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Binding efFects in proton-nucleus elastic scattering
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The eR'ects of the struck nucleon-core binding potential on the first-order term of the Kerman,
McManus, and Thaler (KMT) expansion of the nucleon-nucleus optical potential are calculated
for the elastic scattering of protons from 0 at 200 MeV. The binding effects are expressed as
a momentum-transfer-dependent energy shift in the ofF-shell nucleon-nucleon t matrix. Numerical
results are based on the Paris nucleon-nucleon potential together with both harmonic oscillator or
Woods-Saxon single-particle wave functions for the target. The calculations show that these binding
efFects introduce only small corrections to the optical potential and calculated observables in the
intermediate energy region when compared with the impulse approximation.
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I. INTRODUCTION

A common feature of many approaches to the first-
order term of the Kerman, McManus, and Thaler (KMT)
[1] expansion of the optical potential is the use of the im-
pulse approximation. At intermediate energies it is as-
sumed the incident energy is sufficiently large that the
effects of the nuclear medium, specifically the mean field
potential binding the struck nucleon to the core of target
nucleons and the struck nucleon binding energy, can be
neglected [2—4]. The collision of the incident and struck
nucleons is thus considered free. An important practi-
cal consequence of this approximation is that momentum
conservation within the NN collision can be assumed.
The Pauli blocking medium effects, associated with the
second-order terms of the KMT potential, have recently
been evaluated [5]. However, all calculations are far from
satisfactory in their description of the available experi-
mental data, in particular with regard to the reactive con-
tent of the calculated optical potential. In this work we
investigate the struck nucleon-core binding effects upon
the first-order KMT optical potential.

An intrinsic difficulty in including such binding effects
is that they require the solution of a three-body prob-
lem [6,7]. Several attempts to include this effect in the
case of pion-nucleus scattering can be found in the liter-
ature. They have lead to some contradictory results; see,
for example, the review of Thomas and Landau and ref-
erences therein [8]. Two attempts have previously been
made to study the validity of the impulse approxima-
tion in the evaluation of the first-order KMT optical po-
tential for proton scattering [2,9]. In the first [2] only
the binding energy of the struck nucleon was considered,
however, a detailed treatment of the momenta of the in-
teracting nucleon pair and hence an explicit inclusion of

the variation of the energy of the NN transition ampli-
tude was included. This binding energy correction leads
to an overall negative shift in the energy parameter in the
NN amplitude. We note particularly that the inclusion
of this negative energy shift was largely responsible for
the significant corrections to the impulse approximation
reported in that work. In the second work [9] both the
binding energy and the binding potential were considered
through the use of an effective mass approach. In both
these works the ability of the binding potential to actu-
ally induce momentum transfers in the nucleon-nucleus
collision is ignored. It is this effect, together with the
binding energy effect of Ref. [2] which is carefully con-
sidered here. The nonlocality of the binding potential is
ignored. Throughout we use the off-shell NN transition
matrix derived from the Paris potential [10].

II. THE OPTICAL POTENTIAL

The first-order term of the KMT nucleon-nucleus op-
tical potential is given by the expression [1,5]

A —1 ) .(ciltoi(~ )lci),

where we have assumed that the target ground state is de-

scribed by a single Slater determinant of occupied single-

particle wave functions ]a) with energy eigenvalues ea,
and the sum in Eq. (1) runs over all occupied states.
Here the NN transition operator toi(u ) is a three-body
operator and satisfies the integral equation

(2)

where voq is the free NN interaction. The propagator is
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con —Kp —Kl —Vl

with Kp(K1) the kinetic energy operator for the pro-
jectile (struck) nucleon, and Vl the struck nucleon-core
binding potential. The transition operator has energy pa-
rameter u = E+e with E the incident nucleon energy
in the nucleon-target center-of-mass frame.

To reduce the evaluation of the optical potential to a
two-body problem we introduce the free NN transition
amplitude tpl (ua), satisfying the integral equation

FIG. 1. Diagrammatic representation of leading correction
to the optical potential to first order in the binding potential,
indicated in the figure by the zig-zag line.

501(ada) = Vpl + Vplg(ldn)801(&a) (4)

with g(u ) the free NN propagator given by

1
~(~ ) = +~a +0 +1

The energy parameter is now written u = E+8a, where
in the following the effective single-particle energies Za
will be chosen to cancel the leading binding potential
correction to the two-body transition amplitude. The
two NN transition amplitudes are related through the
exact relationship

( ) =~o ( )+~o ( )[i( ) —&( )]~ ( )
Col(4)a) + Col(&n)g(&n) [Ma Mn + Vl]

x g(~ )&01(~ )+ (6)

In the momentum space representation, the matrix ele-
ments of the optical potential are

(kp~U~kp) = ) (kpn[ipl((G ) ~nkp)

) (kon stol (~ ) ~nko)

+ (kp~EU[kp)

where kp and kjp are projectile momenta in the nucleon-
nucleus (NA) center-of-mass frame. The leading binding
potential correction to the two-body amplitude is there-
fore

(kp[b, Uikp) =

x( g(4) )apl(clJ )~nkp) (8)

with ( = [cu —a + Vl]. The amplitude, represented
schematically in Fig. I, involves a double scattering be-
tween the projectile and struck nucleon. Between scatter-
ings the struck nucleon does not conserve its momentum
due to the interaction Vl with the remaining target nu-

cleons, represented by the zigzag line in the figure. Only
a single scattering between the struck nucleon and the
core of nucleons is included.

Introducing unit partitions, in momentum space, for
the incident and struck nucleons then

(ko lb U~ko) = ) dkldkldkodkl'dkl" C(kl) (kokl ~tol(~a) lko'kl') g(~a ~
ko' kl') (kl'l(a Ikl")g(~a ~

"o'~ &1")

X (kp kl ~apl (ua) ~kpkl)ga (kl)

where the propagators are

hz k"2
g(ada, kp, kl ) = Cdn

where the NN amplitude corresponds to an energy pa-
rameter of

~ (NN) = ~ —5 (kp+k', ) /4m

Applying momentum conservation at each of the free NN
vertices, now gives, e.g. ,

(kokll&01(~ )Iklko) = ~(ko+ kl kl' o')

x (2 (kp —kl) ~&01 (~a)
~

x zl(kp —k", ))

in the NN center-of-mass frame. The momentum-
conserving 6'-functions dictate that kl' ——K = kp+kl —kp
and that ky = K = ko + k& ko therefore

(k114 lkl") = 4(kl kl )
= g (kp+ k', —kp —kl),

and the correction term reads
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(koi&&iko) = ) f d4dk(dko d'(k()(o(ko —k()iOoi(~ )iko' o(ko+k())

xg(~~, A:o, iC)( (k()+k) —k() —k))g(~~, kp, K')

x(ko —z(kp+ k))ltpy(~~)l z(kp —k~))0~(k) ) ~

We now neglect the dependences upon the momentum of the struck nucleon everywhere except that in the wave
functions and in the binding potential. We thus assume that the single-particle states and potential are the most
strongly dependent functions of the struck nucleon momentum. The correction term then reads

(kol&U[ko) = ) o; (ko —ko) f dk' g(oooko, ,L')
g( to, koK),

x {ko/2ltol((o)~) lko ko/2) {ko kp/2ltox((o)ok) lko/2)

where now K = ko —ko and lC' = kp —ko.
The binding effects enter through the function

I

dependent effective single-particle energies given by

S (q) = ~ —V (q)/p (q) (23)

OO (ko ko)= fdkodk(d'(k()( (ko+k( —ko —kt)

(kg)
= (u —u )p (kp —ko) + V (kp —ko),

(16)

where we have defined

with explicit contributions from both the binding energy
and the binding potential.

In the description of the target nucleus we shall not
distinguish between protons and neutrons. We also fix,
in the evaluation of the energy parameter of the NN
transition amplitude, the projectile momentum to the
on-shell value Kp and therefore the amplitude is to be
calculated at the energies

)o (q) = dr/*(r)exp( —iq r)p (r) (17) ~ (NN) = E+8 (q) —hzrp2/4m = E/2+8 (q). (24)

and

V (q) = dry*(r)exp( —iq r)V)(r)p (r) . (18)

We will now assume that the target is a closed
shell/subshell nucleus. We may then perform the sums
over states internal to each subshell (denoted in the fol-
lowing by ck) and replace y~(ko —ko) in Eq. (15) by

X (q) = (~ —~ )p (q) + V (q)

where p~(q) is now the density of the subshell o., i.e. ,

Thus, in the optimal factorization approximation [4,5],
and displaying now the energy of the NN amplitude
in terms of the appropriate energy (d)~(NN) in the NN
center-of-mass frame, the optical potential reads

(ko~U~kp) = ) p (q)tp) [E/2+ 8 (q), q, Q/2], (25)

where tp) is the spin-isospin average of the NN transition
amplitude and Q = (k~p+kp)/2 [4]. In this form it is con-
venient to evaluate the binding correction to the optimal
factorization w (NN) = E/2 as a first-order expansion
in terms of the binding corrections,

p~(q) = ) dr/,*(r)exp( —iq r)P, (r), (2O)
(kpiUikp) = ) p (q)tp) (E/2, q, Q/2)

+).[s p (q) —V (q)1
and the binding potential correction V (q) is similarly

k (g) =) f doÃ(o)oxg( 'oO'o)+o(o)d'(o) (g~)
i&ex

= E+E =~ —V (q)/p (q)
= E+ e —V (q)/p (q) (22)

in which case (kp
~

AU
~

ko) vanishes.
For ease of interpretation, the binding correction can

therefore be expressed in terms of momentum-transfer-

with q the momentum transfer q = kp —ko. In order
to minimize the correction to the two-body amplitude it
follows from Eq. (19) that we should choose the energy
parameter u~ such that

The second term in Eq. (26) modifies the optimal
factorization approximation [4] to take into account the
binding energy and potential effects. The product of the
quantity Q [&~p~(q) —V~(q)] with the partial derivative
of the NN transition amplitude with respect to energy,
determines the relative importance of these binding ef-
fects.

III. THE FINITE NUCLEUS MODEL

We consider a description of the target nucleus where
a shell-model single-particle potential of Woods-Saxon
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TABLE I. Woods-Saxon shell-model parameters for O. cally and assume the forms

Shell

OP
0S

Vp

(MeV)
42.4
81.5

Tp

(fm)
1.37
1.31

ap
(fm)
0.61
1.66

(MeV)
—12.4

44 0

Vs(q) = 3Ruo 1—

for the OS state and

Q2
exp(-q /4p ) (31)

&i(r) = -V/(1+ exp[(r —Ro)/«]),

Ro = 0(A —1)'~s .

(27)

Table I presents the potential parameters used. The ra-
dius and diffuseness take those values obtained by fitting
the experimental data [5,11]. The potential depths were
readjusted to reproduce the OS- and OP-state separation
energies in the absence of the Coulomb and spin-orbit
interactions.

The single-particle radial functions R~ (a = OS, OP),
are assumed normalized to unity, i.e. ,

drr R (r)R (r) = 6 (28)

form is assumed [5]. In determining this shell-model
potential from the empirical charge density for ~sO, we
do not consider center-of-mass corrections. In practice,
when using the calculated single-particle wave functions
in the optical potential calculations we do not include
the nucleon-core spin-orbit force and the radial eigen-
functions are taken to be independent of the isospin of
the nucleon. The OS- and OP-state single-particle wave-
functions R„g are therefore calculated as eigenfunc-
tions of the fitted single-particle potentials but in the
absence of the Coulomb and spin-orbit interactions, i.e. ,

U (q) =15~o
3pz 60 (pz)+ —

~

—
I exp( —q /4p )

(32)

for the OP state. In these equations, p = rncuo/h. The
corresponding matter densities, normalized to the num-

ber of nucleons in each shell, are

Ps(q) = 4exp( —q /4p )

2

P~(q) = 12 1 — exp( —q /4p ) (34)

Es(q) = es — = —Mo 2 — 1 —
~ ), (35)Vs(q) g

ps(q) ay 2

&~(q)

A (q)

5= —Lop 2 — 1—

Zg(q) = ep—

Q2

372

It follows that the binding potential corrections U decay
more slowly with q than the corresponding matter den-
sities and at sufficiently large momentum transfers the
binding potential will dominate the density term. The
effective single-particle energies in the HO case are

We will also consider calculations in the case of the
harmonic oscillator (HO) shell model for which

Vj(r) = muor-=1 22
2

1 (q'l'
+ —

I
—,

I 6 2

(36)

with up the angular frequency for the harmonic mo-
tion. For consistency with the Woods-Saxon case we will
not consider center-of-mass corrections to the oscillator
model. Thus, the target density distribution is evaluated
directly from the HO single-particle wave functions using
the relative frequency obtained by Donnelly and Walker
[12].

IV. THE BINDING POTENTIAL CORRECTION

The binding potential Eq. (21) can be rewritten, after
summing over the spin and isospin of the struck nucleon,
and where now o, = OS, OP, as

V (q) = 4(2E +1) drr R ( )j (q )V (r), (30)

where jo(z) is the spherical Bessel function. The binding
corrections in the HO model can be evaluated analyti-

In Fig. 2 we show Z~(q) for the OS and OP shells when
using the Woods-Saxon (solid line) and HO (dashed line)
shell-model wave functions. The results for q = 0 are
readily understood. V~(q = 0) is the expectation value
of the binding potential in state n. t~(q = 0) is therefore
the average kinetic energy in the state o. and is necessarily
positive. It can be checked that Eqs. (35) and (36) give
the correct oscillator kinetic energies in the q = 0 limit.

As the momentum transfer increases from zero, the
positive energy shift increases, essentially because the
factor Vj (r) in Eq. (30) makes the mean-square radius of
the distribution R (r)Vj(r) smaller than that of R (r).
Except near the zero of pz(q) in the OP case, the energy
shift is positive, as is shown in Fig. 2. The inclusion of
the binding energy and binding potential eff'ects thus sug-
gests the use of positive, momentum-transfer-dependent
effective single-particle energies.

This result must be contrasted with what is assumed
when considering only the binding energy of the struck
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gible. Thus only relatively minor changes are expected
in the calculated optical potential and elastic scattering
observables.

In Fig. 3 we show the analyzing power for proton nu-
cleus elastic scattering at 200 MeV, in the absence of the
Coulomb interaction. This observable displays most sen-
sitivity to small changes in the optical potential. The
solid (dashed) line represents the analyzing power with
(without) the binding corrections as described in the text,
using Woods-Saxon radial wave functions. The dashed-
dotted and dotted lines represent the corresponding cal-
culations using HO radial wave functions. As is evident
from the figure, the binding efFects are very small, as
might be anticipated from the previous simple estimate.
Changes in the calculated total reaction cross sections
are of order 1%.

VI. CONCLUSIONS

In this paper we have calculated the medium effects,
due to the binding energy and binding potential of the
struck nucleon, on the nucleon-nucleus interaction. We
have used the ofF-shell NN transition amplitude derived
from the Paris potential, evaluated at a fixed energy. We
have shown that the efFects of the binding potential, in
leading order, can be taken into account by the use of a
positive, momentum-transfer-dependent effective single-
particle energy in the first-order KMT optical potential.
This is to be contrasted with the constant negative single-
particle energies usually used in first-order KMT calcu-
lations. The binding energy and potential corrections to
the optical potential were estimated using an expansion
about the impulse approximation value and the effects on

the elastic scattering observables were found to be small.
The use of a positive efFective single-particle energy in

the present work may have implications for the conclu-
sions of the analysis of Arellano, Brieva, and Love [2]
regarding the importance of those corrections to the im-
pulse approximation associated with the detailed treat-
ment of the momenta of the interacting nucleon pair.
The results of the present work effectively shifts the en-
ergy parameter in the NN transition amplitude to higher
energies whereas the negative shift used in [2] moves the
NN energy to smaller values and then varies it according
to the momenta of the colliding nucleon pair. When in
[2] the negative binding energy shift was removed, but
the energy variation due to the momenta of the collid-
ing nucleon pair retained, only small corrections to the
impulse approximation result were obtained.

A fully consistent calculation incorporating both mech-
anisms will be needed to clarify the situation.
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