PHYSICAL REVIEW C

VOLUME 48, NUMBER 1

JULY 1993

Inelastic electron scattering from the three-nucleon bound states with polarization
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Spin-dependent inelastic electron scattering from polarized *He is studied. The theoretical description
uses the plane-wave impulse approximation. A spin-dependent spectral function, which summarizes all
of the nuclear structure information on the process, is introduced. The formalism is developed for in-
clusive processes in all kinematic regimes of inelastic electron scattering. A comparison between
theoretical predictions and experimental data is carried out in the region of quasifree scattering. The use
of a polarized >He target as a neutron spin target is discussed.
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I. INTRODUCTION

Inelastic electron scattering from the three-nucleon
bound states *He and *H attracts special experimental
and theoretical attention. Data for inclusive processes
cover the kinematic regimes of quasielastic scattering
[1-3], quasifree pion production [1], and deep-inelastic
[3,4] scattering. They refer to unpolarized electron
beams and spin-averaged targets. The theoretical
description [5-8] is usually in the plane-wave impulse ap-
proximation (PWIA); the inclusion [9,10] of the final-
state interaction for quasielastic scattering has just be-
gun.

The present paper extends the theoretical PWIA
description of Ref. [6] to inclusive processes with polar-
ized electron beams and polarized *He and *H targets. A
polarized 3He target is especially interesting as a possible
substitute for a polarized neutron target [11]. Section II
discusses the general properties of the nuclear current
tensor with polarization of the target and defines the nu-
clear structure functions. Section III derives the nuclear

P}

current tensor for the three-nucleon bound states in
PWIA. The notion of a spin-dependent spectral function
is introduced. It is the actual technical backbone of the
theoretical description. Its properties and its practical
computation are discussed. Examples for *He spin struc-
ture functions are given. Section IV derives the polarized
cross sections for inclusive processes. Section V com-
pares theoretical predictions and experimental data for
inelastic electron scattering in the kinematic regime of
quasielastic scattering. The problem of extracting elec-
tromagnetic neutron properties from those experiments is
discussed. Section VI contains conclusions with a discus-
sion of possible extensions of the results obtained so far.

II. GENERAL PROPERTIES OF
THE NUCLEAR CURRENT TENSOR

The current tensor W4*(Q, P ,) of a target A with mass
m 4, four-momentum P ,, and polarization n 4 is required
for the description of inclusive processes; it is defined by

<n,,|W§"(Q,PA)InA>=(2w)6m—§, J @*Py(P 4n 4|75 (0)[PyBy )6 Py —Q—P  (PyBx T4 (D[P n,)  (2.1)

Aﬁx

in terms of the nuclear current J#(0) at time-space point O; the proton charge e, is split off from the current. General
final states |PyBy ) of c.m. momentum Py can be reached in the scattering process, By describing discrete quantum
numbers and also the modes of internal nuclear excitation; they are not observed in inclusive processes. The momen-
tum transfer to the target nucleus is Q. The current tensor is Hermitian and conserved, it preserves parity and time-
reversal invariance. Its Lorentz structure is built from the three four-vectors Q, P 4, and n , which satisfy P =m?,

n%=—1,and (P-n,)=0. The current tensor has the general form
rOV - . WQe%LQ-P,/my,)
(n 4| WEAQ,P ln 4 )= Qﬁ——gw Wi(Q%QP, /m ) +PHPYy—1— = A4
my
. _uvaf GIA(QZ’Q'PA/mA) G?:A(QZ,Q'PA/mA)

+ie""™Q, |n4p +[(Q-Py)n 45— (Q-n 4)P 4] 3

mA mA
(2.2a)
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for a spin-1 nucleus with

~ Q-P,
P, =P,— 02 (2.2b)
In Eq. (2.2a) g*¥ is the metric tensor with

gW=—gll=—g2=—g3=1 and &** the totally an-
tisymmetric tensor in four dimensions with
€0123=—€"'2*=1. The notation (n ,|WH(Q,P,)|n )

indicates that the current tensor WX*(Q,P,) is con-
sidered an operator in spin space.

The spin-averaged structure functions Wi and Wj!
and the spin structure functions G{! and G 3 determine
the current tensor. In turn, they determine the cross sec-
tion of the inclusive processes which are described by the
current tensor. The structure functions are real-valued
Lorentz scalars and therefore depend on the scalars Q2
and (Q-P,). The dependence of the current tensor on
the polarization vector n 4 must be linear for spin-1 tar-
gets; the dependence on the pseudoscalar (Q-n ) is ex-
plicitly split off from the spin structure functions. The
structure functions can be obtained from a given current
tensor by contraction with other tensors, i.e., the spin-
averaged structure functions by

Wf(QZyQ'PA /mA)

FA/.LPA‘V
P’

_1

2 (n |WE(Q,PIny) ,

—8uv

(2.3a)

Wf(Q2»Q‘PA/mA)

(n WH(Q,P)lny)

—8uv

(2.3b)

and the spin structure functions by
J

G{(Q%Q-P, /m,)
i _Mma
2 Qny
€uvap 4| WH(Q,P 1)1 1)

PA(Q*+H(Qn ) —(Q-P, P’

[(Q-n4)PL0°nE —(Q-P,)Q°P]

(2.3¢c)

GHQ1LQ-P,/my)
3

=i'—m’A—"‘{(Q'n XQ-P,)Q%~
2 QZ(Q'nA) A A A
—[Q%*+(Q-n 4 )*1Q*PE}
eyvaB<nA|Wﬁv(Q,PA)|nA)
PY(Q2H(Qn P)—(Q-P, )

(2.3d)

The derivation of Eq. (2.3) exploits the identity
€uvap€”"’ = —2(8,"85° —8. 85"). Current conservation
Q. WQ,P =W (Q,P,)Q,=0 will be used when
evaluating Eqgs. (2.3). The result (2.3) for the spin struc-
ture functions appears to introduce a dependence on the
polarization vector n,. That dependence is fake and
disappears on further analysis.

Without loss of generality, the nuclear center of mass
(c.m.) system is chosen such that the three four-momenta
which build up the Lorentz structure of the nuclear
current tensor become

P,=(m,,0), (2.42)
n,=(0,n%,0,n%), (2.4b)
0=(0%0,0,IQD) . (2.4¢)

The polarization vector n 4 is spacelike and does not have
a time component in the c.m. frame, since (P -n ,)=0

A

The unit vectors €; of that frame are defined by €;=Q,

€, =(&; X% 4)/I€; X0 4|, and €;=¢€,X¢€,. In that nuclear

c.m. system the structure functions of Eqgs. (2.3) take the
particular forms

W(Q%Q P/t )=HnWHQPH+WIQP)ln,) , (2.52)
A 2 Q4 00, 1 Q2 11 22
wi(Q ,Q-PA/mA)=E<nAIWA(Q,PA)InA>—567<nA|WA(Q,PA>+WA<Q,PA)|nA) , (2.5b)
. m2 1 2
GIA(QZ,Q-PA/mA)=~—é Q;‘ a mAQ|Q| (n | WHQ,PHN—WPQ,P,)In,)
+ L2 Wi P )~ QP I, (2.5¢)
ns m A A 'L 4 A L4 A ) .
A A
. m2 1 0
GzA(QZ:Q'PA/mA)=éFI; ET%_](”AW?;Z(QPA)”Wio(Q:PA)I”A)
5 [ WRQ.P )~ WH(Q.Po)In ) (2.5d)
A
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In the results of Eq. (2.5) all nuclear tensor matrix ele-
ments involving the third component of the current are
eliminated in favor of matrix elements involving the
charge density by current conservation, i.e., by

QP )=0°WQ,P,)/|Q| and by WH(Q,P,)
=WHY(Q,P,)Q°/|Q|. In the c.m. system the structure
functions are related to the frame-dependent nuclear
response functions, i.e., the spin-averaged transverse and
longitudinal ones Ry and R;, and the spin-dependent
transverse and mixed transverse-longitudinal ones Ry
and R4y, by

wQ%Q-P,/m )=1R1(Q%Q° (2.6a)
4
W;(QZ,Q-P,,/m,,>=—g—;RL(Q2,Q°>
—%% Q%409 , (2.6b)
G{Q%LQ-P,/my)
lﬂ— —\/ R(0%0%
2 @ 41Q
0
+—Q_—RT'(Q2,QO)] , (2.6¢)
my

#(Q%Q Py /my)
_1mj

5'62‘ \/ Ry (Q%0%+R(Q%Q%

IQI
(2.6d)

Those nuclear response functions [12] can directly be
computed from the nuclear current tensor according to

1(0%,00:=(n |WNQ,P)+WHQ,P,)In,),

(2.7a)
R (0%0%):=(n WRAQ,P)Iny), (2.7b)
RT,<QZ,Q°>:=—i—nl§<nAIW}AQ,PA)
—WiQ,P)In,) , 2.7¢)
R (Q%0 )~—n/§ (nA|W XQ,P,)
—-WXQ,P)In,), (2.7

or from the structure functions by inverting Eq. (2.6). In
fact, we obtain the structure functions numerically by
calculating the nuclear response functions according to
Eq. (2.7) first. For an energy loss Q° small compared
with the three-momentum transfer IQI we note that G{4
is dominantly determined by Ry;., whereas G 3! is dom-
inantly determined by Rp. That fact will be demonstrat-
ed later on in Figs. 3-6.

III. THE NUCLEAR CURRENT TENSOR IN PWIA

The nuclear current tensor is calculated in PWIA as an
operator in nuclear spin space, i.e.,

(s, |WENQ,P s 4 )

=2 2 fde ) de(sN‘WK’(tN)(QN’pN)ISN>

N sysy
X {sys'y|S(pyEty)|sns 4
(3.1

The derivation follows Ref. [6] and is given in Appendix
A. It is carried out in the nuclear c.m. system defined in
Eq. (2.4). PWIA approximates the complicated A-
baryon final states |PxfBx ), which arise in the definition
(2.1) of the nuclear current tensor, as a tensor product of
single-nucleon states reached through one-nucleon
currents from a bound nucleon and of correlated states
P, _s4_1f4—17 in the residual (4 —1) nucleus. The
residual nucleus is assumed not to participate in
the scattering process. Its correlated states
P _1S4—1f4—1) are specified by the momentum P, _,
and the spin quantum number s, _;, with f,_; describ-
ing the remaining discrete quantum numbers and the
modes of internal nuclear excitation. E.g., in the three-
nucleon system the correlated states of the (A —1) nu-
cleus are the states of the deuteron and of two-nucleon
scattering. Due to that approximation on final states,
PWIA relates the nuclear current tensor W4 (Q,P ,) to
that of the single nucleon Wﬁ}',N)(QN,pN ), which will be

discussed in Sec. III A. The kinematics of the scattering
process is illustrated in Fig. 1 for PWIA. The four-
momentum of the struck nucleon is
pN=(\/ m2+p%,py); the choice of the time component

as V' m}+p% is determined by our use of Schrodinger
quantum mechanics for nuclear structure; however, other
choices and off-mass-shell choices are possible. The nu-
cleonic spin (isospin) projection is denoted by sy (ty); On
is the momentum transfer to the nucleon by the electron
and is different from the momentum transfer Q to the nu-
cleus. The nuclear structure part of W{'(Q,P,) in
PWIA is contained in the spectral function S(pyEty). It
will be discussed in Sec. III B. Since it is calculated in the

k!
Q Py saqfas
By
ke
B ny
FIG. 1. Inelastic electron scattering from a nucleus in the

plane-wave impulse approximation.
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nuclear c.m. system, its dependence on P , is not nota-
tionally indicated. The spin-independent part of
S (pyEty) is identical with the usual spectral function of
Ref. [5] and is interpreted as the probability for finding a
nucleon of isospin ¢y and of momentum py in the target
nucleus A, the residual (A4 —1) nucleus having a
specified excitation related to the so-called separation en-
ergy E according to Eq. (3.4) later on. Both the nucleon-
ic current tensor W}, ,(Qy,py) and the spectral func-

tion S(pyEty) are considered operators in spin space.
The quantization axes of the nuclear spin o 4, and of the

QKON
ox

Wth)(QmPN)= —g W

N(
" (Q%,Qnpy/my) B

nucleonic spin o y are chosen along the z direction for the
matrix elements of Eq. (3.1). Thus, general matrix ele-
ments, off diagonal with respect to spin, have to be con-
sidered when describing scattering from an arbitrarily po-
larized target. That fact explains the difference in nota-
tion between Eqgs. (3.1) and (2.1); it is further discussed in
Sec. III C.

A. The nucleonic current tensor

The nucleonic current tensor has the form

N(
) (Q%,Qn Py /my)
mN

N(
w (Q%,On Py /my)

+ ieﬂvaﬁQNa SB( UN -
N

gow
(Q#,OnPy/my)
G, N CN PN/ My
+{(QyPy)spglon) —[Qn-s(on)1pg) 3 , (3.2a)
N
[
. N(
with W) (Q%,On'Pn/my)
_ OnPw
pN:=pN— QI% QN ’ (3.2b) (tN (QN) GE“N (QN)+ GN(N)(Q]%I)
o o B 2 1+7
N'ON N'ON
s(lon):= ,O (3.2¢)
N my N my(my+pR) X2my8(2Qy Py +0F) (3.3¢)
It is derived in Appendix B. It is written as an operator Ny), a
in spin space, the operator character being provided by G, (Qn>Qn PN /my)
the spin-1 operator oy boosted to s(oy) according to Eq.
(3.2¢c). All its diagonal and nondiagonal spin matrix ele- Gr'™(0%) Gu™(02)—7Gp ()
ments required for the nuclear current tensor (3.1) can be 2 1+
obtained from Eq. (3.2a). The nucleonic current tensor
de%ends on the two spin-averaged structure functions )
X2my8(20y-pNy+Qx) > (3.3d)

wi, ¥ and W and on the two spin structure func-

N(ty) )
tions G; " and Gy 2 “¥) For elastic scattering from the
nucleon, the structure functlons are determined by the

elastic Sachs form factors G ¥ and Gﬁ ), respective-
ly, i.e.,
N( )
Ll (QN’QN ‘Py/my)
=1[Ga " (Q})P2my8(20y Py +Q}) ,  (3.32)
(zN)

(Q#,Qn Py /my)
_ G QR P+IGy V(@)

1+7
X2mN8(2QN-pN+Q§,) ,

(3.3b)

with 7=—Q32 /4m} being non-negative. For inelastic
scattering from the nucleon, the structure functions have
to account for experimental data in a corresponding way.
That is done in Ref. [6] for the spin-averaged structure
functions W?MN " and W, '™ and for the kinematic
domains of quasifree pion production and deep-inelastic
scattering.

B. The nuclear spectral function

The spin-dependent matrix elements of the nuclear
spectral function are defined by
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(sysy|S(pyEty)Isys4)=4 3

sqg—1fa—1

ME+E, —e (fq-1)

XAP 45y Ipasytn(P 4 —pa)ss—1f a1 PNSNIN(P . —Pu)s 41 f a—1P4sy) .

The on-mass-shell energies of the (A4 —1)- and A-nucleon
systems are approximated such that the respective four-
momenta read

P 1=(V(A—1Pmi+P,—pyl+te,_(fa_1),

PA—pN) ’
P,~(V A’m};+PL+E P,),

E, being the trinucleon bound-state energy and
e _1(fy4—1) the excitation energy of the residual
(A4 —1)-nucleon system. The & function 8(E +E,
—e—1(f 4—1)) is introduced in order to make the spec-
tral function formally independent from the quantum
numbers f,_, of excitation in the residual (4 —1) nu-
cleus. The spectral function is an operator in the nu-
cleonic and in the nuclear spin space. Furthermore, it
depends on the momentum py, the separation energy E,
and the isospin ty of the nucleon. Since it is calculated in
the nuclear c.m. system, P , =0. In this paper the spec-
tral function is determined for the three-nucleon bound
state He; the corresponding spectral function of *H can
be obtained from that of 3He by symmetry relations
without additional calculation. The dependence of the
spectral function on the isospin label ¢, of the nucleus
will therefore be suppressed in the notation.

The tensor structure of the nuclear current tensor (3.1)
in PWIA is carried by the nucleonic current tensor (3.2a).
Thus, the spectral function is a Lorentz scalar. In the nu-
clear c.m. system it is a scalar with respect to rotations
and parity. The spectral function therefore has the gen-
eral operator form

(3.5a)

(3.5b)

S(pyEty)=3{folpnEty)+f1(pyEty)oy 0 4
+f2pyEty)[(on Py )0 o Dy)

~3ON'0 4]} (3.6)
in spin space. The considered nucleus and the nucleon
are both spin-1 particles. The only nontrivial proper sca-
lars, which can be constructed from the three vectors
Pn>0ON> and o , available in the c.m. system and which
are at most linear in the spin operators, are oy 0 , and
[(onDPy)No o Py)—1on-0 ] The other possible sca-
lars onPy> 0 oDy, and (Py X oy)-0 4 are of pseudosca-
lar nature and so do not contribute to the expansion of

(3.4)

Eq. (3.6). Thus, only the spin-averaged contribution
SfolpyEty) and the two spin-dependent contributions
S1(pyEty) and f,(pyEty) make up the full spectral func-
tion S(pyEty) according to Eq. (3.6). They do not de-
pend on the full three-dimensional vector py, but just on
its magnitude py =|pyl, not to be confused with the cor-
responding four-vector for which the same symbol is
used. :

The spectral function S(pyEty) has a singular part
due to its contribution from the deuteron carrying the en-
ergy & function of Eq. (3.4) and a smooth part due to its
contribution from the two-nucleon scattering states for
which the energy 8 function is integrated out by the sum-
mation over f 4 _;. Thus, the spectral function allows us
to differentiate between two-body and three-body final
states. The practical procedure for computing the spin-
independent and spin-dependent contributions to the
spectral function of Eq. (3.6), its isospin dependence, and
sum rules are given in Appendix C.

Reference [13] suggests closure as a reliable approxi-
mation for the exact spectral function S(pyEty) and uses
e _1(f4-1)=0 as average excitation energy for the re-
sidual two-nucleon system. In that approximation the
sum on s,_; and f,_; can be carried out in Eq. (3.4)
analytically. The approximated spectral function takes
the same singular form as for the two-body breakup with
a proton-deuteron final state in scattering from 3He, i.e.,
it becomes a product of the 8 function 8(E +E ;) and of
the nucleon density p(pyty) according to Eq. (C11) of
Appendix C. That approximated spectral function does
not distinguish between two-body and three-body final
states any longer.

C. Convolution formulas for structure functions

The target nucleus of spin 1 is—in its c.m. system—
characterized by the general polarization vector i 4, i.e.,

oatilng)=Iny), (3.7a)

paB)=11+0,4-0,4). (3.7b)
The polarization state |n , ) is expanded in terms of spin
states |s,) with the z axis as quantization axis, i.e.,
Ing)=3=; Is4){s4ln ). The operator p, is the corre-
sponding density matrix; it keeps the form (3.7b) with
1%, <1, even if the polarization is not realized by a pure
state. For the polarization (3.7) the nuclear current ten-
sor takes the form
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(n g [WE(QP,)ln ) =T WE(Q.P)p 4B )], (3.82)
m ONQOx
(nalWEQPIn )= [dpy—g [dE iz_N‘—g‘” w1 Q2,0 py /my)
ty PN On
PNPN . Ny)
+ m2 Wy N (QR,Qypy/my) SolpyEty)
N
Nty)
G N ( 2, .
+ie" By, |SypyEtyh 4 )— ON.QOnpy /my)
my

+{(QnPN )(‘?B(pNEtNﬁA )—[QnS(pyEtyhi 4)1png)

Nty)
G, YV (Q},Onpy/my)
x 2 ONsQnPy/my } ] ‘ (3.8b)

my
The result (3.8) for the nuclear current tensor WH*(Q,P ,) is derived from of Eq. (3.1); Eq. (3.1) needs the nucleonic

current tensor (3.2) and the spectral function (3.6). For compactness of notation, the four-vector

S(pNEtNﬁA)=Tr[s(a'N)S(pNEtN)pA(ﬁA)] , (3.93.)
S(pNEtNﬁA )=S(ﬁA )[fl(PNEtN)_%fZ(pNEtN)]+s(ﬁN )(ﬁA 'ﬁN )fz(pNEtN) (3.9b)

is introduced which contains all spin-dependent nuclear structure information; it uses the spin operator s (o) of Eq.
(3.2c) and the vectors i ; and P boosted by the nucleon momentum py, as o in Eq. (3.2¢), i.e.,

s(h )= Py, pyii, P (3.90)

A mN ' 4 mN(mN+p1(\)’) N ’ .JC
s(Pr)= |PN] ~ P1(\)r

PN _—mN ,PN_mN (3.9d)

In contrast to Eq. (3.8a) the Tr in Eq. (3.9a) refers to nucleonic and nuclear spin summations. In the nucleonic current

tensor (3.2) the momentum transfer Qy =Q +P,—P , _;—py to the nucleon is different from the momentum transfer
to the whole nucleus, i.e., it becomes
Oy =(Q%+ Amy—E—V (4 —1’m} +p%—p3,Q) (3.10)

in the c.m. system with P , =0. It depends on the integration variables of Eq. (3.8), i.e., on the separation energy E and
on the momentum py of the struck nucleon.

The nuclear current tensor W4"(Q,P ) in PWIA does not satisfy current conservation, i.e., Q, W4(Q,P )70 and
WEY(Q,P ,)Q,70 for the nuclear current tensor of Eq. (3.8). When calculating the nuclear structure functions
Wi, Wi,G{, and G;' we therefore take the PWIA nuclear current tensor of Eq. (3.8) only for those longitudinal ma-
trix elements needed in Eqs. (2.5) after current conservation is already exploited. That procedure is called scheme (A)
and is admittedly a recipe; arguments for that recipe and alternatives are given in Appendix D. The following convolu-
tion formulas result for the structure functions in scheme (A), i.e.,

m N(ty)
wi(Q*%Q-P,/m =3 dePN;"ide Wi N QR Oy py/my)
9% N

N(ty)
Wy V(O Onpy/my) A
+—2 ’ZV N NN Q% py 2 | folpnEty) (3.11a)
my
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. o [ wh " (Q2,0y py/my) o4 29— 03 On'PN z_lQ_2|QXp 2
.P = —_— — Oy 2 N
WH(Q%QP/m,y) %f Py ) Q' o | 2
2
—WN“N (Q%,On- PN/mN)Qz 1__Q_z folpnEty) (3.11b)
Q O~
G{1(Q%Q-P,/m 4)= 2 [aton e far | =2 lgier 2L (04— IQle™
4
N(p2
(ON,Qn PN /my)
esoa(pNEtNﬁA) ! M ENIN il
my
+{(QnPn)Sa(PyEtyt )
G (QX,Qn Py /my)
—[Qn - S(pNEty 1) Py} ——— N; |, (.11c¢)
my
G#(Q%Q P, /m )= Z [y (I)v [aE [Qon l"‘+——(Q° —|Qlg®)
PN
GY(QF,Qn Py /my)
('saa(pNEtNﬁA) ! NN ul
mpy
+ {(Qn PN )So(PyEtyT 4)
~ Gév(Qj%"QN'pN/mN)
—[Qn-S(PNEtyT 4)1PNal 3 3.11d)
my
In the integration on py only the terms in 20 a0
S(pyEtyt ,)[$%pyEtyfi4)] proportional to 6 ,[n3] )
survive. Thus, the dependence of the spin structure func- WALfm)] WAlfm]
tions G{! and G on the polarization vector fi , drops
out. This fact is made explicit in Eq. (D2) of Appendix 10 L 20 L
D, which is used in the numerical analysis. Sample re-
sults for the nuclear structure functions in the region of
quasielastic scattering are given in Fig. 2; the employed
nuclear structure model is described in Sec. V. The 0.0 , | 0.0 ! |
correspondence between the spin structure functions G ! 50 100 150 200 50 100 150 200

and Gj and the nuclear responses Ry, . and Ry, respec-
tively, is demonstrated in Figs. 3-6.

D. Theoretical uncertainties

What is the accuracy of theoretical predictions in
PWIA? PWIA is quite successful in describing unpolar-
ized inclusive processes. With respect to the small and
therefore possibly sensitive spin-dependent observables,
this paper cannot explore the validity of PWIA. We can
only give uncertainties arising (i) from approximations in
the calculation of the spectral function and (ii) from the
inequivalent extraction schemes for structure functions
and responses.

(i) Blankleider and Woloshyn [13] use closure approxi-
mation when calculating the spin-dependent spectral

05 L ! s ! !
~ 50 100 150 200 50 100 150 200
QlMeV!] QMeV]
FIG. 2. 3He structure functions W{,W#,G{, and G4 as a

function of energy loss Q=Q° for a four-momentum transfer
Q%= —0.16 GeV?2 The theoretical result is based on Egs. (3.11)
and (D2).
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10

50 100 150 200

0.5

0.0

05 | ‘ 0.5 : L
50 100 150 200 50 100 150 200

QlMeV] OlMeV]

FIG. 3. 3He spin structure functions G{' and G4 and spin-
dependent responses Ry, and R~ as a function of energy loss
Q=Q° for a four-momentum transfer Q>= —0.16 GeV2. Com-
pared are results based on the exact spectral function of Eq.
(3.4) in Sec. III B (indicated by solid curves) and on the approxi-
mated spectral function of Eq. (C11) in Appendix C (indicated
by dashed curves). The calculation uses the favored extraction
scheme (A) for the spin structure functions and spin-dependent
responses according to Egs. (3.11) and (D2).

1.0. 1.0

Gilfm]

Gilfm]

0.5 0.5

0.0 foemma: =00

0.5 L | 0.5 ‘ !
50 100 150 200 50 100 150 200

0.5 0.5
A~ —Rulfml

- RTL:[fm]

0.0 FE 0.0 5

-0.5 L N 0.5 : L
50 100 150 200 "7 s0 100 150 200
QlMeV] NiMeVI
FIG. 4. *He spin structure function G{ and the spin-

dependent response Ry, as a function of energy loss @ =Q° for
a four-momentum transfer Q%= —0.16 GeV2. Compared are
results based on the full spectral function (left side) and closure
(right side) using extraction scheme (A) for both. The total re-
sult (solid curve) is compared with the respective (dotted curve)
and proton (dashed curve) contributions.
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FIG. 5. *He spin structure functions G{! and G4 and spin-
dependent responses Ry;- and Ry as a function of energy loss
Q=0 for a four-momentum transfer Q>= —0.16 GeV2. Com-
pared are results based on the three distinct extraction schemes,
i.e., scheme (A) of Egs. (3.11) and (D2) (indicated by solid
curves), scheme (B) of Eq. (D3) (indicated by dashed curves),
and scheme (C) of Eq. (D7) (indicated by dotted curves). The
unapproximated spectral function of Eq. (3.4) in Sec. IIIB is
used. The solid and dashed curves are indistinguishable for G ;!
and Ry
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FIG. 6. *He spin structure function G{ and the spin-

dependent response Ry as a function of energy loss Q=Q° for
a four-momentum transfer Q?=—0.16 GeV>2. Compared are
results based on the full spectral function using extraction
scheme (A) (left side) and closure using extraction scheme (C)
(right side). In each case the full result (solid curve) is com-
pared with the respective neutron (dotted curve) and proton
(dashed curve) contributions.
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function according to Sec. III B and to Appendix C. The
approximated spectral function Sgw(pyEty) is defined in
Eq. (C11). Figure 3 proves that—in the considered kine-
matic regime—closure is for Gi and Ry only a
moderately accurate approximation. Figure 4 traces the
deficiency of closure back to the proton contribution to
G{ and Ry, since only for the proton can the residual
two-nucleon system be in bound and in scattering states,
and closure does not differentiate between them. With
respect to the other structure functions W, W3, and
G5!, closure is a much better approximation. Figure 3
does not prove that point for W{l and W3, since it is
known from Ref. [13].

(ii) In Fig. 5 results for the *He spin structure functions
and spin-dependent responses are compared using the
unapproximated spectral function of Sec. IIIB but
different extraction schemes, i.e., scheme (A) of Sec. III C
and schemes (B) and (C) of Appendix D. In contrast to
scheme (A), scheme (B) takes all spatial current com-
ponents of the nuclear current tensor form W4*(Q,P ,) in
PWIA and constructs the charge components from
current conservation; scheme (C) does not use the nuclear
current tensor for extracting the spin structure functions,
but only part of it. We are worried about scheme (C),

|

64 1

P
0* 4V (k,-P, P —m2m?

dU("g?”A)BX)=

(nelmun(@,kelne) 5o

which in our view suffers from irreparable inconsistencies
as discussed in Appendix D. Thus, the large deviation
between the results according to schemes (A) and (B) on
one side and (C) on the other side do not reflect true
theoretical error bars, but rather the shortcomings of the
extraction scheme (C). In contrast we take the deviation
between the results based on the extraction schemes (A)
and (B) as an indication for theoretical error bars. Figure
6 notes that the combination of closure approximation
for the spectral function and of extraction scheme (C) in-
correctly overemphasizes the weight of neutron contribu-
tions to the structure function G{! and to the spin-
dependent response Rp;.. That combination is used in
Ref. [13].

In the result section we choose the favored extraction
scheme (A) and the unapproximated spectral function of
Sec. III B for the theoretical predictions.

IV. CROSS SECTION FOR SPIN-DEPENDENT
INCLUSIVE ELECTRON SCATTERING

Electron scattering from the nucleus 4 is calculated in
one-photon exchange. The fully exclusive spin-dependent
cross section has the form

371
e

02m)3

X2P%(2m)3 (P 4n 4 |J4(0)[PyBy Yd3Py(2m)*6 Py —Q — P . ) PxBx T4 (0P 4n ) . 4.1)

The covariant form of the cross section is not manifest in Eq. (4.1). The final-state phase space

d’k, d®Py
2k0(27)® 2PY(2m)}

(277)48(PX_Q_PA)

is split up and partly recombined with the matrix elements of the nuclear current. The initial and final nuclear states,
ie., |P4n ) and [PyBy), are normalized to 8 functions; this is the reason for the unusual factors in Eq. (4.1), which
are absent in a relativistic description of states. The dimensionality of the differential cross section d***o(n,,n 4,By)
depends on the amount of continuous quantum numbers needed for the description of the hadronic final state and can-
not be made explicit in the general case. The electron is relativistic, i.e., kf-_— ]ke |; it undergoes the momentum transfer
Q=k,—k,. The electron current tensor {n,|7,,(Q,k,)|n,) with initial polarization n, is

(n " (Q,k)|n, )= u(k, n, )y u(k,s))a(k.s. )y u(k,n,) (4.2a)
=2[ kM k) +kFk) —g"(k, k,)+im, e"FQ,, negl . (4.2b)
When the relativistic electron is longitudinally polarized before scattering, the polarization vector n, is given by
ke
n,=h, . (4.2¢)
me

In Eq. (4.1) 41/ (k, -P,)*—m2m? is the flux factor in the initial state.

For the inclusive process the nuclear final state is unobserved and the cross section (4.1) is summed up with respect to

the final c.m. momentum Py and with respect to the specification By of internal excitation. Thus, the nuclear current

matrix elements can be combined into the tensor W4*(Q,P ,) of Eq. (2.1):
4

do(n,,n, )= (4.3)

A 1 d’k!
— (n, |, Q. k) n, )2m ,2m){n |WE(Q,P )|n ) ——— .
0* 4/ (k, Py —mim] ¢ ! AP iy

The cross section is calculated in the laboratory system, i.e., in the nuclear c.m. system with P , =0. The electron un-
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dergoes the energy loss Q=Q°=(Q-P,)/m ,; its four-momentum in the final state is k, =(|k,|,|k.|Q.). The scatter-
ing angle of the electron is ©,; oo, =(e2/87k2)’cos?10, /sin*1O, is the Mott cross section. The target polarization
n ,=(0,1 4) is parametrized by either of the two sets of angles (0 4,¢ ,) or (6*,¢*):

i , =8gcosd sind , +Eysing ,sind , +&,cosO , , (4.42)
i , =€,cos¢*sind* +¢€,sing*sind* +€,cos6* , 4.4b)

with the unit vectors €, =k,, €y=Kk, xk./|k, xk,|, and €3=6yX&, and the unit vectors &,=Q, €,=¢y, and
€, =€, X, according to Fig. 7. We note that for fixed angles (6 4,6 4) the angles (6*,4*) are not fixed, but depend on
the momentum transfer Q. With the unit vectors €,, €,, and €, of Sec. II given entirely by nuclear quantities, the form
(2.4b) for the nuclear polarization vector n , always results, e.g., n ,=(0,sin6*,0,cos0*) for the polarization. angles
(6*,¢*), the angle ¢* being absorbed in the definition of the unit vectors. Once the tensor contractions are carried out

in Eq. (4.3), the spin-dependent differential cross section with longitudinal electron polarization is obtained in the nu-
clear c.m. system:

2
S hesfl ) =0 | WH(Q%, Q)2 a0, W (0%,0)
e e
Gi(Q%LQ)
+2h,tan’10, m—[k;’cose 4 +k.%cosO,cos0 4 +sinO,sind 4cosd 4)]
4
G A( 2, Q)
—2—-—2—mQ-2——ke°ke'°[cos9A —(cosO,cos0 4 +sinO,sinb 4cosd 4)]
4

(4.5a)

or, equivalently [12],

d’c ~ 4 1 Q?
e e )= %RL(QZ,Q)+ ——2——%2—+tan2%ee R(0%Q)
0 172 0?2
+h,taniO, [ l‘az—-ktanz%Ge R (Q%Q)cosb* +—= ‘/ QzRTL(Q ,Q)sinf*cos¢* }
(4.5b)
In experiments the asymmetry 4 (k.%,Q.,% ) is observed. It is defined by
d’o d’c ~
—————(+1 iy)——0 (—1n,)
dkd Q) 47 dkldQ) 4 ~
AKL, QL8 )= . (4.6)
Yo s -2 (14,
dkldq, " akldq, A
It takes the explicit form
0 s A » G{(Q%0) 0 0 . .
A(k°,Q,,10 ,)=2tan"]O, ———;——[kecoseA +k,"(cos©,cos , +sinO,sinb 4cosd 4 )]
4
GAQLQ) .
—2————k/k."[cosO , —(cosO,cosb , +5inO,sinb 4cosé 4 )]
my
(4.7a)

X[ W3 (Q?%Q)+2tan* 10, W{(Q% Q)]

or equivalently [12],
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2 172
A(kelo,ﬂ'e’ﬁA): [tan%ee [ 1—6;+tan2_%_ee

X

Q

2
Rp(Q2 Q)cos6* + —‘/l—i%;RTL.(QZ,Q)sinG'cosqS‘

4 2
9 R.(0%LQ)+ [—%%T+tan2%9e

|

-1

R (Q%Q) (4.7b)

Using the notation @i , =1 ,(0 4,¢ ,)=1 4(6*,4*) we note the symmetry relations

A(KSL,Q,, 0 ,4(0 4,0 )= AKC, Q0 ,(—6 4,6 ,+m)=— Ak, Q0 ,(0 +m,64))
AKL, Q0,8 (6%,6*)=A(K°, Q.5 ((—0*,¢*+m))=— Ak, Q,,0 ,(6* +m,¢*)),

which are employed for combining experimental data.
For later purposes the spin-dependent cross section (4.5)
and the asymmetry (4.7) are given in the two different pa-
rametrizations of the nuclear polarization vector fi , ac-
cording to Eq. (4.4), once combined with the nuclear
structure functions, once with the nuclear responses.

FIG. 7. Illustration of two different parametrizations for the
target polarization vector fi4 according to Eq. (4.5). The
scattering plane is defined by the momenta k, and k; of the in-
coming and outgoing electrons, respectively. On the top, the
parametrization is in terms of the angles (6 4,6 ,); the shaded
area lies in the plane defined by the unit vectors €5 and €y; the
projection of fi , onto that plane forms the angle ¢, with the
direction €g. On the bottom, the parametrization is in terms of
the angles (6*,¢*); the shaded area lies in the x-y plane; the
projection of fi , onto that plane forms the angle ¢* with the x
direction; the true unit vector €, originating from the origin as
€, and €, is hidden in the figure and is therefore only indicated
by a dashed arrow. When the target polarization lies in the
scattering plane, the angles ¢ , and ¢* are both zero or 7.

(4.8a)
(4.8b)

V. RESULTS

All theoretical predictions of this paper are based on
the spectral function derived from the Paris potential
[14]. The trinucleon bound-state wave function |P s )
is taken from Ref. [15], which updates the technique of
Ref. [16]; the wave function is computed from
momentum-space Faddeev equations with 18 distinct
Faddeev channels and expanded into 22 partial-wave
components according to Fig. 1 of Ref. [16]; the mesh is
specialized for the calculation of this paper. The predic-
tions refer to the kinematic regime of quasielastic scatter-
ing. Throughout this paper the elastic proton [p =N(1)]
and neutron [n =N(—1)] structure functions are used
according to Egs. (3.3) in the form factor parametrization
of Ref. [17], i.e.,

GLQ}) =p,7(1+5.67)"'GE(QE) , (5.1a)

with the dipole dependence

GR(QN) =G (QR) /1, =Gy (QR) /1y
=[1—Q%/(0.71 GeV})]72.
(5.1b)

In Eq. (5.1) 7=—Q% /4m} and i, and p, are the proton
and neutron magnetic moments in units of the nuclear
magneton. That simple form factor parametrization is
chosen in order to allow a convenient comparison with
results of Ref. [13]. Using an improved form factor pa-
rametrization instead of Eq. (5.1b) changes the theoreti-
cal results presented in Figs. 9 and 10 by less than 6%.

Theoretical results for the asymmetry in spin-
dependent quasielastic scattering of longitudinally polar-
ized electrons from a polarized He target are calculated.
They refer to measurements under way at MIT/Bates.
First results are given in Refs. [18-21]. The measure-
ments use longitudinally polarized electrons of energy
kf =574 MeV. In both experiments the target polariza-
tion is confined to the scattering plane and kept fixed in
the experiments, i.e., ¢ , =0 or 7. Even when the polar-
ization angle 6 , is fixed, the angle 6* varies with energy
loss for both experiments, since in the experiments energy
loss and momentum transfer Q are related.

In the experiment of Ref. [18] the electrons are scat-
tered under the angle ©,=44° for different values of the
energy loss Q. Thus, the data do not refer to a fixed
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FIG. 8. Four-momentum transfer Q? as a function of energy
loss Q=Q° for electrons with an initial energy k=574 MeV
and with a scattering angle ©, =44° on the left side, polarization
angle 6* of Fig. 7 as a function of energy loss Q= Q° for elec-
trons with the same initial energy k=574 MeV, with the same
scattering angle ©,=44° and with a target polarization
(6 4,0 4)=(44.5°,0) confined to the scattering plane on the right
side.

four-momentum transfer QZ, though its variation over
the measured energy loss is rather small. Figure 8 illus-
trates the small variation of Q% for the experiment of
Ref. [18]; its value in the quasielastic peak is Q?= —0.16
GeV?, the value used in Sec. III for examples of the *He
structure functions and responses. Figure 8 also indicates
the variation of the polarization angle 6*. At 6*=7/2
the experiment would see the mixed transverse-
longitudinal response Rp;. exclusively. That situation is
never reached. The theoretical prediction for that experi-
ment together with the existing experimental data are
given in Fig. 9 and Table 1.

In the experiment of Refs. [19-21] the electrons are
scattered under the angle ©,=51.1°. In principle they
could be observed as a function of energy loss (2, but only
the asymmetry averaged over energy loss or at a mean
value close to the quasielastic peak is measured. At the
polarization angle 6* =0 the experiment would see the
transverse response R exclusively. That situation is al-
most reached. We are puzzled by the fact that the data

L — |
50 100 150 200
NIMeV]

FIG. 9. Asymmetry in inclusive electron scattering from po-
larized *He as a function of the energy loss @ =Q°. The experi-
mental and theoretical results refer to the initial electron energy
k2=574 MeV and the scattering angle ©,=44°. The experi-
mental data are from Ref. [18]; they are derived from two physi-
cally distinct target polarizations according to Table I; a weight-
ed average is formed with respect to charge hours. Theoretical
results are given for the weighted average in the solid curve, for
the pure target polarization (0 4,¢ ,)=(51.5°,0) in the dashed
curve and for the pure target polarization (0 4,¢ ,)=(44.5°0)
in the dotted curve.

of Refs. [19,20] and of Ref. [21] disagree substantially.
Reference [21] also gives one data point for a polarization
angle 6*=mw/2 corresponding to the mixed transverse-
longitudinal tesponse R ;. exclusively. All data are col-
lected in Table II. The theoretical prediction for those
experiments together with the existing data points are
given in Fig. 10 and Table II.

The spin of *He is carried to a large extent by the neu-
tron. The effective neutron polarization

Pn=<PAsA =32 F[1=7(D]o, (i) |P 45, =%)

i

(5.2)

in the polarized *He is P,=88.1% for the trinucleon
wave function employed in the calculations of this paper.
That value is quite characteristic for wave functions de-

TABLE 1. Asymmetry measurement of Ref. [18]. The data refer to the measurement of Ref. [18]
with the beam energy k2=574 MeV and the electron scattering angle of ©,=44.0°. Column 1 gives the
charge hours during which data were collected, and columns 2-5 give the polarization angles of the po-
larized 3He target, the symmetry relation of Eq. (4.8) being used in order to combine the data in rows 2
and 3. The quoted experimental asymmetry A.,, combines data for an energy loss 57 <Q =160 MeV
with the position of the quasielastic peak at {2, =86 MeV. The quoted theoretical asymmetry A4 ., is
the corresponding average over the energy loss 57 < <160 MeV. The last row contains the average of
the experimental and theoretical asymmetry over the data weighted by charge hours for the two dis-
tinct polarizations; the first uncertainty is statistical as in column 6, the second is systematic. Figure 9
presents data in the same weighted average, though as function of energy loss Q.

Charge 0 A ¢ A 0*( Q'peak) ¢‘( Qpeak ) 4 exp A theo

(ud h) (deg) (deg) (deg) (deg) (%) (%)
228 51.5 0 108.4 0 3.2%+2.7 1.47
336 445 0 101.4 0 28+2.6 0.93
808 135.5 180 78.6 180 —1.9+1.7 —0.93
1372 (combined) 2.38+1.27+0.44 1.02
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TABLE II. Asymmetry measurement of Refs. [19-21]. The data refer to three distinct measure-
ments of Refs. [19-21] with the beam energy k2=574 MeV, the electron scattering angle of ©,=51.1°,
and the position of the quasielastic peak at (.., =106 MeV. The lines in the table separate the entries
from different measurements; the data of the first measurement are given in rows 1-4, those of the
second in rows 5-7, and those of the third in row 8. Column 1 gives the charge hours, if documented,
during which data were collected, and columns 2—5 give the polarization angles of the polarized *He
target, the symmetry relation of Eq. (4.8) being used in order to combine the data in rows 2 and 3 and in
rows 5 and 6, respectively. Rows 1-4 present the data of Ref. [19] in the analysis of Ref. [20]. In that
case, the experimental asymmetry 4., combines data for an energy loss 90 <Q <138 MeV. The quot-
ed theoretical asymmetry 4., is the corresponding average over the same energy loss 90 < <138
MeV; in parentheses A4, is given for the energy loss {1 =114 MeV without averaging. Row 4 contains
the average of the experimental and theoretical asymmetry over the data weighted by charge hours for
the two distinct polarizations; the first uncertainty is statistical as in column 6, the second is systematic.
Figure 10 presents the single data point and the theoretical prediction in the same weighted average,
though as function of energy loss ). Rows 5-8 present the data of Ref. [21]. Row 7 presents data for
the polarization of rows 5 and 6 combined by symmetry. The polarization comparable with those of
Refs. [19,20]. In Ref. [21] a spread in energy loss ( is not reported; the theoretical asymmetry A, is
only given for the mean value of energy loss =116 MeV without averaging and therefore listed in
parentheses in correspondence with the upper entry in the table.

Charge 0 A ¢ A 9* ( Q’pe:ak) ¢* ( Qpeak) A4 exp A theo
(uAdh) (deg) (deg) (deg) (deg) (%) (%)
239 51.5 180 0.9 0 —3.8+3.0 —4.7(—4.5)
333 44.5 180 7.9 0 —2.5+2.9 —4.4(—4.1)
808 135.5 0 172.1 180 4.4+2.8 4.4(4.1)
1381 (combined) —3.79+£1.37+0.67 —4.5(—4.2)
49.2 180 3.2 0
130.8 0 176.8 180
—2.6+0.90+0.46 (—4.7)
37.8 0 90.2 0 1.75£1.20%+0.31 (2.9)

rived from most realistic interactions [22] and therefore
may be taken as a fact of nature. Thus, the experi-
menters of Refs. [18—21] hope that the polarized *He tar-
get can effectively be taken as a neutron spin target and
therefore hope to explore electromagnetic properties of
the neutron. The asymmetry experiments measure the
He spin structure functions and spin-dependent
responses, to which the neutron and the two protons
make distinctive contributions in PWIA. Figure 11
displays the *He spin structure functions G{! and G as
well as the corresponding spin-dependent responses Ry
and R, and splits them up according to the contributions
of individual nucleons. The structure functions and
responses are plotted as a function of energy loss for the
experimental kinematics kK2=574 MeV and ©,=44" of
Ref. [18], i.e., the four-momentum transfer Q? is not fixed
but varies according to Fig. 8. The neutron dominates
the response R, and the structure function G;'. But
those functions are derived from the neutron’s spatial
current and are rather well known in their important spin
parts. Thus, the neutron-dominated response R, and
spin structure function Gj! do not yield novel neutron
properties. In contrast, the response Ry, and the spin
structure function G{! depend on the rather unknown
neutron charge property. However, that neutron contri-
bution to Ry and G{! is too small to make its accurate
determination easy; in fact, that neutron contribution is
overwhelmed by the corresponding proton contribution.
In this context we recall that according to Sec. IIID

the closure approximation in the spectral function and
the adoption of the extraction scheme (C) of Appendix D
work poorest for the spin structure function G {! and the
spin-dependent response R ;.. The combined use of both
erroneously emphasizes the neutron contribution to G{!

10 e
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Q[MeV]

FIG. 10. Asymmetry in inclusive electron scattering from po-
larized *He as a function of the energy loss @=Q°. The experi-
mental and theoretical results refer to the initial electron energy
k=574 MeV and the scattering angle ©,=51.1°. The experi-
mental data point is from Refs. [19,20]; it is derived from two
physically distinct target polarizations according to Table 2; a
weighted average is formed with respect to charge hours.
Theoretical results are given for the weighted average in the
solid  curve, for the pure target polarization
(6 4,4 4)=(51.5°,180°) in the dashed curve and for the pure tar-
get polarization (0 4,¢ 4)=(44.5°,180°) in the dotted curve.
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FIG. 11. *He spin structure functions G{! and G# and spin-
dependent responses Ry, and Ry as a function of energy loss
Q=Q° The theoretical results refer to the initial electron ener-
gy k2=574 MeV and the scattering angle ©, =44°. Thus, the
four-momentum transfer Q2 varies in the plotted function with
energy loss 0=Q° according to Fig. 8. The full result (solid
curve) is compared with the respective neutron (dotted curve)
and proton (dashed curve) contributions.

and Ry as Fig. 6 illustrates. Reference [13] makes use
of a spectral function in closure approximation and uses
extraction scheme (C). The analysis of the two asym-
metry experiments has been based on the results of Ref.
[13]. We admit to being puzzled by the fact that the pre-
dictions of this paper, though believed to be theoretically

1 O [__,_i —

S0 100 150 200
NIMeV]

FIG. 12. Asymmetry in inclusive electron scattering from po-
larized *He as a function of the energy loss @=Q°. The experi-
mental and theoretical results refer to the initial electron energy
k?=574 MeV and the scattering angle ©,=44°. The experi-
mental data are from Ref. [18] as in Fig. 9. Two theoretical pre-
dictions are compared, i.e., the prediction, based on the full
spectral function of Eq. (3.4) and on the favored extraction
scheme (A) of Eq. (3.11) and (D2), shown as solid curve, is com-
pared with the prediction, based on the closure approximation
for the spectral function according to Eq. (C11) and on the ques-
tionable extraction scheme (C) of Eq. (D6), shown as dashed
curve.

better founded, are in much poorer agreement with the
experimental data than predictions using the calculation-
al scheme of Ref. [13]. That fact is shown in Fig. 12.

VI. CONCLUSION

This paper studies spin-dependent inelastic electron
scattering from polarized 3He. The theoretical descrip-
tion uses the plane-wave impulse approximation. The
final-state interaction between the knocked-out nucleon
or the inelastically produced hadrons and the residual
spectator nucleons as well as meson-exchange contribu-
tions to the nuclear current are neglected. The given
theoretical description applies to inclusive processes in all
kinematic regimes of inelastic electron scattering. Calcu-
lational examples are given for the *He structure func-
tions and responses in the region of the quasielastic
scattering. In that kinematic regime a detailed compar-
ison of theoretical predictions and existing experimental
data for the asymmetry is carried out.

The polarized *He target is indeed a good neutron spin
target, though we are pessimistic with respect to extract-
ing neutron charge properties from inclusive quasielastic
electron scattering. The results illustrated in Fig. 11 lead
to that pessimism. In the past, the authors of this paper
often called for corresponding experiments with polar-
ized *H as conclusive tests. Polarized *H is as effective a
proton spin target as *He is a neutron target, and we be-
lieved that, once °H experiments could yield the well-
known electromagnetic proton properties, it would be
proven that the *He experiments would be successful in

6 12
A
Gilfm]
6
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0
-6 1 | -6 1 |
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—Rlfm]
0 feermmme e 0
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FIG. 13. *H spin structure functions G{' and G4* and spin-
dependent responses R;;- and Ry as a function of energy loss
Q=Q° for a four-momentum transfer Q>=—0.16 GeV>. The
full result (solid curve) is compared with the respective neutron
(dotted curve) and proton (dashed curve) contributions. For G{!
and Ry, the proton contribution coincides with the full result
and the neutron contribution coincides with the zero line; they
are therefore not indicated for G{! and Ry ..
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providing the unknown charge neutron properties. We
now consider that misleading reasoning, since there is a
subtle difference between the two targets: At low
momentum transfer the proton charge form factor is
large, whereas the neutron one is comparatively small.
Indeed, as Fig. 13 demonstrates, the *H response R ;. is
almost exclusively given by the proton; the measurement
of Ry in *H can therefore determine the proton charge
properties. In contrast, the *He response R ;. is given by
the neutron only to a minor degree. Thus, a successful
’H experiment for proton properties does not at all prove
the feasibility of extracting neutron properties from the
corresponding *He experiments.

The developed theoretical apparatus is also applicable
to inelastic lepton scattering in the kinematic regime of
quasifree pion production and in the deep-inelastic re-
gime. In those regimes the proton and neutron structure
functions become comparable. Indeed, in those regimes
[23] a polarized *He target may be employed to extract
spin structure functions of the neutron successfully from
SHe measurements.
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APPENDIX A: INCLUSIVE ELECTRON-NUCLEUS
SCATTERING IN PLANE-WAVE IMPULSE
APPROXIMATION

The nuclear current tensor W4*(Q, P ,) contains all in-
formation on the nuclear target required for describing
J

S [ dPPy(P 4n (| T4(0)[PyBy ) (PyBy T4 (0P 41 )
By

=A32fd3pxl >
*1

electron scattering. The approximations of PWIA can be
cast into the form

A
Jﬁ(X)z 2 jﬁ(,‘)(x) ’

(A1)

i=1
|PXBX>=‘>4pr13xl)|PA—1sA—1fA—1>} , (A2)
(py By IP4s,4)=0. (A3)

Approximation (Al) assumes that only one-nucleon
currents contribute to the complete nuclear current. Ac-
cording to (A2) the complicated inelastic 4-nucleon final
state [PyBy) contains a residual (4 —1)-nucleon state
with c.m. momentum P ,_,,s,_; denoting its spin and
f 4 —1 its further discrete quantum numbers and modes of
internal  excitation. @ The (A4 —1)-nucleon state
P, _154_1f4_1) is itself fully antisymmetrized. All
inelasticities are produced on the nucleon when the
current acts on a single nucleon. The inelastic one-
nucleon states are denoted by |p, 1BX1 ), Px, being its c.m.

momentum, Bx1 describing all discrete quantum numbers

as well as its inelastic excitation. There is no interaction
between the inelastic one-nucleon and the spectator
(A —1)-nucleon states. The inelastic one-nucleon states
may be reached from any of the identical nucleons in the
nucleus according to Eq. (A1). This is the reason for the
antisymmetrizer A =(1/vV'4 )(1—3~A,P;;) in Eq. (A2),
P,; being the permutation operator of nucleons 1 and i.
Approximation (A3) yields the incoherence of the scatter-
ing process: The nucleon knocked out by the electron is
also in an elastic one-nucleon state so different from a
bound nucleon that its overlap with a spectator nucleon
vanishes. In fact, approximation (A3) is exact for inelas-
tic nucleonic excitations.

The current matrix elements are needed in the com-
bination

fd3PA—1<PAnA ‘jﬁ(l){lpxlﬁxl MNP y_1s4-1f a1}

Sa—1f 41

X{px,Be P 41541 f a1 l}ikyIPany) (A

for the nuclear current tensor; they are evaluated under the assumptions (A1)-(A3) in Appendix A of Ref. [6]; matrix

elements of the single-nucleon current are rewritten as

{Px,Be, KP4 154 —1f 4 11} K1y (O)P 4 4 )

=x3 fd3pN<px1Bx1|j1‘\lf(1)(o)|pNsNtN>8(pN+PA——I—PA N Paswtns (P4 —py)sy 1 f4—1IPany) ,

IN Sy

(AS)

where sy and ty stand for the spin and isospin of the nucleon. The subscript (1) is dropped in jy;,(0) from now on.
The nuclear current tensor W4"(Q, P , ) is formed according to Eq. (2.1), i.e.,
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(nW(QPIn =3 (n s Ys IWH(QP s dsylny), (A6a)
5457
where

(s' |WEN(Q,P 4)|s )

PO
=(2”7)67A"2 2 dePN 2 2 fd31’xl(PNSMNUKI(O)IPxﬁxl)

’
Aty sysp Sq—1fa-1 Bxl

X84 py +P 41— QP 4)pyx Bx |iN(O)pysyty)

X[ AP 45, |pysntn, (P —DPy)S4—1f 4—1)
X{pysntns (P —py)sq—1fa—1|Pas )] . (A6b)

In the nuclear c.m. system the state |n 4 ) of general polarization is expanded in terms of spin states |s , ) with respect
to the z axis as quantization axis, i.e., [n,) =3, |s4){s,|n,). The momentum transfer to the nucleus Q differs from
the momentum transfer Qy = Px, —Py to the nucleon since P, _,+py#P,. The § function of energy conservation de-

pends on the energy E 4 of the initial nuclear ground state through P$ =1 4’m 2+P% +E 4, and on the internal exci-
tation energy e 4 _;(f 4 —) of the residual (4 —1)-nucleon system through

P?ﬂ—l(eA—-l(fA—l))z‘/(A —1Pmg+ (P, —pyVte,  (fa-1),

E , _, being the minimal energy of excitation, i.e., E,_;=min{e ,_,(f 4_;)}. We therefore rewrite the energy 8 func-
tion in Eq. (A6b) by

8(pg, +PY_ile —1(f4-))—Q°—PY)=[

“EA+EA_1
= [ ., dESE+E,;—e, \(f4 )80 —0YEpy)—pY), (A7)
A A—1

=]

dES(E+E —e (f4-1)8(p +P§_(E+E)—Q°—P})

introducing explicitly the momentum transfer Qy to the nucleon,
ON(E,py)=(Q°+PY—P% _(E+E,)—p.Q), (A8B)

which takes in the nuclear c.m. system, i.e., for Pﬂ =m = Amy+E 4, the explicit form of Eq. (3.10). The nuclear
current tensor then becomes

(s4IWH(Q,P4)ls )

m 0
=22 fd3pN_p1(\)]if—EA+E dE

A-1

0
p , ,
(2")6—m11vv ,,2 L@, {pwsivtn]j§(0)Ip, By Y8*(py —QOn(E,py)—py)

IN sySy
X px,Bx, liN(0)|Pysyty )
P
X|A—— 3 SE+E ;—e  (f4_ )P sylpysnty(Py—pPn)ss—1fu—1)
A sy 1 faq
X(pysntn(P 4 —py)s 4 1f 4—1IP454) l , (A9c)
m ) , v ' '
(SAIW’A{’V(Q,PA)ISA >=2 2 fd3pN_17TN —E.4E dE(SN!Wﬁ(IN)(QN’PN”sN>(SNSA|S(pNEtN)|SNsA> (Agb)
N A A—1

N sysy
and is therefore the convolution between the nucleonic current tensor W}é‘(’,N,(QN,pN) and the spectral function

S (pyEty) which contains the nuclear structure information. Equation (A9) proves the spin dependence (3.1) for the
nuclear current tensor in PWIA.
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APPENDIX B: SPIN DEPENDENCE OF NUCLEONIC CURRENT TENSOR

The spin dependence of the nucleonic current tensor is derived in two steps. First, an identity for the positive-energy
Dirac spinors is given. Second, that identity is used to obtain the spin dependence of the nucleonic current tensor.

1. Identity for general positive-energy Dirac spinors

u(ps)a(ps')=Hayll1+yfa)la ) p+m), (Bla)
= 2% o+ —PC : Blb
s(e) m 7 m(m +p°)p (BIb)

The identity (Bla) is to be proven; it is an operator in the space of ¥ matrices and a matrix element with respect to the
orthonormal Pauli spinors |, ), defined by ofi Rr,las ) =sla,) with s==1 for a general direction fig  of the spinor po-
larization. The Dirac matrices are used in the parametrization of Ref. [24]. The positive-energy spinors for a particle
of mass m are taken in the form

I I
u(ps)=Vm+p° e la, ) (B2)
m+ p0

and satisfy the simultaneous eigenvalue problems

pu(ps)=mu(ps), (B3a)

yshu(ps)=su(ps), (B3b)
with the four-dimensional polarization vector

P'ﬁRl R P'ﬁRl
M, ’nR1+m(m+p°)p (B3

and p>=m?2,s =+1. We note that the spin-diagonal form of the identity u (ps )& (ps)=1(1+y s )( +m) is standard.
Novel as its general spin structure.
For the proof of the identity a complete set of three-dimensional orthonormal basis vectors (@i R1’ﬁ Rz,ﬁ R3) is chosen,

the first one being the polarization vector in the particle’s rest frame. The Lorentz transformation A transforms rest-
frame vectors to the frame in which the particle has four-momentum p, i.e., p =Apy with pp =(m,0) and n;=Anpy

with ng =(0,1i; ). The explicit form for n, is given in Eq. (B3c) and is representative for all three vectors n;. The cor-

responding boost of the spinors is S, i.e., u(ps)=Su(pgs), where S has the standard properties S '=y,5"y,,
SdS ~'=y¥(Aa),, and SysS ~!=y;. The proof of the identity then follows:

u(ps)a(ps’)=S|a, ) a|[y°’m+m]1s~!
=838, +ofig 58, +o(fg, +istig )8, o 1[Fr +m]S™!
=S%[5ss'_7’o7/5')’(ﬁR135ss'+ﬁR25s,—s"*'ﬁksisss,—s')][ﬁk +m]s~!

=S%[8SS'+’)/5('{Rlssss'+'iRZSS,—S'+ﬂR3iSBS,—'S')][pR +m ];S‘_1

II

%[ass‘+7/5(nl‘g8ss'+ﬂ28s,—s’+n3isss,—s’)][p +m]

% Sss’+7/5<as'|z ﬂiaﬁRilas> [p+m]

=Wa,|1+y#o)la ) [p+m] . B4)

In the last step the completeness of the three-dimensional basis states is used.

2. Derivation of the spin dependence of the nucleonic current tensor

The current tensor W}tr‘(,N,(QN,pN) of a nucleon with mass my, isospin ¢, four-momentum py, and polarization ny
is defined as
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<"N|WﬁYtN)(QN’PN)|”N>= > <”lefv>(51'v|WﬁrtN)(QN’PN)lsNMSNl”N) ) (B5a)
SySy

where
0
’ 14 p— p ’ . .y
(syl Wﬁ(tN)(QN’PN)|SN>—(27T)6—’$“ > fd3px<pNsNtN|JK’(0)lprx Y8%(p, — On — PN ) PxBx ik (0 pysyty) .
N B,

(B5b)

The initial state |pynyty) is given by the polarization-dependent spinor u (pyny) of the form (B2), whose isospin
dependence is suppressed and whose corresponding Pauli spinor in the nucleonic rest frame |ay ) :ESN|SN Yisylny)

with o yfiy|ay ) =|ay) can be expanded into spin basis states |sy ) with the z axis as direction for the quantization
axis. The tensor WK}", (Qn>py) is considered an operator in that two-dimensional spin space. The initial spinors

u(pysy )i (pysy) in Eq (B5b) yield the polarization part of the complete tensor. The whole Lorentz str}g(cu}re o}\f{' (the
t t

current tensor 1s independent of u (pysy)Z(pysy). Introducing nucleonic structure functions, ie., W, " ,W, v ,

N(ty)

G, ", and G2 v and using the general identity (Bla) for the particular spinors u (pysy)i#(pysy), the nucleonic
current tensor takes the form
, .|| Q¥ QX N(t PPN N(t
<SN]W;\"rtN)(QN’pN)IsN)=<sN b —g" v (Q%Qnpv/my)+ 2 (Q%,Qn Py /my)
N my
N(tN)
(On» /my)
+ietPQ,, sB(aN) Qi QP /my
my
gV
G, " (QX,QnPn/my)
+{(Qypn )50 )~ [Qy5(0 ) Iowg] - sN) :
N
(B6a)

with

~ (QN pn

PNi=PNn—— 5 9n> (B6b)

ox
PN'ON PN'ON
sloy):= N . (B6¢)
N my M my(my+py) P

The nucleonic polarization state is defined as |ay ) in the nucleonic rest frame for Eq. (B5a).-The Lorentz structure of
the corresponding polarization vector ny is carried by the Lorentz-boosted spin operator s (o y) in Eq. (Bé6c). The de-
rived spin structure of the nucleonic current tensor is used in Sec. IIL.

APPENDIX C: SPIN-DEPENDENT SPECTRAL FUNCTION FOR THE THREE-NUCLEON SYSTEM

This Appendix calculates the spin-dependent spectral function of Eq. (3.4) for the three-nucleon system. The target
ground state is in its c.m. system |P ,=0s ¢, ) identified with the trinucleon bound state |Wgs 47, ) of energy E ;, =Ej
in Ref. [15]. Reference [15] obtains that state by solving the Faddeev equations in momentum space; only the solution
for the purely nucleonic two-body Paris potential is used in this paper. In contrast to the main text, the dependence of
the bound state on the isospin projection ¢ 4, i.e., t 4 =1 for SHe and t , = — 4 for *H, is made explicit and will also be
kept for the spectral function in the larger part of th1s Appendix. The bound state is decomposed into momentum-
space basis states of definite partial-wave characteristics, i.e.,

P, =0s, =3 3 fpzdp q2dq|pq[(LS)I (1L)j s 43(TL)Tt (Y pq[ (LS (IL)j1F(TH)TI¥g) . (C1
LSIT Ij

The Jacobi momenta p and q as well as all discrete quantum numbers are defined in Fig. 14. Due to rotational invari-
ance and due to isospin independence, the expansion coefficients are independent of the angular momentum projection
s 4 and of the isospin projection ¢ ,. The trinucleon ground state has the total angular momentum and isospin 1, i.e.,
&= T =1, and positive parity, i.e., (—1 )E+!=1. Reference [15] gives that state |¥5 ) on 22 mesh points for its p depen-

dence and on 20 mesh points for its g dependence.
The correlated states |P 4_;s 4_f4—;) of the residual ( 4 —1) nucleus are tensor products of states [P ,_;) describ-
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ing the (A4 —1) c.m. motion and of states |s , _f ,_,) describing the internal motion. In the three-nucleon system the
latter states are to be identified with the deuteron |dI, T, ) of energy e , _,(f 4_)=ey, i.e.,

ldr,T,Y= 3 3 [pplp(LSILTT,)85,8,,870(pLld) , (C2)
L =0,28IT

and with the 8-function-normalized scattering states with outgoing-wave boundary conditions |4 (k ISeSTrTy, ) of
energy e 4 —(f 4 _,)=k}/mN, ie.,

|¢+(kf)Sfoszsz>= Sz fpzdplp(LS)IIzTTz >8SSf8TTf8TZTfZ E YZ,LI(if)<L’LZ’SfoZ|IIZ><pL|‘¢SIT(kf)L,> .
LSII,TT, 'L’ z

z

(C3)

Equations (C2) and (C3) give the momentum-space partial-wave decomposition for those two-nucleon states of internal
motion. The two-nucleon basis states are those of Fig. 14, already required for the definition of the three-nucleon basis
states.

The plane-wave state of the knocked-out nucleon is given in terms of the spectator momentum and the corresponding
discrete quantum numbers of Fig. 14, i.e.,

8(q —py)
pysyty) =3 3 fqqulq(l%)jmj%tN)%Y,ﬁn(ﬁl\,)(lm%sﬂjm}-) . (C4)
N

lj mm;

The spectral function is written in terms of those wave functions:
<SNS:4 |S(pNEtNtA )|SIIVSA )

=333 3 3 Yi.®NYr @y Imisyljim ) U'm'Lsy|j'm) I jm;|Ls . )XIL,j'm]|1s) )
SIT Iz L' mmjm’m]f

X

B(E +EB —ey )SINIASSISIIBTO

X 3 [prp{dIpL ) {ppy[(LSI (11)j1F5(TH)T|Wp)
L=0,2

*
x| 3 fp'zdp’(dlp’L')(p'pN[(L’S)I(I’%)j']J;(T%)‘TI\I/B) }
L'=0,2
+ |$kpmy (T (2 g —ty) Sty |52 01
X33 [ p2p ¢Stk )L s \pL Y ppy (LS (12)j15(THTIWp )
L, L
X 2 fPIZdPI<1/’SIT(kf)Lf|PIL'>
T
*
’ ’ AR . 1
Xp'py[(L'S)I(I'L)j" 1F5(THT|Wp ) Lf:‘/m l .

(Cs)
The two- and three-body breakup contributions are additive. In the chosen normalization the three-body breakup part
vanishes at E +E =0 for all momenta py. The dimension of the spectral function is fm®>MeV ~!. There are simple

isospin relations when splitting up the spectral function (C5) according to the isospin T of the pair, ie., if
S(pyEtyt 4)=3 =015 (pyEtyt ), then

STipyEtyt )=ST(pyE(—ty)—t4)), (C6a)
SUpyEtyt ) <8, (Céb)
SUpyE(—t )t )=2SYpyEt t,), (C6c)

provided the binding energy Ej is taken to be the same for both nuclei *He and *H. Thus, it is sufficient to calculate the
proton spectral function of *He for the two pair-isospin T contributions with ¢y =1 and ¢ , =1. The dependence on the
isospin projection ¢ , will therefore be omitted from now on.
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The spin-dependent spectral function also depends on the direction of py. According to the discussion of Eq. (3.6) it
can be parametrized by simple spin-independent functions of the magnitude py=|py| only, i.e., by fo(pyEty),
fi(pyEty), and f,(pyEty). Those functions follow from the multipole components S M, (pnyEty) of the spectral func-

tion in the form (C5):

S, pxEty)= [ d*By Y rn, Bu)S(PyEty) ,

which can be evaluated right away with the help of the standard relation

J@r+nar+nec+n V210 o1 r«

Y1 BN Y (By)= 3 (1)
L,

m —m' M, |lo 0 o|¥Yin Pn)-

The functions fy(pyEty), f1(pyEty), and f,(pyEty) are computed by

1 ’ 172
fo(PNEtN)=“2‘ ar 2
N~ 4
172
1\PNLIy 2 | 4 2
N> A4
1| 45 o
1—s
== | — _1 N
Sf2(pyEty) > | T6n SNZSA( )

S (sys4lSoo(pyEty)lsys ) ,

S (=1 N 4 sys 4 1Soo oy Eta)sys 4 )

T4 (stA ISZO(pNEtN)ISNSA ) .

(cn

(C8)

(C9a)

(C9b)

(C9c¢)

Examples for those functions are given in Figs. 15-17. The functions f(pyEty) and f,(pyEty) do not have probabili-

ty interpretations and are therefore not positive definite.

The spectral function satisfies a number of sum rules which relate quantities obtained from the spectral function to
quantities more directly computed from the trinucleon bound-state wave function. The observation of sum rules for the
calculated spectral function indicates the numerical accuracy of its evaluation. When integrating out the energy depen-
dence of the spectral function the spin-dependent nucleonic density p(pyty ), the probability for finding a nucleon with
isospin ¢y, with momentum py, and with specified spin characteristics in the nucleus, results, i.e.,

p(LS)IT

q(ls l)jt 1

FIG. 14. Three-body Jacobi coordinates. The magnitudes of
the corresponding momenta are p and ¢g. In the momentum-
space basis states |[pgv ), the respective angular momenta I and j
and the respective isospins T and ¢, of the antisymmetrized
state of nucleons 2 and 3 and of the spectator state are coupled,
ice., |pg[(LS)I (Is,)j]Fs 4;(Tt,)Tt 4 ), as in Eq. (C1). The quan-
tum numbers L (I) and S (s, ) refer to the orbital momentum and
spin of the pair (spectator), #(s,) and T(t,) are total angular
momentum (projection) and total isospin (projection) of the
three-body bound state. Since all particles are nucleons,
s;=t;=4. For a two-body potential with partial waves up to

2

1=2 there are 18 Faddeev amplitudes in the |pgv), basis; for
the bound state wave function |¥yzs4t4) of Eq. (C1) all chan-

nels up to L +/ <8 are kept.
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FIG. 15. Function fo(pyEty) in units of [fm* MeV ~!], build-
ing up the spin-dependent spectral function according to Eq.
(3.6). The contribution of the *He proton function arising from
correlated nucleon pairs with isospin 77=1 are shown for a lim-

ited energy-momentum domain in a semilog plot.
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FIG. 16. Function |f;(pyEty)| in units of [fm*MeV~!],.

building up the spin-dependent spectral function according to
Eq. (3.6). The contribution of the *He proton function arising
from correlated nucleon pairs with isospin 7' =0 are shown for
a limited energy-momentum domain in a semilog plot. In that
domain the function happens to be negative without any change
of sign. The singular contribution arising from two-body
break-up is not indicated.

(sysiylponty)lsys 4 )= [ dE(sysiy|S (pyEty)lsys 1)

Gasylppyty)sys =333 3 3 Yy BN )Y By ) Im sy |jm; Y I'm ' Lsy|j'm] ) (UL, jm ;| Ls 4 )

SIT I, LjI'j’ mmjm'm;

E[WVJH 1 Py [fm"]

FIG. 17. Function p3f,(pyEty) in units of [fmMeV!],
building up the spin-dependent spectral function according to
Eq. (3.6). The contribution of the *He proton function arising
from correlated nucleon pairs with isospin 7'=1 are shown in a

limited energy-momentum domain.

XL m| L' Y T(t g —ty) ity |1t ) 2

X3 [ p2dp (ppy[(LI(IL)j145(THTIW, )

XAppy (LT (I'L)j 1F(THTIWE)* .

(C10a)

(C10b)

The nucleonic density p(py?y) has the same dependence (3.6) on the nucleonic and the nuclear spins and on the direc-
tion of py as the full spectral function. Thus, it can be expanded into a linear combination of the spin operators
1,050 4, and [(oxPy) (0 4Py)— Lo N0 4] in the same way as the spectral function according to Eq. (3.6). We note
that the spectral function Sgw(pyEty), introduced by Blankleider and Woloshyn in Ref. [13] and based on closure ap-

proximation, is related to that nucleonic density p(py?y) by

Sew(pnEty)=8(E +Ep—&,(f,))p(pnty) ,

(C11)

with the average excitation &,(f,) in the residual two-nucleon system taken in Ref. [13] to be of zero energy. Introduc-

ing the isospin-dependent norms

No(ty):=am [ p}dpy [ dE folpnEty) »
Ny(ty):=4x [ p}dpy [ dE f(pyEty),
Ny(ty):=4x [ p}dpy [ dE f1(pyEty),

(C12a)
(C12b)
(C12¢)

the complete integral over the spectral function for a three-nucleon bound state of polarization n,, i.e., for

oM ln,)=|n,), takes the form
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fdaprdE<nNnA|S(pNEtN)|nNnA)

=1 [No(ty)+N (13- nA+N2(tN)——fd2pN[(nN Py)@B Py)—1hyd, ]| . (C13)

30

Thus, N,y(ty) is the number of nucleons with isospin ¢y in the three-nucleon bound state, irrespective of nuclear and nu-
cleonic polarization. The number of nucleons with isospin ¢y and with spin in the direction of the nuclear spin is
$[No(ty)+N,(ty)], whereas N,(zy) is the expectation value of the nucleonic spin in units of 1#. The number N,(zy)
could give information on nucleons with a particular direction of their momentum p,. However, the full angular in-
tegral, left on purpose unevaluated in Eq. (C13), is zero. Thus, N,(¢, ) does not contribute to the sum rule (C13).

The spectral function is computed in the limited domain 5.1 MeV <E <200 MeV and 0<py <6.5 fm~!. For the
prediction of quasielastic scattering data in Sec. V the spectral function is needed only inside that computed domain; its
values are stable within 1% for all attempted improvements in the trinucleon wave function |¥y ), e.g., for an increase
in the number of mesh points. However, the spectral function outside that computed domain will matter for predic-
tions of deep-inelastic scattering. Technically, it already matters for sum rules, e.g., results according to Eq. (C10a) and
to Eq. (C10b) differ by less than 1% for 0<p, <2.5 fm ™' except in the neighborhood of zeros, but their difference in-
creases with py. The isospin-dependent norms of Eq. (C12), i.e., Ny(zy),N,(ty), and N,(¢y) agree in calculations from
the limited spectral function S (pyEty) and from the density p(pyty) to better than 0.2%, 0.5%, and 2.0%, respective-
ly.

APPENDIX D: DIFFERENT PROCEDURES FOR EXTRACTING STRUCTURE FUNCTIONS FROM
THE PWIA NUCLEAR CURRENT TENSOR

As described in Sec. II, the nuclear current tensor has the general form

rOV -~ o WA 2a -P
(n |WE(Q,P )In, )= [—Q—Qg—-—gﬂv wQ%0-P,/m )+PHP, 1(Q Q2 A/mA)+ie’“’"‘BAaﬁ(Q,PA,nA),
my
(D1a)
with
G{Q*Q-P,/m,) G (Q%LQ-P,/
Aaﬁ(Q’PA)nA)zga n L m 4 4 +[(Q~PA)nA3—(Q-nA)PAB] 2 Q Q3 4 mA) (le)

being a second-rank tensor without obvious symmetry properties. When determining the nuclear structure functions
Wi, W4,G{, and G§ in PWIA, contractions of the nuclear current tensor with other tensors are carried out and
current conservation is used in the actual evaluation of those contractions. E.g., the extraction scheme (A) given in Eq.
(3.11) does not employ longitudinal components of the current tensor, replacing them by the corresponding charge
components. The nuclear structure functions of Eq. (3.11) take for their numerical analysis the final form
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The independence of the spin structure functions G {! and G §! from the polarization vector n 4 is explicit in Egs. (D2c)
and (D2d). The PWIA current tensor W4(Q,P ) does not satisfy current conservation. This is the reason why
different extraction schemes for the nuclear structure functions yield different results. The extraction scheme (A) is
based on the idea that impulse approximation is better justified for the charge than for the spatial part of the current,
which usually receives substantial contributions from exchange currents. Though that idea is correct, it is not too help-
ful: It only fully applies to the spin-averaged longitudinal response R, which is given by the component W%(Q,P ,) of
the nuclear current tensor according to Eq. (2.7b); in contrast, all other response functions and all structure functions
also depend on spatial components W(Q,P ,) and W4(Q,P ,) with i =1,2 which cannot be eliminated by the condi-
tion of current conservation. In order to explore the theoretical uncertainties inherent in the chosen extraction scheme
(A), alternatives are formally derived and compared in their practical consequences for the structure functions.

As one alternative one may replace all charge components of the nuclear current tensor W4"(Q,P ,) in Eq. (2.5) by
the longitudinal ones due to current conservation, i.e., W% (Q,P,)=|QIW¥(Q,P,)/Q° and WHAQ,P,)
=WHNQ,P,)|Q|/Q° and, consequently, one may assume that only the spatial nuclear current matrix elements are

given in PWIA according to Eq. (3.8). In this extraction scheme (B) the following convolution formulas result for the
nuclear structure functions:

w{HQLQ-P/my)
N“N (QN’QN ‘PN/My) A

_2 fd PN 20 de WNUN (QX,On Py /my)+ o2 1QX%py? |folpnEty) , (D3a)
N

wi(Q%,Q-P,/m,)

N(ty)
my Wy Y (QR,On Py /my) Q4 A On'Pw 1 Q% A
= d*py—— | dE : — =NEIN ____| Xpl?
Ny, o 0* 0* | % ‘
—W, (ON:OnPr/my)5 (1=~ |—& folpnEty) , (D3b)
Q oy | Q2

G{(Q%LQ-P,/m,)
1

2
mA mN Q2 N QO 1
=—>3 [dpy— [dE | —=———g'*+ =——(0%g*—|Q|g")
Q th Py / my Q° nj my nd N Qe

jlv(Q]%HQN'PN/mN)
my

. .G
SopyEtyh )

“ ~ G3(QR%,Qnpn/my)
+{(Qn Py )So(PNEtyf )~ [Qn-SPyEtyi 4 ) Ipye) — oy i”;pN PN (D3o)
N

G5(Q*Q-P,/m,)
QN 1
QO

de

QO

‘“+%[Q2g3“—lng°“>
ny

G{V(QK”QN'PN/mN)
my

&a(pNEtNﬁA )

Gév(Ql%hQN'pN/mN)

my

+{(On PN )SPNEtytl ) —[Qn - S(pyEtyh 4)png)

(D3d)

In Eq. (D3) the four-vector S(pyEtyh ) of Eq. (3.9) is used. The final form of the nuclear spin structure functions in
extraction scheme (B) taken for their numerical analysis follows from Egs. (D3c) and (D3d) as the corresponding results
(D2) follow from Eq. (3.11).

With respect to the spin structure functions a third extraction scheme is possible. It is based on the second-rank ten-
sor A, 5(Q,P 4,n ), which is defined in Eq. (D1b) and which is identified with its PWIA form of Eq. (3.8), i.e.,
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The spin structure functions G {! and G5! can be derived from the exact second-rank tensor (D1b) by contractions, i.e.,
by

G{(Q%Q-P, /m )= on & BAL QP 4,n ), (D5a)

(Q
m,

WQaPﬁAaﬁ(Q,PA,nA) , (D5b)
4

#(Q%QPy/my4)=—

and the third extraction scheme applies those results to the approximated form (D4) of that second-rank tensor. We
note that some contractions, e.g., Eq. (D5a), use diagonal matrix elements of the tensor which are entirely absent in the
combination te‘“’"‘BA ol QP 4,n4) for the nuclear current tensor. Contractions with other tensors, i.e., with
Q"‘n PG QB Pq P8 H, and so on, yield consistency relations, e.g.,

o-pP,
2

4

m
G{(Q%Q P, /m )+ GH(Q%Q Py /m )= =250 A QP 11 ) (D6)

That relation holds for the exact form of the second-rank tensor A,4(Q,P 4,n 4), but it is violated for its approximated
form (D4). We declare the convolution formulas for the spin structure functions, resulting from Egs. (D5a) and (D5b)
and given by
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extraction scheme (C). That extraction scheme is used in
Ref. [13], with the additional approximation Qy =0,
which is in this context a minor approximation introduc-
ing errors smaller than 1%. We shall also use extraction
scheme (C), but according to Eq. (D7) with Q,Q for

the purpose of comparison. However, because of its in-
herent and irreparable inconsistencies we dislike it. In
addition, extraction scheme (C) does not allow us to
derive the response functions Ry, and R from the ten-
sor A 4(Q,P 4,n ) of Eq. (D1b).
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