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Nuclear response in delta-isobar region in the (&e,t) reaction
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The cross section of the charge-exchange ( He, t) reaction in a b,-isobar region was calculated for
a finite nucleus in terms of a relativistic nuclear response function. The medium effects modifying a
A and a pion propagation were considered for a finite size nucleus. The Glauber approach was used
for distortion treatment of a He and a triton in the initial and final states. The effects determining
the cross section, the peak position, and its width are discussed. A large displacement width for the
A-hole excitations and a considerable contribution of coherent pion production were found for the
reaction on C.
PACS number(s): 25.70.Kk

I. INTRODUCTION

The experimental studies of nuclear response in charge-
exchange reactions were extended in the 1980s to high
excitation energies where a first nucleon resonance, the
6 isobar, can be excited [1]. The detailed studies were
done for the ( He, t) charge-exchange reaction at differ-
ent projectile energies [2] and different targets [3]. The
properties of the 4 excited in a nucleus were found dif-
ferent compared to the case of the reaction on a single
nucleon. The difference was in both the peak position
and the width of the resonance excited in a complex nu-
cleus. The review of the observed phenomena can be
found in a recent paper [4].

The appealing explanation of this phenomenon is re-
lated to medium effects, namely, the excitation of a pionic
nuclear mode [5—9] although other effects can contribute
to the high-energy part of the triton spectrum as well

[10]. In this picture the 4 in nuclear matter does not ex-
ist as separate resonance but forms a collective excitation
consisted of pionic, b„and nucleon degrees of freedom.
In application to the (sHe, t) reaction an extensive study
of this picture was performed in [8, 9] where different ap-
proaches to distortion effects and to a calculation of the
response function were used. Here we continue this line
making further improvements in the distortion treatment
and in the model for nuclear response.

A proper account of distortion in initial and final chan-
nels is extremely important for estimating the medium ef-
fects. An inelastic matrix element is proportional to the
product of the distortion factor and transition density.
It determines the average density "seen" by a projectile
and it is very sensitive to a profile of the distortion fac-
tor. It was directly shown in [ll] that the extreme surface
reaction does not reveal any medium effects.

A theory of distortion in one-step inelastic reactions
at intermediate ion energy was proposed in [12]. For
inelastic reactions one should use an absorption factor
different from the factor used for elastic scattering pro-
viding for both the medium effects and the magnitude
of inelastic cross section. The Glauber-type approach to

the distortion treatment has no free parameters. It puts
more restrictions on the elementary reaction amplitude
and nuclear response function.

The surface character of the reaction advocates us-
ing the shell-model response function that describes ad-
equately a nuclear surface. In shell-model calculations
of the response function a full account of the continuum
for the 6-hole intermediate states is necessary since the
4-hole multipoles at least up to I = 10 must be retained
to get saturation at the high-energy wing of the peak
in the reaction on C. As will be shown below, in a fi-
nite nucleus, due to a different magnitude of the medium
effects for different 4-hole multipoles, there is an addi-
tional displacement shift so part of the observed width
can be attributed to this displacement. Besides, on a fi-
nite nucleus the process of coherent pion production is
possible. The process is absent in infinite nuclear mat-
ter and it contributes to the shift of the peak position as
well.

In the present calculation we use a relativistic A-hole
response function. As was shown in [6] the relativistic
expression for the response function in nuclear matter
differs from its nonrelativistic analog. The difference
comes from two sources. First, from the proper rela-
tivistic kinematics allowing one to reproduce more accu-
rately the position of the 4 peak in H(p, n)b, ++ and
iH(sHe, t)6++ reactions [13]. Second, from the proper
treatment of spin-z variables of a moving A. The higher
powers of momentum in the relativistic 4 propagator
produce nonresonant terms in the 6-hole loop and a kine-
matical factor at the resonant term that quenches it for
about 20% compared to its nonrelativistic expression [6].
Both these factors together with nonresonant m.N partial
waves decrease attraction in the spin-longitudinal chan-
nel and shift the pionic mode in nuclear matter to higher
energy, thus advocating for a lower value of short-range
interaction constant g& [7].

In the next section we discuss the motivation for choos-
ing the one-pion-exchange (OPE) model for the reaction
amplitude that is a driving force for the nuclear response.
In Sec. IV the pionic response function of a finite nucleus
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is discussed. The distortion efFects and the cross-section
calculation are discussed in Sec. V. In Sec. VI we describe
the features of the triton spectrum.

II. REACTION AMPLITUDE

Let us discuss briefly the models for the elementary
charge-exchange reaction H(p, n) 6++. From the early
1960s it was shown this reaction can be described by
the OPE model [14], at least at low momentum transfer.
This analysis has been extended for a wide range of the
proton energies in [15], and has been repeated with some
minor modifications in connection with the analysis of
the iH(He, t)6++ reaction in [13]. It was shown that all
existing data in the region of low momentum transfer are
well described by OPE with the soft monopole vrNN and
mXL form factors

The parameter A = 650 MeU at low proton energy and
slightly decreases with the proton energy reflecting an
increase of the absorption effects at high energy. With
these soft form factors (1) the main contribution to the 6
production comes from the direct graph shown in Fig. 1.
The exchange contribution with the soft form factors (1)
is small.

The OPE amplitude is completely longitudinal with
respect to the momentum transfer. In the other model
used for the description of the 6 production at 800 MeV
proton energy [16] the transverse part of the amplitude
was described by p exchange and hard form factors with
A = 1.2 GeV and A = 1.7 GeV were used for 7rNA and
pNA vertexes. The magnitude of the cross section and
the momentum transfer dependence are reproduced in
this model due to cancellation between the direct and ex-
change parts of the amplitude. The cancellation is rather
delicate and at higher proton energy it can be broken re-
sulting in the wrong momentum transfer dependence of
the cross section [13].

The spin structure of the pion production amplitude in
proton-proton collisions was studied in experiment with
polarized beam in the range of beam momentum from
1.18 GeV/c to 12 GeV/c [17, 18]. The remarkable fea-
ture of the measured spin density matrix elements is their
weak dependence on the beam momentum in all the mo-
mentum range. This feature is inherent to the exchange
of the spin-0 boson. Pure one-pion exchange certainly
does not reproduce the spin density matrix. But, as the
authors pointed out, the same pion exchange corrected
for the absorption of a projectile Gts well all the data at
low four-momentum transfer ~t~.

At very high energy the situation is different. The vr-

exchange contribution decreases as s, where s is the
center-of-mass energy squared, while for the p exchange

FIG. I. Direct OPE graph for the 4 production.

III. NUCLEAR MATTER RESPONSE
TO THE PIONIC PROBE

A. ( He, t) cross section in
plane wave approximation

It is convenient to start with the plane waves for both
projectile and ejectile in order to obtain an expression for
the cross section that can be easily generalized to the dis-
torted waves. In the plane wave impulse approximation
(PWIA) the cross section is proportional to the matrix
element, shown in I' ig. 1, squared and summed over Anal
nuclear and 4 states:

T = d rI' H, i(r)GO(r —r') I ~~(r')d r'. (2)

For plane waves I' exp(aq. r), it gives for the cross
section

the decrease is slower. Its contribution falls down like
2+~f0& for small momentum transfer where n(t) is the

corresponding Regge trajectory. Thus, in the asymptotic
region at high energy one should expect the dominance of
the p exchange even at forward angles. Below 20 GeV the
cross section for forward scattering follows the I/sz law
[19] so, the contribution of p exchange at intermediate
energies is believed to be small.

For the H( He, t)6++ reaction the situation is similar
to the (p, n) case. The 7r exchange with the soft form
factors (1) gives a reasonable description of the absolute
cross section and the tritium spectrum at a forward angle
for all existing data [13]. Nevertheless, at the kinetic
energy of He 2 GeV, which is close in kinematics to 800
MeV (p, n) one can get a good description using vr + p
exchanges as well [20]. It would be very desirable to
extend the last analysis to higher He energies.

Referring to the results of the absolute cross-section
calculations for the iH( He, t)6++ reaction [13]we choose
for our study the OPE amplitude of the elementary reac-
tion. In that way we stress our attention on the response
function of a finite size nucleus and the modifications of
the elementary amplitude due to various medium effects
in the pionic mode channel.

It should be pointed out that the choice of spin-
longitudinal elementary amplitudes does not imply the
full nuclear amplitudes to be spin longitudinal. The ab-
sorption changes the spin structure of the amplitude. A
study of this effect and calculation of spin observables
will be presented separately.

",' —[I' H.e(q)l ) ~(~ —&~h, )nx(1' iv~(q)[ [Go(q)(dF'dA 4+2 p
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The expression under the sum is just an imaginary part
of the pionic self-energy in nuclear medium:

Using the pionic self-energy (4) we obtain the final ex-
pression for the cross section suitable for inclusion of
medium effects:

";"—lr.„., (q) l Go(q)lmII~(a, q, q) Go(q).

(5)

B. Medium efFects in nuclear matter

according to [6] the 6-hole response function X(u, q) by

11~(~ q) =
I » I

q' 4, x(~, q)
f A' —p'l, (m+ m~)' —q'

2 ( f~(q~) l m,

9g p ) m&

4ff~(q)) 1 ( m)
9( p ) m~ q m~)

where n is the nuclear density (in [6] n was in fact the
proton density) and f~(q ) is the vrNA coupling con-
stant with the form factor (1). The 6-hole self-energy
corrected for the short-range interaction (7) can be writ-
ten as

The main effeet of the nuclear medium is the renormal-
ization of the pion propagator by intermediate 6-hole
loops giving the major contribution to the pionic self-
energy (4) near the 6 resonance. To take it into account
one must change in (5) the bare pion propagator Go(q)
for the dressed one G(u, q), where

11 (~, q) = l, , l q x(»q)
(A2 —p,

2
& ~ (m, + m~)~ —q2

2 ( f~(q2) l m

4 f~(q~) 1

9 p ) m~( (9)

j.
G(u), q) =

q' —~' —11 ( q)

d 0 M";—ll' H.~(q)l'ImG(~ q)4vr3 p
(6)

It is clear from (6) the pion propagator G(w, q) in the
nuclear medium is just the response function to a virtual
pion probe. The excitation created by a virtual pion is
no more a pure 4 hole but a superposition of the 6 hole
and pionic degrees of freedom usually called the pionic
mode.

The unquenched nonrelativistic 6-hole self-energy (4)
produces too much of an attraction giving unreasonably
low excitation energy for the pionic mode. In order to
make the description more accurate several effects should
be taken into account. First, we used relativistic expres-
sion for the resonant 4-hole loop that was found in [6].
The relativistic corrections produce some nonresonant
terms, therefore more accurate 7rN-scattering amplitudes
reproducing nonresonant s i and pi partial waves should

2 2

be used. For this purpose one should add Born diagrams
with a nucleon intermediate state, a u-channel 4 dia-
gram, and a cr term arising from the o commutator [21].
Second, the short-range NA correlations must be taken
into account:

W(rz, r2) =
z g~(S~ S2)(Tq T2)6(rz —rg). (7)

In nuclear matter the effect of short-range correlations
can be accounted in the following way. Let us define

Making this change we are going out of the scope of the
impulse approximation.

The imaginary part of the bare pion propagator is
equal to zero for negative q . Using it we obtain
G' (u), q) ImII~ (~, q) G((u, q) = —ImG(cu, q) . With these
changes the cross section (5) becomes

where

x(~, q)
1 —a~x(~, q)

A similar effect should be taken into account for the
nucleon-hole response function as well. But, in the re-
gion of interest in excitation energy its contribution is
negligible and will be omitted below. In contrast, the
backward 4-hole loops and the cr term must be retained
since they have their own dependence on the virtual pion
mass q2 that influences the position of the pionic branch
in nuclear matter.

Finally, the virtual pion can be absorbed in a nuclear
medium emitting two or more nucleons. In the resonance
region the absorption goes via intermediate 4 and it can
be described by a 4-nucleus optical potential. At lower
energies the other mechanisms with different intermedi-
ate states contribute to the absorption. To take it into
account the Ericson-Ericson-type optical potential pro-
posed first for pionic atoms [22] can be used

V2~ = —4m.iImCn (r)q,
where n(r) is the nuclear matter density. For pionic

6
atoms ImC = 0.08 —„", . It was obtained from the fit
of the mesoatomic level width and contains all absorp-
tion mechanisms including the intermediate A. Using
this value in our ease will give double counting since in-
termediate 4 is considered explicitly. Thus, ImC should
be considered as a free parameter accounting another ab-
sorption mechanisms. We found, however, that the tri-
ton spectrum is almost insensitive to ImC in the range
ImC = 0—0.08. For this reason we did not study carefully
this possibility of keeping ImC = 0.

With these corrections the pion self-energy in nuclear
matter is
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rr(~, q) = 11~(u, q) + —
~

1 — ~(0)n(r) + V2~,
1 ( 2q~

f2 ( p2

where f is the pion decay constant f = 133 MeU and
0.(o) is the cr commutator for forward pion scattering.
11~(w, q) includes both forward and backward b-hole
loops corrected for short-range correlations.

IV. RESPONSE FUNCTION OF
A FINITE NUCLEUS

For a finite nucleus it is convenient to work in the con-
figuration space where the self-energy (ll) and the pion
propagator become the functions of two distinct variables
instead of functions of the distance between coordinate
points in nuclear matter:

F sr~(r —r') = ) Fzz(r, r')YJ'M(n)T~M(n'),
JLM

where the tensor operator

TJM (n') = S Y'
JM (n) = [S & Y~ (n)] JM,

and the radial vertex F~&I (r, r') is

(14)

0 (,) (
f~ 2r'(A' —p,') J+I, + I
P ~ 2(2J+ 1)

where ~2 = A2 —~2.
For a spherical nucleus the self-energy (11)has a simple

multipole expansion:

II(ur, r, r') = ) II&(r, r')Y&M(n)Y&M(n').
JM

A similar expansion exists for the vrND vertex

II(cu, r —r') ~ II(u, r, r'). ii.(rr) kg(rr') if r ( r',
ig(rr')—ki. (rr) if r ) r', (15)

The DNA vertex in the configuration space is

)
f~ A —p exp( —e ~r —r'~)„~~rr = —x

4

(12)
I

here il, (z) and kL, (2;) are the spherical Bessel functions
with an imaginary argument. This is the advantage of
using the simple scalar form (1).

The 6-hole response function y can be expanded using
the set of tensor operators (14)

XI,I, (r r') = ) (j~l~llT~ ljI~i&)
jNj~lNl~

x(jul&~~IT+ ~~july) [g i (E(~) + iF(cu)/2; r, r') + g & (E(—~); r, r')]
fAQ

«)~I,~ g~I~(r)&)~~~( ') (16)

p dpp' dp'F~i(r, p)Xir, , (p, p')

JL'(P~ )~ (17)

where 1 JL related to I'JL via the linear integral equation
accounting the short-range correlations (7):

where n~„~~ are the nucleon occupation numbers,
R~~~N(r) is the radial wave function of bounded nu-
cleon. g~~I~(E;r, r') is the Green's function of the ra-
dial Schrodinger equation for 6 moving in the mean nu-
clear optical potential. The energy parameter E(u) =

(~+ z +a~~IN —
z ), where e~~&~ is the energy

of a bounded nucleon, takes into aeeount relativistic cor-
rection for kinematics at high u. The Green's function
was calculated using two independent solutions of the
radial Schrodinger equation.

The resonance part of the 4-hole contribution to the
pion self-energy was calculated using the following ex-
pression:

F»(r p)

= Fzi. (r p)+ g'
I

0,(f~l'

x ) p' dp'FgL (r, P'')&~i'I, (p P)
L/

(18)

V. THE EFFECTS OF DISTORTION

For numerical calculations it is convenient to come
back from expression (6) to a more complex one simi-
lar to (5):

CT

dE'dA

The product sign means integration over all coordinates
in the configuration space and the overbar is the averag-
ing and summing over spins of a He and a triton.

In infinite matter the 4-hole contribution (19) would
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be the only one in the inclusive cross section. In a fi-
nite nucleus, however, the cut of a bare pionic line gives
a nonzero contribution corresponding to coherent pion
production:

I' H,~(r) = ) I'L~M(r)tzM( ),
JIM

(22)

where t&M (n) are the tensor operators analogous to (14):

tPo~
dE'dQ ;—I „.,O'Il ImGoIIGI'~He~.n Het (20) ~M( ) = ~ JM( ) = [~& LM]ZM

For plane waves the radial vertex is

(23)

In the plane wave approximation the 7r He t vertex is

I' H,q(r) = ~2(cr q)F(q ) exp(iq r), (21)~ f~(")
g,M(r) = +2(e) jL(Qr) [q A ~L (q)]f(')

( )
p

(24)

where the effective momentum transfer q in laboratory
system in first order of &+M is

1 Cd

2E+ M(P+ P )

M is the 3He mass and E is its total energy. The ef-
fective momentum transfer squared coincides with the
four-momentum transfer squared. F(q ) is the ( He, t)
transition form factor.

The multipole expansion of the vertex looks as follows:

I

The distortion of the incoming and outgoing waves has
been taken into account via an inelastic distortion factor
[12]. With this factor the 7r Het vertex becomes

1 Cd
I'„H,q(r) = K2~ —i(o' &) ——

E M [cr (p+ p')]2E+M )
x exp(cqr) exp[ —2y;„(»,q)]. (25)

f~(e')
p

The distortion factor exp[ —2y;„(r~, q)] is [12]

exp[ Xi (» q)] =
I

1 ——WT(»)A

x d sqd s2d s3 exp(iq sq)@"(sq, s2, s3)

(
l1

X
I

1 ——1T(»+»~ —»~) I ~

1 ——»(»+'» — ~-L) ~A A )
X 0 (S), S3) S3)6(S) + SQ + S3) ~ (26)

where T(») is the thickness function

T(») = p(», z)dz,

and p(», z) is the target density. The

2~
7 = —z f(0)

Plab

is related to the elastic nucleon-nucleon scattering am-
plitude at a given energy per nucleon and @(sq, sz, s3) is
the wave function of Be or the triton depending on the
internal coordinates s. The value of p used in calcula-
tions is p = (2.1 —e0.26) fm2. It was found from the fit
of elastic proton nucleus scattering [23].

Two important features of the distortion factor (26)
should be mentioned. First, the (3He, t) form factor can
not be in general separated from the eKects of distortion.
In a particular case only, for 0 scattering angle, and for
oscillator wave functions of He and a triton, the form
factor can still be factorized. Second, since the vertex
(25) has a gradient coupling and the distortion factor (26)
depends on the transversal coordinates, some transversal
components arise in the reaction amplitude even if it was
before the pure longitudinal one.

The multipole expansion of the distorted vertex (25)
can be obtained directly by multiplying it on tJM(n),
taking trace over spin variables, and integrating over an-
gles of the unit radius vector n:

I' (r) = —Tr dn t (n)I' n„(r)) .N tL
(27)

The separate multipoles contribute independently into
cross section (19), that becomes

N) ~LJMGLI +LGL~LJM'
LJM

(28)

A similar expansion exists for the coherent pion contri-
bution (20).

For a numerical calculation it is convenient to de6ne
the function

mL~M(r) = r' dr'G (r, r')I' (r'),
0

that is the pion field at the reaction point generated by
the source I'LJM(r') The integrat. ion over r' is not well
defined numerically since the integrand is an oscillating
function not decreasing at infinity. An implicit integra-
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tion can be done in the following way. The function
toI JM (r) satisfies the integro-differential equation

T dT GL, (T, T )tULJM(T ) = I pJM(T),

that can be solved numerically using the condition for
Feynman propagator Gr, (r, r') = Gl+ (r, r') at positive

energy. Since Gz+ (r, r') has an outgoing wave at infin-
ity, it fixes the solution of Eq. (29). The cross section
expressed in terms of uiL, qM(r) is

d cr MH, p2 2 I ) tiIL &M (Imljl, —IIr ImG IIr, )Q!L,gM.0

dF'dA 4~s p
(30)

In expression (30) the integration over coordinates goes
effectively in a finite range, inside the target nucleus.

VI. THE TRITON SPECTRA FOR i C( He, t)
REACTION AT 2 GeV

A. Parameters of the single-particle potentials

The nucleon single-particle potential used for the wave
functions of the bound nucleons has been taken in the
standard Woods-Saxon form:

U(r) = Vof(r) + VL, s (o l,) + Vc(r),
A~ df(r)
r dr

where f(r) = . „),A is the pion Compton wave-1+exp(" ) '

length, and V~(r) is the Coulomb potential for protons
that was taken as the potential of a uniformly charged
sphere. The parameters of the potential were chosen to
reproduce the positions of ps~& and pi~a levels in C.
They are listed in Table I. The response function (16)
was found not very sensitive to the parameters of the
nucleon potential.

The situation is, however, different for the optical 6-
nucleus potential that has been taken in similar Woods-
Saxon form:

U~(r) = (V~ + tW~) f(r)+ (V~I,g+ zW~I.g)

x (s~ l) + V~~(r),
A~ df(r)
T df'

found in the photoabsorption process where the influence
of the pion-exchange interaction is negligible. The analy-
sis performed in [24] gave for the real part of the potential
V~ =32.5 MeV and for the imaginary part TV~ =45 MeV.
In both cases the potential was chosen proportional to the
density. The theoretical study of the 4-nucleus potential
in nuclear matter performed in [25] revealed the momen-
tum dependence of the real part of the potential. It is
changing from 40 to 30 MeV in the momentum range of
6 from 100 to 400 MeV/c. A similar nonlocality was
found in the imaginary part too, although the fits of it in
different nuclei are not very supportive. The parameters
of the optical potential used in our calculations are listed
in Table II. The radius R and the difFuseness a were kept
the same as for nucleons.

B. Medium efFects of pion renormalization

The main feature of the pionic self-energy near the
resonance is its large imaginary part. It is instructive to
study separately the effects of real and imaginary parts
of the self-energy on the triton spectra. Figure 3 shows
three spectra where either a real or imaginary part of the
self-energy was accounted in comparison to the quasifree
case. The real part of the self-energy is attractive and it
brings more strength to the 6-hole peak just in analogy
with particle-hole giant resonances. The peak position,
however, does not change much. The imaginary part

I I I I

where s~ are the spin-3/2 matrices. Figure 2 shows two
triton spectra for the b;hole contribution demonstrat-
ing sensitivity to the real part of the 6-nucleus optical
potential. In the absence of the 6-nucleus interaction
the peak position coincides with the one in the reaction
on the free proton. The attraction produced by the real
part of the potential in the final state increases the cross
section and shifts the peak position on 15—20 MeV down.

This sensitivity demands independent restrictions on
the magnitude of the potential. Such restrictions can be
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~ 600
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~ 200

~ ~ tP

N ~ ~ ~

~ ~
~ ~ ~

~ eg+
~ ~

~o+o j
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O' Q
~ ~ P' ~r

~ 0
~ ~

~ ~

TABLE I. Parameters of the single —particle nucleon po-
tential.

I 400 1600 3 80Q
E, (MeV)

2000

&o &I.s
(MeV) (MeV)

57 12
57 12

B
(fm)

1.25''~'
1.25''~'

RL,s
(fm)

1.25''~'

a
(fm)
0.53
0.53

+LS
(fm)
0.53
0.53

FIG. 2. Quasifree E production. Dashed line, no b;
nucleus potential, the peak position practically coincides with
the one in the reaction on a free proton. Solid line, V~ = —35
MeV.
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TABLE II. Parameters of the A-nucleus optical potential.
The radius and diffuseness are the same as for the nucleons.

V~ (MeV)
35

W~ (MeV)
40

VL, s~ (MeV)
5

Wz, sz (MeV)
0

takes all this strength back decreasing the cross section
due to incoherent 6 decay thus, when both parts are
taken into account, the cross section appeared close to
its quasifree magnitude as it is shown in Fig. 3 and Fig.

800

~ 600

uJ 400

~ 200

~ t

I I I I

~ ~ ~ 0+ ~/'' ~ ~ ~ ~

~ ~ 'y

~ ~

/ ~4~ ~ I ~ ~ ~

/". '(~ Q ~

~ 0
e& g ~

~ ~ 5
QgO +

~ ~
~0

~ \
~ ~

~ ~

In Fig. 3 one can see that the imaginary part of the
self-energy also produces some shift in the peak position.
The origin of the shift is, however, different from the
shift due to the real part. To understand its origin let
us return to nuclear matter and compare two expressions
for the cross sections with and without renormalization of
the pion propagator. Without renormalization the cross
section is proportional to

ImII(w, q)
(q2 p2)2 '

while in the other case it is proportional to

ImII(~, q)
(q2 —p2)2+ [ImII(u), q)]2'

For simplicity the real part is omitted in this expression.
The first case corresponds to a quasifree mechanism and
the peak position is at the same place as in the reaction
on a proton. In the second case the cross section starts to
grow at the same threshold but at the resonance where
ImII(w, q) ) (q —p ) we have the cross section propor-
tional to

1

ImII(cu, q)

Thus, instead of a maximum, the cross section appeared

I I I I
(

I

1400 1600 1800
E, (MeV)

2000

FIG. 4. Dashed line, effect of the real part. Dotted line,
effect of the imaginary part. Solid line, full pion self-energy
included.

C. Contribution of separate multipoles

The contribution of separate multipoles to the triton
spectrum is shown in Fig. 7. The contribution of the
low multipoles L = 0 and L = 1 is almost negligible
due to strong absorption of the incoming and outgoing
ions. The main contribution comes from the multipoles
between L = 2 and I = 6 although higher multipoles,

to be small at this energy. Since the cross section is
growing from threshold one can immediately conclude
that the maximum of the cross section will be below the
resonance position. Figure 5 demonstrates this effect for
the L = 0 multipole in the case of a finite nucleus. This
effect is not so much pronounced for higher multipoles
that determine the magnitude of the cross section. The
higher multipoles undergo smaller medium effects since
they are peaked at a nuclear surface where the density
is small. Therefore, the overall shift of the peak position
is smaller than for L = 0. The imaginary part of the
optical 6-nucleus potential makes this effect stronger as
is shown in Fig. 6.
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at least up to L = 10, have to be considered at higher
excitation energy.

It should be pointed out that strong L dependence of
the absorption at low multipoles will result in an addi-
tional change of the spin structure of the full reaction
amplitude. Pure (o q) correlation produces a definite
relation between the L —1 and L+ 1 components of the
sHe-t vertex. DifFerent absorption for different multipoles
destroys this relation, thus creating a new spin struc-
ture of the vertex. This efFect is in addition to the one
mentioned in Sec. V and it exists for all spin-dependent
amplitudes.

Another feature clearly seen in Fig. 7 is rather wide,
spreading of the different multipole contributions. The
L = 2 contribution is most sensitive to the medium ef-
fects shifting down the transition strength. It has the
largest downward shift in the peak position. The absorp-
tion of He and t is smaller for L = 2 compared to L = 0
resulting in a sizable contribution to the cross section.
Higher multipoles have smaller medium effects and their
peak positions are at more and more higher excitation
energies. This produces a large displacement width of
summed triton spectrum.

D. Coherent pion production

Figure 8 shows the final triton spectrum together with
separate contributions of the 6-hole excitations and the
coherent pion production. The process of coherent pion
production gives sizable contributions to the inclusive tri-
ton spectrum. The maximum of the cross section is at
about 240 MeV excitation energy and it also contributes
to the shift of the inclusive peak. The coherent pion pro-
duction is absent in infinite nuclear matter, therefore one
should expect a decrease of the relative yield of coherent
pions for heavier nuclei.

The final curve in Fig. 8 still underestimates the height
of the peak for 12% as well as the high-energy wing of
the triton spectrum. One should remember, however,
that we do not have free parameters in our calculation
except g&. The parameters of the elementary reaction
amplitude and the wave functions of sHe and tritium
were fixed in [13] from the analysis of the H(p, n)6++
and iH( He, t)4++ reactions. The fit of g& from this only
reaction is meaningless because it contributes to b photo-
production as well and they must be analyzed together.
In addition, there are effects that were not included in
this calculation and that can be important on the 10%
level. First, at the high-energy wing of the triton spec-
trum the projectile 6 excitation can contribute in inclu-
sive reaction [10]. Second, d-wave admixture in sHe and
triton wave functions was neglected in this calculation.
As was shown in [20], the d wave together with exchange
contributions change both longitudinal and transversal
(sHe, t) form factors. In the case of the reaction on nu-
clei, however, the form factors cannot be separated from
distortion but inclusion of the d wave will inhuence the
distortion factor changing the magnitude of the cross sec-
tion.

200 300
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FIG. 7. Contribution of separate D-hole multipoles.
For the ( He, t) reaction in the A region strong devia-

tions from impulse approximations were found. The de-
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viations come from the medium effects of renormalization
of the pion propagator in the OPE mechanism of the el-
ementary charge-exchange reaction. The medium effects
change both the peak position and its height. Several
effects, besides pion renormalization, contribute to the
shift of the peak position including the 4-nucleus opti-
cal potential and coherent pion production. The possible
enhancement in the 6-hole spectrum due to the A-hole
interaction is suppressed by incoherent 6 decay. The ef-
fect of virtual pion propagation, however, manifests itself
in the process of coherent pion production.

The finite size of a target nucleus produces together
with the medium effects a large spreading of the observed
peak. The absorption in initial and final states strongly

suppresses the lowest multipoles of the angular momen-
tum transfer. The Glauber approach to the distortion in
initial and final states gives a reasonable description of
both the size of the medium effects and the magnitude
of the cross section.
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