18];they are derived from two physi-
cally distinct target polarizations according to Table I; a weight-
ed average is formed with respect to charge hours. Theoretical
results are given for the weighted average in the solid curve, for
the pure target polarization (8„,$„)=(51.5', 0) in the dashed
curve and for the pure target polarization (8„,$„)=(44.5', 0)
in the dotted curve.

TABLE I. Asymmetry measurement of Ref. [18]. The data refer to the measurement of Ref. [18]
with the beam energy k, =574 MeV and the electron scattering angle of 6, =44.0 . Column 1 gives the

charge hours during which data were collected, and columns 2—5 give the polarization angles of the po-
larized He target, the symmetry relation of Eq. (4.8) being used in order to combine the data in rows 2
and 3. The quoted experimental asymmetry A,„~ combines data for an energy loss 57 ~ 0 & 160 MeV
with the position of the quasielastic peak at Q~„k= 86 MeV. The quoted theoretical asymmetry A,h„ is

the corresponding average over the energy loss 57 ~ Q ~ 160 MeV. The last row contains the average of
the experimental and theoretical asymmetry over the data weighted by charge hours for the two dis-

tinct polarizations; the erst uncertainty is statistical as in column 6, the second is systematic. Figure 9
presents data in the same weighted average, though as function of energy loss Q.

Charge
(pA h)

228
336
808

(deg)

51.5
44.5

135.5

(deg)

0
0

180

0*(Qp„k)
(deg)

108.4
101.4
78.6

(t)*(Qp„k)
(deg)

0
0

180

~ exp

(%)

3.2+2.7
28+2.6

—1.9+1.7

1.47
0.93

—0.93

1372 (combined) 2.38+1.27+0.44 1.02
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TABLE II. Asymmetry measurement of Refs. [19—21]. The data refer to three distinct measure-
ments of Refs. [19—21] with the beam energy k, =574 MeV, the electron scattering angle of 8, =51.1',
and the position of the quasielastic peak at Q~„k=106 MeV. The lines in the table separate the entries
from different measurements; the data of the first measurement are given in rows 1-4, those of the
second in rows 5—7, and those of the third in row 8. Column 1 gives the charge hours, if documented,
during which data were collected, and columns 2—5 give the polarization angles of the polarized He
target, the symmetry relation of Eq. (4.8) being used in order to combine the data in rows 2 and 3 and in
rows 5 and 6, respectively. Rows 1 —4 present the data of Ref. [19] in the analysis of Ref. [20]. In that
case, the experimental asymmetry A„„combines data for an energy loss 90& fL ~ 138 MeV. The quot-
ed theoretical asymmetry A,h„ is the corresponding average over the same energy loss 90~ Q ~ 138
MeV; in parentheses A,h„ is given for the energy loss 0=114MeV without averaging. Row 4 contains
the average of the experimental and theoretical asymmetry over the data weighted by charge hours for
the two distinct polarizations; the first uncertainty is statistical as in column 6, the second is systematic.
Figure 10 presents the single data point and the theoretical prediction in the same weighted average,
though as function of energy loss Q. Rows 5—8 present the data of Ref. [21]. Row 7 presents data for
the polarization of rows 5 and 6 combined by symmetry. The polarization comparable with those of
Refs. [19,20]. In Ref. [21] a spread in energy loss II is not reported; the theoretical asymmetry A,„„is
only given for the mean value of energy loss 0=116 MeV without averaging and therefore listed in
parentheses in correspondence with the upper entry in the table.

Charge
(pA h) (deg) (deg)

0 (Qp„„)
(deg)

&p (Q„„k)
(deg)

A exp

(%)
A th-
(%)

239
333
808

51.5
44.5

135.5

180 0.9
180 7.9

0 172.1
1381 (combined)

0
0

180

—3.8+3.0
—2.5+2.9

4.4+2.8
—3.79+1.37+0.67

—4.7( —4.5)—44( —4 1)
4.4(4. 1)

—4.5( —4.2)

49.2
130.8

37.8

180
0

3.2
176.8

90.2

0
180

—2.6+0.90+0.46

1.75+ 1.20+0.31

(
—4.7)

(2.9)

rived from most realistic interactions [22] and therefore
may be taken as a fact of nature. Thus, the experi-
menters of Refs. [18—21] hope that the polarized He tar-
get can effectively be taken as a neutron spin target and
therefore hope to explore electromagnetic properties of
the neutron. The asymmetry experiments measure the
He spin structure functions and spin-dependent

responses, to which the neutron and the two protons
make distinctive contributions in PWIA. Figure 11
displays the He spin structure functions G& and G2 as
well as the corresponding spin-dependent responses RTL
and R T and splits them up according to the contributions
of individual nucleons. The structure functions and
responses are plotted as a function of energy loss for the
experimental kinematics k, =574 MeV and e, =44' of
Ref. [18],i.e., the four-momentum transfer Q is not fixed
but varies according to Fig. 8. The neutron dominates
the response RT and the structure function Gz. But
those functions are derived from the neutron's spatial
current and are rather well known in their important spin
parts. Thus, the neutron-dominated response RT. and
spin structure function G2 do not yield novel neutron
properties. In contrast, the response RTI and the spin
structure function G& depend on the rather unknown
neutron charge property. However, that neutron contri-
bution to RTI and G& is too small to make its accurate
determination easy; in fact, that neutron contribution is
overwhelmed by the corresponding proton contribution.

In this context we recall that according to Sec. III D

the closure approximation in the spectral function and
the adoption of the extraction scheme (C) of Appendix D
work poorest for the spin structure function G, and the
spin-dependent response RTL .. The combined use of both
erroneously emphasizes the neutron contribution to G&"

-1050 100 150
0[M eV]

]

200

FIG. 10. Asymmetry in inclusive electron scattering from po-
larized 'He as a function of the energy loss Q=Q . The experi-
mental and theoretical results refer to the initial electron energy
k, =574 MeV and the scattering angle 8, =51.1'. The experi-
mental data point is from Refs. [19,20]; it is derived from two
physically distinct target polarizations according to Table 2; a
weighted average is formed with respect to charge hours.
Theoretical results are given for the weighted average in the
solid curve, for the pure target polarization
(9~, (t „)=(51.5', 180') in the dashed curve and for the pure tar-
get polarization (8„,P„)= (44. 5', 180') in the dotted curve.
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1.0

0.5

10 better founded, are in much poorer agreement with the
experimental data than predictions using the calculation-
al scheme of Ref. [13]. That fact is shown in Fig. 12.

VI. CONCLUSION
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FIG. 11. He spin structure functions G& and 62 and spin-
dependent responses RTL and RT as a function of energy loss
0=Q . The theoretical results refer to the initial electron ener-

gy k, =574 MeV and the scattering angle 8,=44'. Thus, the
four-momentum transfer Q varies in the plotted function with
energy loss Q=Q according to Fig. 8. The full result (solid
curve) is compared with the respective neutron (dotted curve)
and proton {dashed curve) contributions.

and RTL ~ as Fig. 6 illustrates. Reference [13] makes use
of a spectral function in closure approximation and uses
extraction scheme (C). The analysis of the two asym-
metry experiments has been based on the results of Ref.
[13]. We admit to being puzzled by the fact that the pre-
dictions of this paper, though believed to be theoretically

This paper studies spin-dependent inelastic electron
scattering from polarized He. The theoretical descrip-
tion uses the plane-wave impulse approximation. The
final-state interaction between the knocked-out nucleon
or the inelastically produced hadrons and the residual
spectator nucleons as well as meson-exchange contribu-
tions to the nuclear current are neglected. The given
theoretical description applies to inclusive processes in all
kinematic regimes of inelastic electron scattering. Calcu-
lational examples are given for the He structure func-
tions and responses in the region of the quasielastic
scattering. In that kinematic regime a detailed compar-
ison of theoretical predictions and existing experimental
data for the asymmetry is carried out.

The polarized He target is indeed a good neutron spin
target, though we are pessimistic with respect to extract-
ing neutron charge properties from inclusive quasielastic
electron scattering. The results illustrated in Fig. 11 lead
to that pessimism. In the past, the authors of this paper
often called for corresponding experiments with polar-
ized H as conclusive tests. Polarized H is as effective a
proton spin target as He is a neutron target, and we be-
lieved that, once H experiments could yield the well-
known electromagnetic proton properties, it would be
proven that the He experiments would be successful in

12

G", [tm]

10—
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FIG. 12. Asymmetry in inclusive electron scattering from po-
larized He as a function of the energy loss Q =Qo. The experi-
mental and theoretical results refer to the initial electron energy
k, =574 MeV and the scattering angle e, =44. The experi-
mental data are from Ref. [18]as in Fig. 9. Two theoretical pre-
dictions are compared, i.e., the prediction, based on the fu11

spectral function of Eq. (3.4) and on the favored extraction
scheme (A) of Eq. (3.11) and (D2), shown as solid curve, is com-
pared with the prediction, based on the closure approximation
for the spectral function according to Eq. (C11) and on the ques-
tionable extraction scheme (C) of Eq. (D6), shown as dashed
curve.
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FIG. 13. H spin structure functions G," and G]" and spin-
dependent responses RTL and RT as a function of energy loss
Q=Q for a four-momentum transfer Q = —0. 16 CxeV . The
full result (solid curve) is compared with the respective neutron
(dotted curve) and proton (dashed curve) contributions. For G&"

and RTL the proton contribution coincides with the full result
and the neutron contribution coincides with the zero line; they
are therefore not indicated for 6 l and RTL ..
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providing the unknown charge neutron properties. We
now consider that misleading reasoning, since there is a
subtle di8'erence between the two targets: At low
momentum transfer the proton charge form factor is
large, whereas the neutron one is comparatively small.
Indeed, as Fig. 13 demonstrates, the H response R Tz ~ is
almost exclusively given by the proton; the measurement
of R Tz in H can therefore determine the proton charge
properties. In contrast, the He response R T~ is given by
the neutron only to a minor degree. Thus, a successful
H experiment for proton properties does not at all prove

the feasibility of extracting neutron properties from the
corresponding He experiments.

The developed theoretical apparatus is also applicable
to inelastic lepton scattering in the kinematic regime of
quasifree pion production and in the deep-inelastic re-
gime. In those regimes the proton and neutron structure
functions become comparable. Indeed, in those regimes
[23] a polarized He target may be employed to extract
spin structure functions of the neutron successfully from
He measurements.
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APPENDIX A: INCLUSIVE ELECTRON-NUCLEUS
SCATTERING IN PLANK-WAVE IMPULSE

APPROXIMATION

The nuclear current tensor W~ ( Q, P„)contains all in-
formation on the nuclear target required for describing

I

electron scattering. The approximations of PWIA can be
cast into the form

A

J~~(x)= g jg(,)(x), (A 1)

l(Pxpx) =~ [~p„lp 1)~Pa isa (fg )) j, (A2)

&p P„~P„s„)=0 . (A3)

Approximation (Al) assumes that only one-nucleon
currents contribute to the complete nuclear current. Ac-
cording to (A2) the complicated inelastic A-nucleon final
state ~Pxpx ) contains a residual ( A —1)-nucleon state
with c.m. momentum P ~ I,s z &

denoting its spin and
f~ ) its further discrete quantum numbers and modes of
internal excitation. The ( A —1)-nucleon state
~P„)s„ lf„)) is itself fully antisymmetrized. All
inelasticities are produced on the nucleon when the
current acts on a single nucleon. The inelastic one-
nucleon states are denoted by ~p„p„),p„being its c.m.

1 1 1

momentum, P„describing all discrete quantum numbers
1

as well as its inelastic excitation. There is no interaction
between the inelastic one-nucleon and the spectator
(A —1)-nucleon states. The inelastic one-nucleon states
may be reached from any of the identical nucleons in the
nucleus according to Eq. (Al). This is the reason for the
antisymmetrizer A =(1/&A )(1—g,~ 2P„) in Eq. (A2),
P I,. being the permutation operator of nucleons 1 and i ~

Approximation (A3) yields the incoherence of the scatter-
ing process: The nucleon knocked out by the electron is
also in an elastic one-nucleon state so diferent from a
bound nucleon that its overlap with a spectator nucleon
vanishes. In fact, approximation (A3) is exact for inelas-
tic nucleonic excitations.

The current matrix elements are needed in the com-
bination

g Jd'P &xP„„,[J„(0)(P Px&&P Px[J;(0)[P„
~x

=A g Jd3p
P

J' d A —1& An A ~)jPv()) [ ~p p & ~PA —lsA —lf A —1& j

&& [ & p. ,p. , ~ & P A —ls A —lfA —) l jj~(1) l
P ~ n ~ & (A4)

for the nuclear current tensor; they are evaluated under the assumptions (Al) —(A3) in Appendix A of Ref. [6]; matrix
elements of the single-nucleon current are rewritten as

[&p.,P., I&P„)s~ )f~ ll jj&())(0)lP„n~ &

=g g f d'pz&px, p, l j&(„(0)lp~s~t~ &h(p~+P~, —P~ )& p~s~t~, (P~ —
~p) „s,f„,~ Pn„&, (A5)

N N

where slav and t)v stand for the spin and isospin of the nucleon. The subscript (1) is dropped in j&(l)(0) from now on.
The nuclear current tensor W"„(Q,P„) is formed according to Eq. (2.1), i.e.,
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&n~IW~'(Q»~)ln~ &= g &n„ls,' &&s,'IW", (g, P„)ls„&&s„ln„&,
I

A A

where

(A6a)

&s„'IW~ (g,P„)ls, &

p0
=(2m)6 g g fd'p~

N sNs

X X fd'p.
, &pttstvt jIg(0)lp. ,&., &

1

X5'(p. +Pg —)
—Q —Pg)&p. P. jI@0)lptas&t~ &

[ & g pip~~~, ( g
—p~) g )fg

X & pxsx tx, (P„—pz )s~,fg (A6b)

In the nuclear c.m. systetn the state In& & of general polarization is expanded in terms of spin states ls„& with respect
to the z axis as quantization axis, i.e., In& &=+, Is& &&s„lnz &. The momentum transfer to the nucleus Q differ from

the momentum transfer Q&=p —
p& to the nucleon since P~, +ptvAP&. The 5 function of energy conservation de-

1

pends on the energy Ez of the initial nuclear ground state through Pz ——Q A mz+P & +Ez, and on the internal exci-
tation energy e„,(f„&) of the residual ( A —1)-nucleon system through

)(eg-)(fg-)))=V(~ —I)'m~+(Pg p~) +eg —&(fg —])

E„&being the minimal energy of excitation, i.e., Ez &=minIe„, (f„,)I. We therefore rewrite the energy 5 func-
tion in Eq. (A6b) by

5(p +P»(e~ &(fq ~))—Q —Pq)= f, „«5«+Eg eg &(f~ &»—5(p'—+P~——i«+E~)
=f" dE 5(E+E„—e„,(f»))5(p,' —Qg(E, p~) —p~), (A7)

introducing explicitly the momentum transfer Q& to the nucleon,

QN(@ph') (Q +PA 3 —I (E +EM ) pN~Q) (A8)

which takes in the nuclear c.m. system, i.e., for Pz =mz = Amz+Ez, the explicit form of Eq. (3.10). The nuclear
current tensor then becomes

&.,'IW;"(g,P, )ls, &

—x g f p~ o f
N sNSN

0

g f d'p. & ptts~tttIJg(0)l p. ,P.,
&5'(p. ,

—Qtt(E, p~) —p~)
X)

X &P,&., IjN0)lptts~t~ &

5(E+Eg —eg )(fg )) ) & P ps' lp~s~t—~(P ~
—p~)s~ ~f~

mg

X & ptvs~t~(P„PN )SA lf A —1lP&s— (A9c)

&s„'Iw„"(Q,P~ )Is~ &=+ g fd'p„ f dE&s~l tv( )(Q~,p~)ls~&&s~sg ls(p~Et~)ls~sg &

PN E„+EA
(A9b)

and is therefore the convolution between the nucleonic current tensor Wg, ~(g~,p&) and the spectral function

S(p&Et&) which contains the nuclear structure information. Equation (A9) proves the spin dependence (3.1) for the

nuclear current tensor in PWIA.
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APPENDIX B: SPIN DEPENDENCE OF NUCLEONIC CURRENT TENSOR

The spin dependence of the nucleonic current tensor is derived in two steps. First, an identity for the positive-energy
Dirac spinors is given. Second, that identity is used to obtain the spin dependence of the nucleonic current tensor.

1. Identity for general positive-energy Dirac spinors

u ( ps )u (ps' ) =—,
'

& a, .
~
1+y P( o )

~ a, ) (p'+ m ), (Bla)

s(o ):=,o+ o pm(m+p }
(8 lb)

The identity (Bla) is to be proven; it is an operator in the space of y matrices and a matrix element with respect to the
orthonormal Pauli spinors ~a, ), defined by on+ ~a, ) =s ~a, ) with s =+1 for a general direction nz of the spinor po-

1 1

larization. The Dirac matrices are used in the parametrization of Ref. [24]. The positive-energy spinors for a particle
of mass m are taken in the form

u (ps) =+m +p la, )

m+p'
and satisfy the simultaneous eigenvalue problems

Pu(ps)=mu (ps),

y ~g, u ( ps ) =su ( ps ),
with the four-dimensional polarization vector

1'nz, P nz,
n&= , n~ + 0 P

m ' m(m+p }

(B3a)

(B3b)

(B3c)

and p =m, s =+ 1. We note that the spin diagonal form of the identity u (ps )u (ps ) =—,
'

( 1+y ~sf &
)(gf +m ) is standard.

Novel as its general spin structure.
For the proof of the identity a complete set of three-dimensional orthonormal basis vectors (nz, nz, nz ) is chosen,

1 2 3

the first one being the polarization vector in the particle s rest frame. The Lorentz transformation A transforms rest-
frame vectors to the frame in which the particle has four-momentum p, i.e., p =Apz with pz =(m, O) and n; =Antt

l

with nz =(O, nz ). The explicit form for n, is given in Eq. (B3c) and is representative for all three vectors n; The c.or-
t t

responding boost of the spinors is S, i.e., u(ps)=Su(pcs), where S has the standard properties S '=yoS+yo,
StiS '=y (Aa ), and Sy5S '=y5. The proof of the identity then follows:

u (ps)u(ps') =S~a, ) &a, ~ [y m+m ]S
=S—,'[5„+on~ s5„+tr(n~ +isn~ )5, , ][P~+m ]S

=S,'[ „yoy,y( ~—s5„—+ „, , + tt ', , )][/~+ ]

=S—,
' [5„+y ~( gz s5„+8z 5, , +Ntt is 5, , ) ][gf~ +m ]S

=
—,'[5„+y5(g,s5„+&~5, , +$3is5, , )][@'+m]

5„.+y~&a, ~g pi, on~ ~a, ) [P+m]

(B4)

In the last step the completeness of the three-dimensional basis states is used.

2. Derivation of the spin dependence of the nucleonic current tensor

The current tensor 8'g, ~(Q~,pz) of a nucleon with mass m~, isospin t~, four-momentum p~, and polarization n~

is defined as
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(nN ~ Wg( 1(QN PN ) ~nN ) = g (nN ~SN ) (SN ~ WIg, ) (QN, PN ) ~SN ) (SN (nN ), (85a)

where

0

&SNIWIv(, )(QNPN)ISN&=(2~)' g Jd'p. &pNSNtNjlg(O)lp. P. &&'(p. Q—N pN—}&p.P. ljN(O}lpNSNtN&
mpf p

(85b)

The initial state ~pNnNtN ) is given by the polarization-dependent spinor u (pNnN) of the form (82), whose isospin
dependence is suppressed and whose corresponding Pauli spinor in the nucleonic rest frame ~aN ) =g, ~SN ) (SN ~nN )
with crNnN ~aN ) = ~aN ) can be expanded into spin basis states ~SN ) with the z axis as direction for the quantization
axis. The tensor WIv~, ~(QN, PN) is considered an operator in that two-dimensional spin space. The initial spinors

u (pNsN)u(pNsN) in Eq. (85b) yield the polarization part of the complete tensor. The whole Lorentz structure of the

current tensor is independent of u (pNsN)u(pNsN }. Introducing nucleonic structure functions, i.e., Wi, W2
X(t~) N(t~)6, ", and 62 " and using the general identity (8 la) for the particular spinors u (pNsN }u (pNsN ), the nucleonic

current tensor takes the form

~ ~ N l wt'1, ~ gN PN ~ l '~ &
= ('~

N(t~ ) P xP x N(tz)
Wl (QN QN PN N}+ W2 (QN QN PN~ N}

m~

P~gyPQ ( }
i QÃ ~ QÃ PN

N(t~)
G2 (QN QN PN~ N)+ [ ( QN pN )Sp( &N ) [QN S ( aN ) ]PNp]

m~

(86a)

with

(QN P. }
PN' PN 2 QN

N

(86b)

s (crN):= ~~X+
m~

px'~N
px

~N(IN +PN }
(86c)

The nucleonic polarization state is defined as ~aN ) in the nucleonic rest frame for Eq. (85a). - The Lorentz structure of
the corresponding polarization vector nN is carried by the Lorentz-boosted spin operator s (crN ) in Eq. (86c}. The de-

rived spin structure of the nucleonic current tensor is used in Sec. III.

APPENDIX C: SPIN-DEPENDENT SPECTRAL FUNCTION FOR THE THREE-NUCLEON SYSTEM

This Appendix calculates the spin-dependent spectral function of Eq. (3.4) for the three-nucleon system. The target
ground state is in its c.m. system ~P„= 0~st„) identified with the trinucleon bound state ~%'tisztz ) of energy Ez =Eii
in Ref. [15]. Reference [15] obtains that state by solving the Faddeev equations in momentum space; only the solution
for the purely nucleonic two-body Paris potential is used in this paper. In contrast to the main text, the dependence of
the bound state on the isospin projection t~, i.e., t~ =

—,
' for He and t~ = —

—,
' for H, is made explicit and will also be

kept for the spectral function in the larger part of this Appendix. The bound state is decomposed into momentum-
space basis states of definite partial-wave characteristics, i.e.,

~Pz =Os„t„)= g g Jp dp q dq~pq[(IS)I(l ,')j ]os„;(T,')V't„—)(pq[(LS)—I(1,')j ]8;(T—,')V'l%'ii )—. (Cl)
LSIT /j

The Jacobi momenta p and q as well as all discrete quantum numbers are defined in Fig. 14. Due to rotational invari-
ance and due to isospin independence, the expansion coefficients are independent of the angular momentum projection
s~ and of the isospin projection t~. The trinucleon ground state has the total angular momentum and isospin —,, i.e.,
8= V'=

—,', and positive parity, i.e., ( —1) +'= 1. Reference [15]gives that state
~ V~ ) on 22 mesh points for its p depen-

dence and on 20 mesh points for its q dependence.
The correlated states

~
P~,s~,f„,) of the residual ( A —1) nucleus are tensor products of states

~
P„,) describ-
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ing the ( A —1) c.m. motion and of states lsz if~, ) describing the internal motion. In the three-nucleon system the
latter states are to be identified with the deuteron I dI, T, ) of energy e~, (f~, ) =ed, i e.,

IdI, T, &
= g g fp'dp Ip(LS)II, TT, &5»5»5»&pL ld &, (C2)

L =0,2 SIT

and with the 5-function-normalized scattering states with outgoing-wave boundary conditions Ig (kf )SfSf Tf Tf, ) of
energy e„,(f„,)=kf Im~, i.e.,

(kf )SfSfzTf Tfz ) = g fp dp Ip(LS)II, TT, )5ss 5Tr 5T T g Y', , (kf )(L'L,'SfSf~ III, ) (pL Ig (kf )L')
LSII, TT, p I

z

(C3)

Equations (C2) and (C3) give the momentum-space partial-wave decomposition for those two-nucleon states of internal
motion. The two-nucleon basis states are those of Fig. 14, already required for the definition of the three-nucleon basis
states.

The plane-wave state of the knocked-out nucleon is given in terms of the spectator momentum and the corresponding
discrete quantum numbers of Fig. 14, i.e.,

Pzs~tz) =g g f q dqlq(l —')jm 't~) — Y,' (Ptv)(lm ,'szljm —) .
1j mrn . 9P+

J

The spectral function is written in terms of those wave functions:

(s~s~ IS(ptvEttvt~ )Is~s„)

Y~~(p~) &i'm (p~) & lm ,'s~lj m, —& &
l'm' 2stv jl'm, '&—

& II,jm, I 2s~ & &II.j—'mj'I-2s~ &

»», »1'J'mm. m m'.
J J

(C4)

X ' 5(E+Ee ed)5, , 5—si5ti5»
N A

fp dp(d IpL ) (pptv[(LS)I(l ,')j ]8;(T—,')—Tl+&)
L =0,2

L'=0, 2
fp'dp'&dip'L'&&p'p„[(L'S)I(l' ,')j'](P';(T ,')V—'IV )—

X g g fp dp ( p (kf )Lf IpL ) (pp~ ((LS)I(l ,' )j ]8;( T,' )7—I%'e )—
Lf L

X g fp'dp'& ys'T(kf )Lf Ip'L')
L I

X (p 'ptv [(L 'S )I(1'—,
'

)j
'
]cF; ( T,' )7 I %ti)—

kf =Q(E +E~ )Im~

(C5)

The two- and three-body breakup contributions are additive. In the chosen normalization the three-body breakup part
vanishes at E+E~=0 for all momenta p&. The dimension of the spectral function is fm MeV '. There are simple
isospin relations when splitting up the spectral function (C5) according to the isospin T of the pair, i.e., if
S(PNEtNtA ) XT=o, iS (PNEtNtA ) then

S (PwEt~t~ ) =S (P~E ( tx)( t~ )), — —

S (ptvEt~t~ ) 5, ,

S (PJvE( —
tw )tw )=2S'(PxEtwt„),

(C6a)

(C6b)

(C6c)

provided the binding energy Ez is taken tobe the same for both nuclei He and H. Thus, it is sufFicient to calculate the
proton spectral function of He for the two pair-isospin T contributions with t~ =

—,
' and t„=—,'. The dependence on the

isospin projection tz will therefore be omitted from now on.
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(C7)

3.6 itThe spin-dependent spectral function p
'

n also de ends on the direction o pN.h d' ' f . According to the discussion of Eq. ( . )
'

nitude =lp I only, i.e., by f0(PNEtN),sim le s in-independent functions of the magnitu e PN—can be parametrized by simp e spin-'
h multi ole components S~~ (PNEtN ) of the spectra unc-f, (PNE~N), an f2 PNd f ( Et ). Those functions follow from the mu tipo e compo

tion in the form (C5):

S~~ (PNEtN)= Jd pN Y~~ (pN)S(pNEtN) ~

which can be evaluated right away with the help of the standard relation
' 1/2

(21 + 1)(2l'+ 1)(LE+1)(PN= X 4a
l I' X 1 l'

m —m' Jkf,~ 0 0 0 (C&)

The functions fo(PNEtN), f, (PNEtN), an f, PNand f ( Et ) are computed by

1 /2
1 1f0(PNErN )—
2 4

N A

Nsg ISOO(PNErN ) ISNSg ) (C9a)

1/2
1 1

fi(PN«N)=
2

N A

(C9b)

1 45f2(PNEtN )
2 16

1/2

($N$A IS20(PNEtN ) I$N$A )
N A

(C9c)

Et ) do not have probabili-Fi s. 15—17. The functions f, (PNEtN) and f2(PNExamples for those functions are given in igs.
t interpretations and are therefore no posi ive e nite.

The s ectral function satis6es a number
'

hb r of sum rules which re ate quan i ie
e function. The observation of sum rules for t equantities more directly computed ro

e spe
d from the trinucleon bound-state wave unc ion.

l tion. When integrating out the energy pr de en-calculated spectral function indicates the nu merical accuracy o its eva ua ion.
r ) the robability for finding a nucleon wit1 hthe s in-de endent nucleonic density p(pNtN, e prodence of the spectral function e spin- p t e ro

1sospln t~, w1 m
~ ~ 'th momentum p&, and with specified spin charactenstics in e n

oo
go

goo

$()-s

Q-s

FIG. 14. Three-body Jacobi coordinates. g
'

s. The ma nitudes of
are and q. In the momentum-the corresponding momenta are p an q.

s ace basis states ~pqv &
e

' taIans ace b
'

Ip ) th respective angular momenta I an

an
' ' '

nd t of the antisymmetrizedand the respective isospins T an t& o e
d 3 and of the spectator state are coupled,state of nucleons 2 an an o

i.e., lpq[(LS)I(ls, )j]cPs„;(Tt,)'Tt~ ), as in Eq. (C ). e qu
S( ) f to the orbital momentum andturn numbers L(l) and s& re er

momentum (projection) and total isospin (projection) o t e

three-body bound state. Since a par
'

s, —t, —~. or a wo

t ) of E . (Cl) all chan-the bound state wave function ~'Ij'&sAtA ~ o q.
nels up to L + l & 8 are kept.

—1Fun«ion f,(p„Et„)in units of [fm3 MeV, huiid-
the spin-dependent spectral function according to Eq.ing up e sp

3(3.6). The contribution of the He proton function arising r
correlated nucleon pairs with isospin T= 1 are shown for a lim-
ited energy-momentum domain in a semilog p o .l t.
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rom
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limited energy-momentum domain.

&s~s~ I p(p~t~) Is~st &:—fdE&s~s~ IS(p~«~) Is~st (C10a)

&szsz Ip(pNt~)lszsz ) =
mm. m'm '.

J

pz)F&* (pz)&lm ,'szjlm ) &I'm—'—,'stijl'm II jm —,szIm PN

x &II,j 'm, 'I ,'s„' ) I & T(t„—t~),'t„l ,'t~ )I'——-
Xg f dp&pp~[(LS)I(l —,')j ]8;(T,')'Tl+s)—

L

X &pp~[(LS)I(l' ,' )j ']8;(T,' )Tl@s )—* . — (C lob)

e nucleonic and the nuclear spins and on the direc-The nucleonic density p(p~t~) hass the same dependence (3.6) on t e nuc come an e
in o eratorsf as the full spectral function. Thus it can be expan e in o ad d t a linear combination of the spin op

te——'o o. in the same way as the spectra unc ion1 f tion according to Eq. (3.6). We no eN A~

Et ) introduced by Blankleider anthat the spectral function Saw(p&Et&),
proximation, is re at' is related to that nucleonic density p(p~t~ by

S, (p„Et )=5(E+E, e,(f, ))p(p t )—, (Cl 1)

m taken in Ref. [13] to be of zero energy. Introduc-(f ) in the residual two-nucleon system take»nwith the average excitation e2RJ 2 in e re
ing the isospin-dependent norms

No(t~):=4~ fp~dp~ fdE fc(p~Et~),

N, (t~):=4m fp~dp~ fdE f, (p~Et~),

»(4 ):=4~fpxdp~ fdE fz(p'~«~»

(C12a)

(C12b)

(C12c)

of olarization nA, i.e., fors ectral function or af three-nucleon bound state o pthe complete integral over the p
o'~ n~ lnz ) = In„ ), takes the form
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JN E ~N+A ~ PNEtN ~NnA

~+N2(tN) fd»~(nN PN}(n~'PN) —nN'nq] (C13)

Thus, No(tN ) is the number of nucleons with isospin tN in the three-nucleon bound state, irrespective of nuclear and nu-
cleonic polarization. The number of nucleons with isospin tN and with spin in the direction of the nuclear spin is

, [No(—tN)+N,(tN)], whereas N, (tN) is the expectation value of the nucleonic spin in units of —,R. The number Nz(tN)
could give information on nucleons with a particular direction of their momentum pN. However, the full angular in-
tegral, left on purpose unevaluated in Eq. (C13), is zero. Thus, N2(tN ) does not contribute to the sum rule (C13).

The spectral function is computed in the limited domain 5.1 MeV ~E &200 MeV and O~pN &6.5 fm '. For the
prediction of quasielastic scattering data in Sec. V the spectral function is needed only inside that computed domain; its
values are stable within 1% for all attempted improvements in the trinucleon wave function I%'z ), e.g., for an increase
in the number of mesh points. However, the spectral function outside that computed domain will matter for predic-
tions of deep-inelastic scattering. Technically, it already matters for sum rules, e.g., results according to Eq. (C10a) and
to Eq. (C10b) differ by less than l%%uo for 0(pN (2.5 fm ' except in the neighborhood of zeros, but their difference in-

creases with pN. The isospin-dependent norms of Eq. (C12), i.e., No(tN ),N, (tN), and N2(tN ) agree in calculations from
the limited spectral function S (pNEtN ) and from the density p(pNtN ) to better than 0.2%%uo, 0.5%, and 2.0%%uo, respective-
ly.

APPENDIX D: DIFFERENT PROCEDURES FOR EXTRACTING STRUCTURE FUNCTIONS FROM
THE PODIA NUCLEAR CURRENT TENSOR

As described in Sec. II, the nuclear current tensor has the general form

&n, l~", (Q,P, )ln, &= - -, — " ~"(g'g.P /m )+P P " " +t~-~

with

b tt(Q, P~, n~)=Q n„p
Gl" (O' Q P~/m~ } Gz (g, g Palm~)+ [(Q P„)n„p (Q.n „)P—g p]m& mz

(D 1a)

(Dlb)

being a second-rang tensor without obvious symmetry properties. When determining the nuclear structure functions
G ~, and 6 ~ in pWIA, contractions of the nuclear current tensor with other tensors are carried out and

current conservation is used in the actual evaluation of those contractions. E.g., the extraction scheme (A) given in Eq.
(3.11) does not employ longitudinal components of the current tensor, replacing them by the corresponding charge
components. The nuclear structure functions of Eq. (3.11}take for their numerical analysis the fnal form

g |"(Q, Q.Pa/m„)

N(t~ )

PEN 2 (Q., QN PN/mN}-=y f d'PN o fdE ~1 (QN QN PN/mN }+ IQxpNI' fo(PNEtN },
N PN 2mN

(D2a}

W2" (Q, Q.P„/m„)=g fd pN o fdE '

tN

N(t~ )
(QN QN PN™N) g', , QN PN

m Q4 PN QN IQxpNI'
Q2

2 Q2

Q2 Q2
(QN QN PN/mN) 2

1 2 fo(PNEtN}
Q QN

(D2b)



60 R.-%'. SCHULZE AND P. U. SAUER 48

6,"( Q, Q P„/m ~ ) =
r

mz mN
, r fd PN 0 fdE G1 (QN&QNPN/mN)—

Q PN mymN

PN. e( .~)'
mN(mN+PN )

QO+, QN'PN
m~

QN(r N XQ)'

mN+PN

N(tN) 2 Q+G (QN QN PN/mN)
mg mN

Q QN

mA m

QN PN

mN

QN(r N.e))'

mN( mN +PN )

(PN XQ)
pmN(mN +PN )

X [f1(P'N«N ) ,'f2(PN—E—tN) 1

0
N(t~) Q+ G 1 (QN QN PN/mN)

mgmg mN

0

+ 2 [QN.pN
—

QNPN(pN XQ) ]
mA mN

np
N(tx) 2 Q+G, "(QN, QN PN/mN) nNe,

my PlN mN

(pN. Q) f (PNEtN)Q QN

mA m

G2" (Q, Q.P„/m q )=— 2 m N ); y f d pN 0 fdE G, (QNQN pN/mN)
Q PN mN

PN el( .~ )'

mN( mN +PN )

(D2c)

1+
2 QNPN

mN

QN(PN XQ)

mN +PN

r

mN mN mN(mN+PN )

r

VNXQ
'

mN mN(mN+PN )

X [f1(PNEtN ) 3fZ(PNEtN )]—
N(t~ ) Q PN
1 ( QN QN PN/mN ) —

(pN ~1)'
mN mN

[(QN'PN) QNPN(PN XQ) ]
mN

pN(t~) Q QN
+Gg (QN QN PNT/mN) IPN (QXcN))

mN mN

2
QN+
mN

(D2d)
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The independence of the spin structure functions G
&

and G2 from the polarization vector n~ is explicit in Eqs. (D2c)
and {D2d). The PWIA current tensor W"„(Q,P~ ) does not satisfy current conservation. This is the reason why
difFerent extraction schemes for the nuclear structure functions yield difFerent results. The extraction scheme (A) is
based on the idea that impulse approximation is better justi6ed for the charge than for the spatial part of the current,
which usually receives substantial contributions from exchange currents. Though that idea is correct, it is not too help-
ful: It only fully applies to the spin-averaged longitudinal response RL, , which is given by the component W„(Q,P„)of
the nuclear current tensor according to Eq. (2.7b); in contrast, all other response functions and all structure functions
also depend on spatial components W„'(Q,P„) and W„'{Q,P& ) with i =1,2 which cannot be eliminated by the condi-
tion of current conservation. In order to explore the theoretical uncertainties inherent in the chosen extraction scheme
(A), alternatives are formally derived and compared in their practical consequences for the structure functions.

As one alternative one may replace all charge components of the nuclear current tensor W"„'(Q,P„) in Eq. (2.5) by
the longitudinal ones due to current conservation, i.e., W~'(Q, P~ ) = IQI W„(Q,P„)lg and W"„(Q,P~ )
= W"„(Q,P~ )IQI/Q, and, consequently, one may assume that only the spatial nuclear current matrix elements are
given in PWIA according to Eq. (3.g). In this extraction scheme (B) the following convolution formulas result for the
nuclear structure functions:

W,"(Q,Q P~ /m~ )

N(t~)
mN N(t~ ) W2 {QN'QN PN/mN)=X f "'PN 0 f"E Wi "

(QN QNPN/mN)+ IQXpNI' fo{pN«N),
t~ PN 2mN

(D3a)

W,"(g',g P, I „)

=y fd'p„, fdE
PN

N(t~ )
{QN QN p'N /mN )

2
mN

Q ~ QN PN

(go)2Q2 pN Q —IQI IQxp
Q2

2 Q2

N(t~ )—Wi " (g„',gN pN/mN), 1—, 0Q' QN, Q' fo(PNEtN» (D3b)

(g', g P, /m„)

mz mN
0

X f d'PN . f« — . , g "+ Q, (QNog" —IQig")g

X S.(,„E,„-.,)" Q Q

mN

+ I(QN'PN)~~(pNEtNn~ ) [QN @pN«N—n~ )]pN. J
mN

(D3c)

G2" (Q, g P~ /m~ )

2 m2 fd'P, f«Q', , g "+, I:Q'g"—IQig")
PN Q nA nA

1 QN&QN PN mN
u PN tNnA

mN

G;{Q.', Q. p.Im. )+ I(QN PN )1 (pNEtNn~ ) —[QN $(pNEtNnq )]pN
mN

(D3d)

In Eq. (D3) the four-vector g(pNEtNn~ ) of Eq. {3.9) is used. The final form of the nuclear spin structure functions in
extraction scheme (B) taken for their numerical analysis follows from Eqs. (D3c) and (D3d) as the corresponding results
(D2) follow from Eq. (3.11).

With respect to the spin structure functions a third extraction scheme is possible. It is based on the second-rank ten-
s« ~ p(Q, P~, n q ), which is defined in Eq. (D lb) and which is identified with its P~IA form of Eq. (3.g)
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~.p(Q PA nA)

N(t~ )

mN G, ( QN, QN.pN /mN )=g f d'pN 0 f dE QN hatt(pNEtNnA )

N PN mN

( N 2«N QN.PN/mN)+ I QN PN ~t1(PNE N A ) [QN @PNE N A )]PNp]
mN

(D4)

The spin structure functions G 1" and G2" can be derived from the exact second-rank tensor (Dlb) by contractions, i.e.,
by

G1"(O' Q PA/mA) g ~~p(Q PAn„
(D5a)

G2" (Q, Q P„lm A ) = —
2 Q PA b &(Q, PA, n A ),

Q'(Q n„)
(Dsb)

and the third extraction scheme applies those results to the approximated form (D4) of that second-rank tensor. We
note that some contractions, e.g. , Eq. (D5a), use diagonal matrix elements of the tensor which are entirely absent in the
combination i e" ~A &( Q, P„,n A ) for the nuclear current tensor. Contractions with other tensors, i.e., with

Q n„,P„Q,PAP„, and so on, yield consistency relations, e.g. ,

G1"(Q, Q P„/mA)+ 2
G2" (Q, Q P„/m„)= —

Q ntAE &(Q, PA, nA) . (D6)

That relation holds for the exact form of the second-rank tensor b, &(Q, PA, n„), but it is violated for its approximated
form (D4). We declare the convolution formulas for the spin structure functions, resulting from Eqs. (D5a) and (D5b)
and given by

N"n' 2

G 1"(Q, Q.PA lm„) = g f d pN 0 f dE
mN t pN mN

X [f, (p Et )+ [(p .Q) —
—,
' ]f (p Et ) $

0 0 pN Q+ (PN Q) (PN™N) QN
I I

[fl(PNEtN)+ f2(PNEtN)l

(D7a)

2

G2 (Q, Q PA/mA)= g f d3pN fdE
mN t pN

N(tg ) pN Q

0
N(t~) 2pN mN+G 2 ( QN & QN PN™N )( PN Q )

mN

X [f,(pNEtN )+ ', f2(pNEtN)]—
0

N(t~) PN A.
+G2 (QN QN pN/mN) [f1(PNEtN)+[(pN Q) ,' ]f2(PNEtN)l——

mN

(D7b)
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extraction scheme (C). That extraction scheme is used in
Ref. [13], with the additional approximation Q&=Q,
which is in this context a minor approximation introduc-
ing errors smaller than 1%. We shall also use extraction
scheme (C), but according to Eq. (D7) with Q~AQ for

the purpose of comparison. However, because of its in-
herent and irreparable inconsistencies we dislike it. In
addition, extraction scheme (C) does not allow us to
derive the response functions Rz.I. and RT from the ten-
sor 6 &(Q,P&, n~) of Eq. (Dlb).
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