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Examination of inconsistencies between the deformed potential model and folding models
for analysis of inelastic hadron scattering
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It is customary to extract deformation lengths from inelastic scattering data by using a deformed opti-
cal potential. It is then assumed that this deformation length also characterizes the deformation of the
underlying density distribution of the excited nucleus. This equivalence is exact for a dipole deforma-
tion, but this corresponds simply to a spurious excitation mode, namely a shift of the center of mass of
the system. We show that, even when the potential is obtained by folding an efFective interaction over
the density distribution, the deformed potential model is not exact for other multipoles, except in the
limit that the interaction has a zero range. The errors made when the interaction has a realistic finite
range can be large.

PACS number(s): 24. 10.Ht, 24.50.+g, 21.10.Gv

The deformed potential (DP) model [1] has been the
primary tool for many years for the analysis of measure-
ments on nuclear inelastic scattering. Designed to de-
scribe collective (vibrational or rotational) excitations, it
has frequently been applied to weaker, noncollecti. ve tran-
sitions also. In the vibrational case, the standard model
[2] associates a radial transition density (TD) of the form

gI(r) = —5p
dp(r)

with the excitation of one isocalar phonon. (We use the
notation of Ref. [3].) Here, p(r) is the ground-state mass
distribution and 6& is the deformation length. We note
that in this model the radial shape of the TD is indepen-
dent of the multipolarity l.

It is argued that, because the nuclear force has a short
range, the interaction potential U(r) between an incident
projectile and the target nucleus also undergoes oscilla-
tions in shape that follow the density motion. This leads
to a radial transition potential (TP)

GDp( )
5~dU(r)

df'
(2)

for the excitation of one phonon. Again, the radial shape
in this DP model is independent of l. Frequently it is also
argued that this displacement of the potential surface
should equal that of the mass distribution, so that

gU gm
1 1 (3)

A folding procedure is implicit in the argument relat-
ing the TP (2) and the TD (1). Without it there is no sim-
ple connection between the density and the potential.
Consequently, there is little justification for the assump-
tion (3) when phenomenological models such as the
Woods-Saxon one are used for the potential U(r). In the
folding approach [1,3], the optical potential results from
folding an effective central interaction v (

~
r —r'

~ ), between
the projectile at position r and a target nucleon at r' with
the ground state mass distribution p of the target,

U(r)= J p(r')vo(r, r')r' dr' .

In these equations, v&(r, r') is the l'" term in the multipole
decomposition of v( r —r'~) [1,3]. The form (2), with the
relation (4), then follows exactly if the interaction has
zero range, v (s) =J5(s) where s =r —r', for then

U(r) =Jp(r) (6a)

GI (r)= Jg((r) = 5I dU(r)ldr —.

Realistic nuclear forces have finite ranges, so the rela-
tion between potential and density is nonlinear. It has
been remarked repeatedly over the last three decades,
both for light [4] and heavy ion [5] projectiles, that one
consequence of this finite range is that the radial shapes
of the transition potentials GI (r), defined by (5), acquire a
strong dependence on multipolarity I, even if the corre-
sponding transition density shape is independent of l, as
in (1). This has been demonstrated for particular exam-
ples and specific choices of the interaction v (s). Here we
show for general v (s) that the relations (2) and (3) are ex-
act for l =1. As a corollary, we see that they are not
correct for other multipoles. The results of a numerical
survey of the errors that can be committed by using the
DP model will be presented elsewhere [6]. These errors
can be large. For example, the extracted nuclear transi-
tion rate for octupole excitation of Pb can be in error
by a factor of 1.5 for ' 0 projectiles at E/2 =84 MeV.
The deviations are somewhat smaller for lighter ions, but
can for example, have large eA'ects on the deduced values
of the M„ /M, the ratio of neutron and proton matrix

(For simplicity we discuss "single folding. " A "double
folding" procedure, which includes folding over the pro-
jectile mass distribution, leads to the same conclusions. )

Similarly, the TP is obtained by folding (which we denote
by F) with the TD of Eq. (1),

6& (r)= —5P, vI(r, r')r' dr' .
dp(r'), ,2
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and the folded TP (5) becomes

G((r)= f j((kr)g((k)u(k)k dk,
2m

(8)

where we use a tilde to denote the Fourier transform.
For example,

g((k)=4' f g((r)j((kr)r dr .
0

By using the TD of Eq. (1) and integration by parts, Eq.
(9) becomes

(9)

g((k)=4no( f p(r) [r j((kr)]dr . (10)

For the TP in the DP model we require
„djo(kr)

p(k)U(k)k dk,
dr 2~2 0 dl"

f j,(kr)p(k)u(k)k dk . (11)
2m

In general this bears no simple relation to the folded TP
of Eq. (8). However, when l = 1 we can use the property

r j,(kr) =kr j 0(kv)

elements for the transition [7].
A special case in which the relations (2) and (3) hold is

a dipole mode, l = 1, which does not depend upon fold-
ing, but is a consequence of the invariance of the system
under translation of its center of mass. Unfortunately,
this case is unphysical and Eqs. (1) and (2) then corre-
spond to a spurious mode of excitation. For I =1, the
TD (1) corresponds to a small displacement, of magneti-
due 5&, of the center of mass of the system, without
change of shape. Similarly, the TP (2) corresponds to a
displacement 5& of the potential U when l =1. Since a
simple translation of the system will carry with it the po-
tential, however generated, unchanged, we have 6& =6&
and Eq. (3) is satisfied.

The form (1) with l =1 does correspond to a physical
excitation if it is applied to the neutron and proton distri-
butions separately, provided their displacements are in
the ratio |i",/V, = —Z/X in order to preserve the center
of the total mass. This is just the Goldhaber-Teller mod-
el for an isovector dipole excitation in which the neutrons
and proton oscillate against one another [1,3]. However,
the connection with the optical potential, which is pri-
marily isocalar, then requires additional assumptions
[1,37.

In order to demonstrate these features explicitly for the
folding model, and to examine other multipoles, we use
Fourier transform techniques [1,8]. For simplicity we
consider interactions U (s) that do not depend upon the
density.

The optical potential (4) can be rewritten in the form

U(r)= f jo(kr)p(k)U(k)k dk (7)
2m

GF( ) gm (14a)
—GDP( ) (14b)

if 6, =6, . This result is independent of the form chosen
for U(s) but, as discussed earlier, the TD of Eq. (1) and
the TP of Eq. (2) do not describe a physical excitation
when I =1.

Since the radial shape of the folded G( (r) is known to
depend on I, while the shape of the deformed potential
G( (r) is independent of l, it follows as a corollary that
there can be no identity between them for I&1 (except in
the limit of an interaction v with zero range). Thus the
folding procedure provides no justification for using the
deformed potential model (2) for excitations with l ) l.

Our conclusions depend upon the use of the folding
procedures (4) and (5) to provide a link between poten-
tials and the underlying densities. Some such link is
necessary, and folding has proven quite successful. The
derivation depends upon the ansatz (1) for the transition
density. This choice is supported for strong (collective)
transitions both by experiment, such as electron scatter-
ing, and by microscopic structure calculations such as
those using the RPA, but primarily for l =2 and 3 mul-
tipolarities. There is no similar justification for weaker
excitations or higher multipolarities. Using the DP mod-
el to analyze these transitions is even more suspect, espe-
cially as the difference between folding and the DP model
increases as l increases [4,5]. We conclude by quoting
from Chap. 14 of Ref. [1]:There is no strict justification
for this [the DP model] except for a point projectile and
in the unrealistic limit of folding with an interaction U

with zero range. Nonetheless, the model incorporates the
appropriate physics in a qualitative way and has the ad-
vantage of simplicity.

The price paid for this simplicity is that the unambigu-
ous connection between the density deformation and the
potential deformation that is provided by folding is no
longer available, and one must not be surprised if the ex-
citation of a given transition by di6'erent probes results in
diA'erent values for the deformation parameter when this
model is used.

An additional price paid for the simplicity of the DP is
that the explicit dependence on l of the shape of the tran-
sition potential is being neglected. Numerical studies
[4,5] have shown that the diff'erences between using the
DP and folding approaches increase as I —1 increases. In
practice, the most extensive applications of the DP model
have been to l =2 transitions. It is also for these transi-
tions that there is most likely to be independent informa-
tion [e.g. , B (E2) value] against which extracted deforma-
tion lengths can be checked. The apparent success of the
DP model for quadrupole excitations may then be attri-
buted to l =2 having the smallest deviation from l=1,
although the quantitative degree to which this is so re-
quires further investigation [6]. This does not justify the
DP model for I =3 and higher multipolarities, for which
the deviations become greater.

in Eq. (10) to give

g, ( )k=5 ( pk( )k.

Then comparing (8) and (11) we see the identity

(13)
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