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The cloudy quark bag model is applied to the coupled (KN, Zz, Acr) system for S Dp-artial
waves. Energy-dependent separable potentials are derived, as are new numerical algorithms for
solving the coupled Lippmann-Schwinger equations. The parameters of the model are 6t to K p
scattering and reaction cross sections, branching ratios, and mass spectra from K p —+ Zvrvrm, Awarder.

Within the constraints of the model, the branching ratio and Zm mass spectrum data are in conQict.
The Z+ig(1385) and Aooz(1520) resonances are found to be predominately elementary bag states
with considerable dressing for the Z&i3. The Asoi (1405) appears as a complicated composite systems
arising from two poles. The model with certain parameter sets does predict two sign changes in
the real part of the KN scattering amplitude near threshold, but they are not quite at the correct
energies to produce agreement with the sign of the strong interaction shift of kaonic hydrogen.

PACS number(s): 14.20.Jn, 12.40.Aa, 13.75.Jz

I. INTRODUCTION

It is generally accepted that hadrons are composed of
quarks and that strong interactions among quarks will
be explained by quantum chromodynamics (QCD). Un-
fortunately, QCD is still too complicated to solve and so
we construct phenomenological models which incorporate
confinement, asymptotic freedom, and the symmetries of
QCD yet still permit analysis of experimental data and
application to nuclear few-body systems. The MIT "bag"
[1] is a model for a bubble in the QCD vacuum and im-
poses confinement by placing the quarks in a finite bag
of about 1 fm radius. If the model were interpreted liter-
ally, this large a bag would shatter conventional nuclear
physics since nuclei would be filled more with quarks than
nucleons.

Soon after its introduction it was realized that the
bag model violates chiral symmetry (conservation of
quark helicity) the second best symmetry ( 7%) of the
strong interactions [2]. The violation arises from quark
refm. ections ofF the bag wall changing the quark's momen-
tum but not its spin. The symmetry is restored by cou-
pling in a pion field to the bag's surface [3—5]. In the "lit-
tle brown bag" of Brown and Rho [4], an interior phase
contains free, massless quarks, while an exterior phase
contains pions but no quarks. The pressure of the pion
field on the outside of the bag then compresses the bag
down to the very small 0.3 fm little brown bag. Clearly
with this small a bag there will be very few quark efFects
expected inside of nuclei, and the conventional views of
nuclei as collections of nucleons exchanging mesons holds.

In the cloudy bag inodel (CBM) of Miller, Thomas, and
collaborators [6—13], the exterior pion field gets quantized
and penetrates the bag. While the CBM's Lagrangian is
nonlinear, practical calculations are carried out as a per-
turbation expansion with the zeroth order term yield-
ing the MIT bag model. The first tests of the CBM
dealt with static properties of hadrons, such as charge
radii and magnetic moments, and were successful [12,13].

Later tests dealt with dynamic properties, such as pion-
nucleon scattering, and required an extension of the La-
grangian to incorporate volume in addition to surface
coupling [10]. Since the extension incorporated Wein-
berg's e8'ective mN Lagrangian, it is not surprising that
success was found [14,15].

In order to study the KN and KN systems,
strangeness was incorporated into the CBM by extend-
ing the Lagrangian from SU(2) to SU(3) [16,17]. How-
ever, the complications of thresholds and exotic KN res-
onances led Veit et al. [18] to conclude that the model
"has trouble with resonances" for both the KN and KN
systems. For example, they found a KN scattering am-
plitude which appeared to have a A resonance signal ap-
proximately 5 MeV below threshold rather than the ex-
pected 27 MeV below. Further analysis by Fink et al.
[19] indicated that the resonance signal arises from the
influence of the threshold cusp on a pole some 13 MeV
above threshold.

The KN findings are interesting because they refI.ect
on the nature of the subthreshold A resonance and possi-
bly on the puzzling experimental measurements of the 1S
strong interaction level shift in kaonic hydrogen [20—22].
The hydrogen experiments indicate that the real part of
the K p scattering amplitude has either no or two sign
changes right above threshold [19,23—25], whereas K ma-
trix analyses and most potential models predict one sign
change. The CBM fits have two sign changes close to
threshold, but on either side of threshold.

It has not been clear to us what level of agreement to
expect between models of the KN coupled system and
energy-dependent scattering and reaction data. On the
one hand the CBM assumption of a rigid spherical bag
and of pointlike pion fields is possibly too simple, yet on
the other hand it may be that only more partial waves
are needed to get the energy dependence right. There
is, after all, experimental indication that significant P-
wave scattering enters at 184 MeV jc [26], and there is
the D wave resonance at 3-90 MeV/c. To describe addi-
tional data and to test the model further, we have ex-
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tended the KN cloudy bag model to include the P and
D partial waves. This extends the contact interaction to
include spacelike terms in addition to timelike ones, and
the general interaction to include spin-orbit forces. We
have deduced effective potentials for use in a Lippmann-
Schwinger equation, and have Gt the potentials' parame-
ters to data up to 520 MeV/c. We were aided in our work
by the similar kaon work of Veit et al. [17]—similar, yet
with the additional and stronger interactions available to
the antikaon making for more differences than similari-
ties.

While the Lagrangian (5) has no obvious predictions for
low-energy pion-nucleon scattering, Thomas [10] trans-
formed it to one containing a volume coupling of the co-
variant derivative of the quark Geld:

fi
&cBM =
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II. CI OU DV aAG I AGRANGIAN
This Lagrangian incorporates the Weinberg-Tomozawa
relation for zero-energy S-wave pion scattering.

The MIT bag model's Lagrangian is [3,5]
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(4)

For the static case, the unit normal to the bag's surface is
n" = (0, r). Equation (2) is the Dirac equation inside the
bag, (3) is the linear baundary condition of confinement,
and (4) is the stability candition on the bag pressure. We
shall use solutions to these equations in constructing the
baryon-meson effective potentials.

The Lagrangian (1) daes nat preserve chiral symmetry
since the surface term zqqb, reverses the helicity of the
quark hitting the bag's surface. To incorporate chiral
symmetry, a pion field P is coupled throughout the bag's
volume [3—5]:

/a 5 1 . .y yy~caM=
~

—q Pq —B ~0 ——qe' ' ' q8,(2 ) 2

Here q is the quark Geld, B is a universal constant called
the "bag pressure, " and for a nondeformable, static,
spherical bag, the bag ansatz is imposed by setting the
volume step function 0„=0(B—r) and the surface delta
function 8, = 8(R —r). By demanding that the ac-
tion S = jd4x C(x) remains stationary under arbitrary
changes in q, q, 0„, and b„we obtain the equations of
motion

III. APPLICATION TO KN SCATTERING

To apply the Lagrangian (8) to KK scattering, Veit
et al. [16—18] extended the internal symmetry from fla-
vor SU(2) xSU(2) to SU(3) xSU(3). The quark field q
then becomes any member of the SU(3) triplet (u, d, s),
the meson field P any member of the octet, the SU(2)
Pauli matrices r are replaced by SU(3) Gell-Mann ma-
trices A, and the cross product in the covariant deriva-
tive (9) includes SU(3) structure constants (A x B), =

& f i, A Bi, Since P. = 0 yields the MIT bag La-
grangian (1), which was successful for static baryon prop-
erties, Veit et al. [16] postulated that if the energy is low,
then small P should be a good approximation for scat-
tering. Accordingly, they expanded Z~BM around P = 0
to obtain the linearized, volume-coupled, SU(3) x SU(3),
CBM Lagrangian

~CBM = ~MIT + ~M + ~s + ~ey

&M =
2

(&,4)',

2, = —"qp" ps Aq (0„$),

(1o)

qp" A. (P x 0„$)q,

where ZMiT (1) describes the free bag, Z~ the free meson
Geld, 2, the 8-channel interaction, and 2 the contact
interaction.

In our application of the CBM to the K% system,
we restrict the energy to (1250 & E, & 1550) MeV,
that is, to both sides of the KK threshold at 1432 MeV.
For these energies we consider the six, strangeness —1,
baryon-meson (BM) channels which couple strongly:

Here the arrow aver P indicates its isovector nature, r
is a vector of Pauli matrices for SU(2) (isospin), f is
the meson octet decay constant, and D~ is the covariant
derivative:

D~4' = (~,4)0 + f »n(4/f)~, 4,

'K p
Won
z-~+

K p + g 0 0

Z+~—

("threshold" ) 1432
—5

+95
+104
+103
+181

MeV,
MeV,
MeV,
MeV,
MeV,
MeV.

(14)

(7)
This system supports a number of resonances which ap-
pear in diferent channels below and above threshold. For
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TABLE I. Channel assignment for charge and isospin bases.

3 4 5

Charge K p Z~(I=0) Err(I=1) An
basis

Isospin KN(I = 0) KN(I = 1) Zm (I = 0) E7r (I = 1) Avr

basis

q'

(8')

(a) (b)
low energies the relevant ones are A1,12j—+pi(1405) and
2~is(1385) below threshold and A~ps(1520) above.

The calculations to follow get rather complicated and
so we have placed many of the details in appendixes. We
will describe how we extended the CBM up to D waves
and in each partial wave deduced effective potentials to
be used in the Lippmann-Schwinger equation

FIG. 1. Feynman diagrams for meson interactions in the
cloudy bag model: (a) via the s-channel Hamiltonian 8„
(b) via the contact Hamiltonian H, Das.hed lines represent
mesons and solid lines fermions (quarks or baryons).

Tp (k', p, ';k, p, )

= Vp (k', p';k, p)

Vp ~ (k', p', p, v) T~ (p, v; k, p)

7 '7

Here the incident and final particles are in channels o. and
P (defined in Table I), have spin p, and p', and center-of-
mass (c.m. ) momenta k and k'. The intermediate state
is channel p with spin v and with a channel momentum
kp~ determined by setting the channel energy equal to
the system energy E:

E~(kp~) = E,

E,(p) = E, (p) + E, (p) = m, ', + p'+ m,'+ p', (l7)

where the subscripts 1 and 2 refer to the specific particles
in channel p.

The solution T of the Lippmann-Schwinger equation
(15) automatically includes all iterations (ladder graphs)
of the potentials but ignores crossed meson lines which
we assume to be small [ll]. The derivation of the poten-
tials Vp proceed via several steps. First in Sec. III A we

specify the coupled-channels Lippmann-Schwinger equa-
tion in the partial wave basis. Next in Sec. III B we con-
vert the Lagrangian (8) and (9) into a Hamiltonian, and
separate off pieces which produce interactions. Then we
obtain the resonant potentials (Sec. III C) and the con-
tact potentials (Sec. III D) from the Foch-space matrix
elements:

+ ). (&III
I
+p) E M (&p III.Iri).

Bo=SP1,DP3, P13 Bp

(18)

The first term in (18) describes direct scattering via an
elementary quark transition in the contact interaction
as illustrated in Fig. 1(b). The Rp sum in (18) is over
the processes, each second order in the H, Hamiltonian
illustrated in Fig. 1(a), in which there are elementary
resonance intermediate states as shown in Fig. 2. Reso-
nances with bare masses Msp1, MP13, and MDp3 —but no
widths are thus built into the potential (as opposed to
generated by it). However, when the potential gets used
as the driving term in the Lippmann-Schwinger equation
(15), these elementary resonances get "dressed, " that is,
the resulting T matrix contains resonances at shifted
masses and with finite widths. Furthermore, we treat
the elementary masses as adjustable parameters and let
the data determine the best values. When the fitting is
complete we then have dressed resonance energies and
widths as determined from the behavior of the T ma-
trix, as well as best-fit values for the bare masses. As
we shall see, there is no guarantee that the bare masses
and resonance energies are close. In addition, the po-
tential derived from the contact interaction H generates
"two-body" or "composite resonances" in T which are
not explicit in the potential and thus not elementary.

A. Partial wave Lippmann-Schwinger equation

We assume the standard spin G x 2 partial wave ex-
pansions for the T matrix [27]:

Tp (k', y, '; k, p) = ) (l + 1)Tp+(k', k) + ITp (k', k) b„~„Pr,(x)
l

) Tp+(k', k) —Tp (k', k) (p, 'lier nip)PI(x),
l
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T'~ (k', k) = — ) (lm'; 2iM'll2;j M)(lm; 2pll2igM) d&q d&i &i~'(k )&i~(k)TP (k', p';k, p),
m, m, p p, '

(2o)

T'+(k o, kp ) = —e' '+ sin b~~

2pnkon

where x = cos OI, I, , n = A: x k', and T + is shorthand
for T~= +2. The partial wave expansion for the po-
tential Vp (k', iu', k, p) has the same form as that for
Tp (k', p', k, p) (19), and so, for example, the projection
for the potential is

Vp (k', k) = — ) (lm, '; 1~p, 'lt —;jM)(tm; 2 plL2, jM)
m, m, pp, '

x dOk dOkY, ~, O' Y~m A: Vp k', p';k, p .

(22)

After substitution of the partial wave expansions of T
and V into (15), we obtain the coupled one-dimensional
integral equations

Tp' (k', k) = VP (k', k)

Here the prime and double prime distinguish states with
the same isospin but in different particle channels. Be-
cause our initial K% channel has no isospin-2 compo-
nent, the l2, 0) state does not couple to it and so we
eliminate l2, 0) and renormalize the rest. Using just two
isospin channels for the three Zvr states reduces com-
puting times by 50'%%up. In order to include some isospin
breaking, we do our calculations in the charge basis with
physical masses for the particles and use these relations
to transform between isospin and charge matrix elements.

To solve the I ippmann-Schwinger equation (23) we
have extended the Haftel-Tabakin technique [28] (details
in Appendix F). First, rather than work with only the
principal part we also keep the delta function (imaginary)
part. Also, in handling coupled channels we reorganize
the storage of matrices and instead of solving (15) we
solve

2+—)jr

p2VP (k', p)T'~ (p, k)
[G ' —V] [GT] = [V]. (25)

w-p) = ~lo, o) +~11,o)

lA'n) = ~l0, 0) ++1,0),

lZ vr+) = Po, o)' ——' l1, 0)' +—l2, 0),

+~~l2, 0),
(24)

We indicated in Eq. (14) that even for zero kinetic
energy (the 1432 MeU threshold), a KK pair couples
to nearby strangeness —1 charge channels. To use the
derived potentials, we evaluate their matrix elements be-
tween charge states which in turn are expanded in the
isospin states of those channels:

We now can use Gaussian elimination on the symmetric
[G ~ —V] as opposed to the inversion needed to solve
(15). Eliminating inversion saves 30% in time and
utilizing the symmetry of [V) and [G —V] saves 60%%uo.

The Coulomb force is included exactly in all our bound
state (kaonic hydrogen) calculations, and of course it is
crucial there. Even though we have the theoretical tools
to include the Coulomb force in scattering, we do not in-
clude it in the total cross section calculations because the
issue is too confused by difI'erent bubble-chamber exper-
iments using different techniques for its removal during
analysis. We do include some charge-symmetry-breaking
efI'ects by using physical masses, but otherwise we assume
isospin is a good. symmetry at the 6.eld theory and po-
tential level and only break it by using physical masses
in the energies for the kaon and lambda channels.

l~+~ ) = oslo 0)' +~211 0)' +~sl2 o)
B. Hamiltonian

l Aero) l1, o)".
We deduce the Hamiltonian by following the canonical

procedures starting with the energy-momentum tensor
T"" [16,17]:

BZ „o~C M

(26)

H= d xT (x) =Ho+H+H,

FIG. 2. The Feynman diagram used to generate potentials
corresponding to intermediate resonance excitation via the
Hamiltonian H, .

Ho = HMIT + ~M)

H, = — d x "qp"psAq0„$, —
2

(28)

(29)



CLOUDY BAG MODEL FOR THE S-D WAVE E-1V SYSTEM 3051

H =Ht+H,
d x "qp A (PxBog)q4 2

+ d x " q) p*A (P x 0;q7)q.

Here BQ is the annihilation operator for a three-quark
bag of type Bo, ~Bo) is the bare baryon state, m~, is the
MIT bare bag mass, and wk = gm~ + k2 is the energy
of a free meson of momentum k.

Ho = ).Bo (BolHolBo) Bo
Bp,Bp

(31)

Bp

+ k2 BoBo+) d k(ug o,, (k)a, (k).

(32)

Here HMy T is the free bag Hamiltonian, HM is the
free meson Hamiltonian, H, is the s-channel interac-
tion [Fig. 1(a)], and (H, &, H, ] are the time and space
derivative parts of the contact or four-point interaction
[Fig. 1(b)]. We convert Ho into the Foch-space form Ho,
by projecting onto the space of colorless baryons and ex-
pressing the meson field P in terms of annihilation and
creation operators [13,12]:

C. Resonance potentials

As discussed in Sec. III and illustrated by the Feyn-
man diagram in Fig. 2, for each meson-baryon channel
o. we include one of the three resonance states BQ
Agog(1405), ZJ $3(1385), or A~os(1520). As indicated
in Eq. (18), we build potentials containing resonances
within them by evaluating this Feynman diagram with
the proper initial and final state quark wave functions.
In Appendix A we simplify the Hamiltonian H, which
generates these resonances, and in Appendixes 8—D we
evaluate the contribution to (18) from each of the three
resonances. After the partial wave projection there re-
sults the potentials

v&
' (k, k) = Sgob~z 2

" (I& z&~,'IMiz~ ~II&II~, OO)(I&z&, IMzM ~I&I~, OO),
(&o&),&j I &snip( ) Aaoz~( )

32 7l g(dpi ~g E —Myoid
(33)

(Dos) i, , uA ..~(k')u~;..(k) ~p~-'
v&

' (k, k) = hg2hz 3
z

" (Ig~zgy~' , IM'zM [Ig'IM~, 00) (Igzg, IMzM (IgIM' , 00),
32f 7rgurI, ~~g E —Mz)os

Vp (k, k) = Sl]S~ 3
2 (Igg'zQ', IM'zM ~IB'IM',' 10)(I~z~, IMzM ~I~IM, 10).(~zs) ), , [N, Rjo((u, R)] &p & jz (k'R) j~(kR)

24f2zr E —MJ, s

(35)

The vertex functions u~, (k) for the S and D resonances
are seen in the appendixes to be proportional to integrals
over spherical Bessel functions (quark wave functions);
for Z&zs that substitution is already made in (35). The
potentials (33)—(35) are clearly separable and energy de-
pendent. Further, each contains a pole at the real en-
ergy E = M~, arising from the elementary resonances
we have explicitly incorporated. As discussed in Sec. III,
for any value of M~, the T matrices generated by us-
ing these potentials in the Lippmann-Schwinger equation
will have poles at complex energies whose real parts dier
from the M~, 's; that is, the resonances get dressed and
acquire widths. In addition, because the values for M~,
are determined by the data fitting, their best-fit values
will dier &om those we use as input.

D. Contact potentials e& '~, e& '~

vp~'"(k', p') k, p) = (P, k', p'~H~z „~a,k) y,). (36)

For S waves the evaluation is straightforward:

As shown in Fig. 1(b), the contact interaction H (30)
directly produces BM ~ B'M' scattering arising from
an elementary quark transition [16]. Because B' and B
belong to the baryon octet, the quarks in the initial and
final states must be in 18 states. We break the contact
potential into the two pieces v ~ ~ and v ~ '~ which are the
matrix elements of the time derivative and space deriva-
tive parts of H:

vi"i(k, k') = 0 (S wave),
(ct)

v~' (k', k) = ) Ap (Ig~z~, I~~z~ ~Igy~I~~, IO)(Igzg,. IMzM ~IgI~, IO)
up (k, k)

16J'zr'g~l, ~„'

(37)

(38)

up (k, k) = N, (~1, + ~gI) dr r [j (u, r) + jz (w, r)] jo(kr) jo(k'r). (39)

The coupling constants A& follow from the SU(6) wave function of the baryon octet [29), and are given in Table II.
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TABLE II. The coupling constants A and A for channel n, and spacetime coupling constants
(A&, A&' ) for channels ct and P.

~3
0

(pt, I=O ps, I=O)

Zvr

~6 1
(
——. ,~)

(0, 0)

(0, 0)

(o, o)

(0, 0)

(pt, 1=1 ps, I=1
)19a ~ Pa

Zvr Avr

(
~O WO

)

(0 —~)
(0, 0)

The increased spin and angular momentum coupling in P and D waves makes the vertex functions more complicated.
The time derivative part is

64f 7I gtdy~ tdjt

sf k —k'" TO~Qlsfe'7'~7(oak+ C'dI')'7 e
sf

{40)

We evaluate it by substituting the ls quark wave function (Bl), substituting the partial wave expansion of the plane
wave, and integrating over solid angles to obtain

R
dr r j[p(td, r) +j, (td. r)]j((kr)j((k'r)v~("'(k'y', kp) = ~„. . . ) &(* (k)&i (k')~.'

8 7I gtdgtdp~
lm

x ) 4& (IB zBI, IMIzM ~IB~IM~, ID)(IBzB,. IMzM~IBIM, IO).
I

(41)

The partial wave matrix elements follow from the definition (22):

~. (td~+ ld~)
dr r [jp(OI.r) +j, ( or7)]j((kr)j((k r)

167r

x ) (IB'zB', IM zM~ ~IB IM, Iz)Ap (IBzB) IMzM ~IBIM', Iz). (42)

The derivation of the space derivative part v& (k, k) is more complicated than. the time derivative part and we
outline in Appendix E how

A.~ %2 R

vp
' ' '(k', k) = ' ' dr rj p(td, r)j 1 (or, r)j I(kr)j I(k'r)

47r v7tdy~ Cdk

x ) (IB'zB'i IM'zM'~IB'IM'i Iz)~its(IBzBi IMzM~IBIM Iz)~
I

1 1
AI( ——2/6l(l + 1)(2l + 1) (

—1)I+'+t
l l

' 2(l+1), j = l ——,',
(44)

The contact potentials (38), (42), and (43) all are man-
ifestly separable, energy (td) dependent, and contain ver-
tex factors arising from the quark wave functions. They
do not contain elementary resonances, although we will
And them to be strong enough to generate composite res-
onances.

ing seven parameters: the bag radius B, the cou-
pling constants (f =, f~=, f =

), and the bare masses
(Mspl ) MI ls MLIps). In comparison to potential mod-
els with adjustable coupling constants and ranges, the
CBM's SU(3) x SU(3) symmetry greatly reduces the num-
ber of parameters especially since the bare mass values
mainly afI'ect the local position of resonance peaks.

IV. COMPARISON WITH EXPERIMENT
A. Scattering and reaction cross sections

We test the CBM by seeing how well we can re-
produce Ave diferent groups of data after adjust-

The first and largest data group is 300 measurements
of two-body scattering and reaction cross sections for
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(70 & Ki b & 513) MeV/c = (1435 & E, ( 1567
MeV) [26,30—36]. These data, shown in. Figs. 3—5, are
predominantly from bubble chambers and contain rather
large statistical and systematic errors. The extension of
the cloudy bag model to higher partial waves is impor-
tant for understanding these data since even for a K

momentum as low as 150 MeV/c, P wa-ve contributions
to K p ~ Z+7r+ have been reported [26], and at 390
MeV/c there is the A(1520) D wa-ve resonance (the peak
evident in the figures near 400 MeV/c) [30].

The cross sections are related to the computed T-
matrix elements (23) by

= 16~ ppp~ ) —iTp~(k'p, ', kp)
~

P iP
OO

2

op = dO = 16vrppp —) (l+ 1) Tp+(k', k) + l Tp (k', k)
L=O-

2

(45)

(46)

Here the overbar indicates a sum over final and average over initial spin states, and the p s are relativistic reduced
channel masses defined in Eq. (F3). For the channels we use the integrated cross sections are

o(K p -+ K p) = 16m.pi ) (l + 1) Ti+i(k', k) + l Tii (k', k)
L=O

(47)

A,
"

a(K p m Kon) = 16m.pip2 —)
l=o

cr(K p m K+vr ) = 16vrpspi —)
L=O

(l+1) T,'+, (k', k) +l T,', (k', k)

2

(l + 1) Tsi (k', k) + T4i (k', k)

(48)

+l Tsr, (k', k) + T4, (k', k)
1 t, 1

(49)

1 2

o(K p m Z ~ ) = 1&rpspi —„)
l=o

o(K p -+ E sr+) = 16vrpspi —)
l=o

2

(l + 1) Ts+i(k', k) + l Tsi (k', k)3" 3"
2

(l + 1) Ts+i(k', k) — T4i+(k', k)

(50)

+l Tsi (k', k) — T4i (k', k)
1 t ( 1

(51)

1 2

o.(K p -+ vr A) = 16vrpspi —) (l+ 1) Tsi (k', k) + l T5i (k', k)
L=O

B. A(1405) resonance dN 2 0 2
oc ko~ ~~ oc kps Tss(k, k) (53)

The second data group we examine is seven values of
the Z+vr mass spectrum determined from the K p —+
2+m m+vr reaction at 4.2 GeV/c kaon laboratory mo-
mentum by Hemingway [37]. These data, shown in
Figs. 3—5, have a strong A(1405) resonance signal and
are a major constraint on the model's parameters. Ear-
lier A(1405) data also exist, but Hemingway's are cleaner
since they were obtained through the three-step process
K p -+ Z+~, E+ m A(1405)~+, A(1405) m Z ~ . We
calculate the Zvr mass spectrum with a Watson model
[30,38] which assumes that an S-wave resonance domi-
nates the Anal state interaction. The number of events
per unit energy interval is accordingly

We fix the normalization by setting the area under the
theoretical mass spectrum equal to the total number of
events. Because this model is so simple, we do not expect
a detailed reproduction of the spectrum.

C. Z(1385) resonance

The Z(1385) is seen as a P wave xoA resonance -below
the KK threshold. Aguilar-Benitez and Salicio [39] have
detected it in the mass spectrum from K p —+ A7t vr+7t

at 4.2 GeV/c. Our calculation of that An spectrum is
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FIG. 3. The K p scattering cross sections, reaction cross sections, and Zvr mass spectrum calculated with the S-wave fits
1, 2, and TRIUMF (A). As is evident, fit 1 was not adjusted to fit the mass spectrum. The cusps right below 100 MeV/c arise
from the opening of the K N channel, and the peaks near 400 MeV/c arise from the A(1520) D-wave resonance (not included
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similar to the Z7r calculation, only now with the Wat-
son final state interaction model adapted to a P-wave
resonance:

2

(M, I') = (1384, 34.8) MeV,

ap ] z = (—77554, 15303, —7402) MeV,

b = 158.7MeV

(56)

(54)

(Mi=«+a~
]

qMp)
( M & bMpI'pz

[ M (M —Mo) + M I" (55)

Threshold Branching Ratios
K p -& En, charged, neutral

Because the resonance rests upon a large background,
and because we have no model for such a background, we
extract the resonance piece after fitting the entire spec-
trum as a polynomial background plus a Breit-Wigner
resonance [39]:

The resulting resonance is shown in Fig. 4 as the peak at
1385 MeU.

D. K p threshold branching ratios

K p —+Z ~+
'Y =

K p-+ E+~—' B

K p + 7roA

K p ~ neutral

K p -+ charged
K p —+ all

(57)

The third group of data we examine is the branching
ratios of K p reaction rates at threshold:

2.0

0 Humphry et al.
Q'Tovee et al.
+ Nowak et al.i Goossens et al.

fit 1

The measured ratios [40—43] are shown in Fig. 6. The
attraction of ratios is that they are not affected by un-
certainties in target size and beam normalization, and so
their uncertainties are smaller than those of cross sec-
tions. The difficulty is that calculations of rates into
charge channels at zero energy are sensitive to Coulomb
and charge-symmetry-breaking efI'ects not all of which
are included in our model and so we cannot be sure of
the level of agreement to expect.

0.0
Type

2.0

1.0

Threshold Branching Ratios
K p -) Ez, charged, neutral

O Humphry et al.
'VTovee et al.
+ Nowak et al.

E. Data Btting

We have tried a variety of fitting procedures (indi-
cated in Table III) in which different groups of data were
systematically included and excluded, and with different
choices for the y weights for each. The parameters of
our model determined by various fits to these data groups
are given in Table IV. The comparisons with the cross
section and mass data are in Figs. 3—5, and the experi-
mental and theoretical branching ratios are in Fig. 6. The
data groups have large differences in the number of data
points, the type of data, and the accuracy of the error es-
timates. Accordingly, it was not clear to us how properly
to perform a best fit to all groups simultaneously.

In Fig. 3 we see fit 1. It employs only S waves and has
its parameters adjusted to fjt the low-energy (p ( 250
MeV/c, E ( 1470 MeV) two-body scattering and re-

0.0
Type

7 R, R„
FIG. 6. The threshold branching ratios for K p to neutral

states R, to charged states A, and to charged Zvr states
The comparisons in the top part of the 6gure indicate

that CBM its adjusted to the Zvr mass spectrum tend not
to agree with p. The comparisons in the bottom indicate
that the original Schnick-Landau potential parameters [23]
did not provide good agreement for p, but the update (solid
curve) by Tanaka and Suzuki [24] does. The data are from
Humphrey and Ross [40], Tovee et al. [41], Nowak et al. [42],
and Goossens et al. [43].

Fit
1
2

Tl 1
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n7
c1

TABLE III.
S P, D

x
x
x

v' v'
v' v'
v'
v' v'

Characteristics of different its.
M(Avr) BR

X X

X X

X X

v' v'
x

X X
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TABLE IV. Parameters of different fits; B is in fm, others
in MeV.

Fit R
1 1.29
2 0.95
Tri 1.00
3 1.23
4 1.32
addi 1.34
add2 1.19

Msoi M~i3
1554
1588
1630
15?7 1421
1542 1417
1564 -1249
1623 -12682

1558
1546
1553
1568

JI=O yI=1 yI=1

87 80 75
126 82 146
120 100 110
96 100 79

103 96 78
92 80 88
90 87 80

action cross sections. This fit provides a good base for
comparison with the results of other groups and with our
latter results in which higher partial waves are included.
Fit 2 is also an S-wave fit to low-energy data, but ex-
tends fit 1 by including the Zvr mass spectrum with its
Aspq(1405) resonance. The fit labeled TRIUMF (A) uses
the CBM parameter set A given by Veit et al. [16] and
uses the same criteria as our fit 2. Fit 2 and TRIUMF
produce somewhat different parameters (row 1 vs 3 in
Table IV) due to differences in procedures and data.

We see in Fig. 3 how much better an agreement fit 2
provides with the Z7r mass spectrum than fit 1, and in
Table IV the large extent to which inclusion of the Em
spectrum affects the model's parameters. In examining
the predictions for the branching ratios in the top part
of Fig. 6, we notice that fit 1 provides close agreement
with R and B, and fairly close agreement with p. How-
ever, fit 2, which also included the Em mass spectrum in
its fitting, provides noticeably worse agreement with p.
For contrast, in the bottom part of Fig. 6 we present the
branching ratios calculated with the Schnick-I andau po-
tential model [23]. We see that the updated parameters
determined by Tanaka and Suzuki [24] provide excellent
agreement with the ratios.

In Fig. 3 we notice that all three S-wave fits fail to
obtain agreement with the data at higher energies, and
in particular, they fail to reproduce the A~ps (1520) reso-
nance signal at 400 MeVjc. This clearly shows the need
for higher partial waves and additional resonances.

Our next two fits are shown in Fig. 4. Fit 3 uses
S, P, and D waves, examines data at higher momenta,
and includes the three mass spectra for the Aspq(1405),
Z~gs(1385), and A~ps(1520) resonances. To determine
the influence of the branching ratio data and to deempha-
size the Z7r spectrum, in fit 4 we do not fit to branching
ratios and manually (m in Table III) set the y2 weight
factors to (m„&t„;„s,m~, m~ ) = (6, 1,6).

Et is interesting to note in Fig. 4 that fits 3 and 4,
which include S-D waves, do not provide as good agree-
ment with the K p ~ (K p, K n, A vr ) elastic cross
sections as the S-wave fits 1 and 2. What is clear from
the figure, however, is that fits 3 and 4 provide nearly
perfect agreement with the K p —+ Zvr cross sections;
apparently the large number of high-energy, small-error,
Zvr data points dominates these fits. This analysis is con-
firmed by confirming that the fit with the high-energy
data have a lower y2 per degree of freedom.

We again see in the Zvr mass spectrum of Fig. 4 that

fit 3 (which was adjusted to fit the branching ratios)
does not produce a good Zm mass spectrum. Yet by
releasing the branching ratio constraint we obtain fit 4—
which agrees with the spectra quite well. We also see
that both fits do provide fairly good agreement with
the vrA mass spectrum. This spectrum shows the sub-
KN-threshold E~qs(1385) resonance and essentially de-
termines the value for M~i3.

It can be argued that because so many assumptions go
into applying the Watson final state interaction model
to fit the various mass spectra, we should not expect
good agreement with those spectra, and so should not
use the spectra in data fitting. For these reasons, in
fits ni and cl we used all partial waves but fit only the
two-body scattering and reaction data; n7 has weights
determined by the experimental errors, and cl has equal
weights so that the small-Zvr error bars at high energy
would have less influence. Again we note that without
the Zvr mass spectrum constraint, very good agreement
with the branching ratios is obtained (fit n7 in Fig. 6)
even though the ratio data were not included in the fit.
Yet if the Zvr mass spectra must be fit, then fit 4 is our
best fit even though we see in Fig. 6 that it does not fit
the branching ratios well.

Because the vrA mass spectrum determines the value
for M~i3, and because this resonance does not signifi-
cantly affect the cross section data above the KN thresh-
old, not fitting this spectrum means the values for M~i3
were not determined in fits n7 and cl. This explains the
negative values they have in Table IV. The other reso-
nance masses do affect the cross section data above the
KN threshold, and reasonable values were obtained for
them.

V. SCATTERING AMPLITUDES

Now that the model parameters are determined, for
each parameter set we examine the scattering amplitudes
as a function of energy. We shall see that these ampli-
tudes often have such a rapid energy dependence, espe-
cially near the KN threshold, that an examination of the
full energy dependence is more significant that just the
threshold values (scattering lengths). Values at that one
energy are too sensitive to details such as channel mass
values [45].

We start in Fig. 7 with the scattering amplitudes for
KN —+ KN in the D03 channel and for the 7rA —+ aA
in Pi3. As we move down in energy we see vertical bars
which signal the KN and Zvr thresholds (the vrA thresh-
old at 1252 MeV is not visible). We also see cusps in

f at channel openings and that Im f—but not Ref
vanishes when all channels are closed. The KN reso-
nance ADp3(1520) and the vrA resonance K~qs(1385) are
clearly signaled by Ref changing sign and Im f peaking
at approximately the energy corresponding to the reso-
nance mass. The bare versions of these resonances were
built into our effective potentials via (18), yet this does
not guarantee that they will remain after their dress-
ing by the Lippmann-Schwinger equation and the adjust-
ment of parameters in the data fitting.
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r —2Im E. (58) TABLE V. The pole positions in complex energy (in MeV)
for S-D waves relative to the KN threshold at 1432 MeV.
Numerical uncertainty is +2 MeV.

Other singularities or channel openings can interfere with
this picture. If the pole is far away from the real en-
ergy axis or some other singularity gets in the way,
its experimental and dynamical significance is less. In
Appendix F we show that the formal solution of the
Lippmann-Schwinger equation implies that the pole po-
sitions are solutions of the equation

1
2

Tt I

V„2 [19]
+AHW [44]

3
4

E(D)&(S) &(&)
(2, -27), (-104, —6 x 10 )

(17, -31), (-80, -76)
(13, -12), (-95, -76)

(-52, -39)
(-14, -25)

(5, -21), (-129, -4) (-48, -12) (81, -6)
(1.2, -13), (-114, -74) (-46, -12) (83, -6)

det(1 —V@G@)= 0. (59)

-100

Im E { 1600

1300

-100

Im E { 1600
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Re E {MeV)

FIG. 9. The imaginary parts of the KN S-wave scattering
amplitudes of Fit 2 (upper part) and fit 3 (lower part) as a
function of complex energy. The projection onto the complex
energy plane shows the contours of the T matrix. The tick
mark to the right of 1400 on the real energy axis is the KN
threshold energy.

We find numerically the complex energies which solve
(59).

In Fig. 9 we have plots of the imaginary parts of the
KK S wave scattering amplitudes of fits 2 (upper part of
figure) and 3 (lower part of figure) as functions of com-
plex energy. As found in the explicit solution of (59),
and evident in the figure, there are two poles in the S01
channel at the complex energy listed in Table V. For
fit 2 we note that the high-energy pole is actually 17
MeV above the KN threshold (the tick mark to the right
of 1400 MeV in Fig. 9) and 31 MeV along the negative
imaginary axis. Fit 2's low-energy pole is seen to be 80
MeV below the KN threshold and far from the real en-

ergy axis. In contrast, fit 1 and fit 3 (in the lower part
of the figure) have low-energy poles very close to the real
energy axis. They are the causes of the striking energy
dependences near the Z7t threshold seen in Fig. 8.

In contrast to these CBM fits, we note in Table V that
the potential models of Alberg et aI. [44] and Schnick
and Landau [23] have only one S-wave pole, and it is
closer to the tabulated A(1405) energy. Apparently in the
potential model, the A(1405) is a composite resonance
with a single pole close to the tabulated energy, while
in the cloudy bag model, the A(1405) is not elementary
and not simple, a conclusion drawn previously from a
number of viewpoints [16,19,38,44,46]. In contrast, the
QCD sum rule analysis of Leinweber [47] finds a small
spin-orbit splitting in the nucleon and a large enough
one for the A to suggest that the A is elementary.

The T matrices' pole positions for the P- and D-wave
amplitudes are also listed in Table V. These positions
correspond to a 2+is(1395) dressed mass of 1385 MeV
and width of 24 MeV, and a ALios(1520) dressed mass of
1514 MeV and width of 12 MeV. The values for the best-
fit bare masses are M~g3 1419 MeV and MDp3 1552
MeV. This means that in both cases the renormalization
by the contact interaction and higher order scatterings
shift the masses downwards in energy by 31 MeV. The
tabulated [48] masses and widths of (1383.7+ 1.0, 36 6 5)
MeV and (1519.5 + 1.0, 15.6 + 1.0) MeV are in excellent
agreement with the pole positions —especially since the
two are expected to di8'er somewhat when the pole is not
close to the real energy axis. The tabulated half widths
of the Z+i3(1395) and ADQ3(1520) are not in as close
agreement with the imaginary parts of the pole energies
(18+ 3 vs 12, 8 6 1.0 vs 6), but this is expected since the
widths arise completely from renormalization, and this is
a broad and nonsymmetric resonance.

There are three measurements of the width I' and
strong interaction shift relative to Bohr energy,

(E —E~), of the—1S level in kaonic hydrogen [20—22].
Although these measurements should be a good test of
the KN interaction slightly below threshold, the uncer-
tainties in the measurements make conclusions dificult
(we see the statistical uncertainty in Fig. 10, but not
the apparent systematic uncertainties). Since at present
there is distrust of a theory if it agrees with these exper-
iments, we eagerly await the new experiment in progress
with its promise of high precision and high accuracy [49].

In our calculation of the kaonic hydrogen state, we
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FIG. 10. The shift and width due to the strong interaction
of the 1S level in kaonic hydrogen. The data are from navies
et aL [20], Izycki et al. [21], and Bird et al. [22]. The trian-
gles are prediction of the di8'erent CBM 6ts. All experiments
indicate a positive e while all CBM calculations indicate a
negative shift (to the less bound).

identify the complex bound state energy as the T matrix
pole energy for the combined Coulomb-plus-nuclear force
problem [50], and solve (59) for them. Our predictions
are shown in Fig. 10. For all the CBM fits the calculated
width I is acceptable or slightly large, yet the shift c is
of opposite sign to the data (all experimental shifts are
to the more bound). If the data are correct, then this
implies that the the real part of the K p scattering am-
plitude (a sum of I = 0 and I = 1 amplitudes) is positive
at K p threshold even though the I = 0 piece dips be-
low zero at threshoM. The potential model of Schnick
and Landau [23] or its update by Tanaka and Suzuki [24]
have this property; that is, they agree in sign with the
data. Although the sign changes in some of the cloudy
bag model's Refsoq are similar to those of the potential
models, none of our CBM fits have the proper combina-
tion of I = 0 and I = 1 strengths to keep Ref (K p) ) 0.
Although we have not done it, we suspect that if this
condition were made a requirement of the search, such a
solution would be found (presumably at the expense of
other data).

eters of the model were determined after extensive fits to
various scattering, reaction, branching ratio, and mass
spectra data.

Our fitting and subsequent analyses indicate that the
E(1395) and A(1520) are well described as elementary
resonances. Although their pole positions are renormal-
ized by the contact interaction and higher order scatter-
ings from the Lippmann-Schwinger equation to 31 MeV
below their bare masses, the resonance energies (as deter-
mined by the complex energy poles of the T matrix) are
within 2 and 4 MeV respectively of the tabulated values.

The cloudy bag model's description of the A(1405)
S-wave resonance is less simple. While we agree with
the previous conclusion that the state is not an elemen-
tary, three-quark s-channel resonance [16,19,38,44,46],
we have also found that it is less simple than the quasi-
bound KN, single pole state produced by potential mod-
els [23,44]. In particular, there are two poles present in
this channel, with the resonant behavior near threshold
arising from a pole above threshold interfering with the
threshold cusp.

Although the two sign changes in some of the cloudy
bag model's KN scattering amplitude near threshold are
quite similar to those of potential models which agree in
sign with the strong interaction shift in kaonic hydrogen,
none of our CBM fits have quite the proper combination
of I = 0 and I = 1 strengths to keep Ref(K p) ) 0.
Agreement with the shift could be required as part of
the fitting procedure, but we suspect that this is best
left for a time when more acceptable data are available
[49].

In a general sense we conclude that the CBM with
S, P, and D waves is able to reproduce the K p
scattering and reaction cross sections from 70 ~ 513
MeV/c (1435 —+ 1567 MeV) and either the K p —+

(Zvrvrvr, Avr7rvr) mass spectra or the branching ratios

(60)

K p m neutral

VI. SUMMARY AND CONCLUSIONS

We have extended the SU(3) cloudy bag model for
the coupled (KN, Zm, Avr) system from S to D waves
and thus to much higher energies. The model has el-
ementary quarks inside a bag as well as an SU(3) me-
son field inside and outside the bag. While not de-
rived from quarks, the meson field restores chiral sym-
metry. The Inodel Hamiltonian contains a contact inter-
action which generates direct meson-baryon scattering
as well as an s-channel interaction used to include ele-
mentary Asoq(1405), ZJ ]3(1520), and A~os(1385) reso-
nances. We derived efI'ective, energy-dependent separa-
ble potentials for use in the Lippmann-Schwinger equa-
tion as well as some new numerical approaches to solve
the coupled Lippmann-Schwinger equation. The param-

Fitting all three together appears too much to ask from
such a simple model.

We note that the fitted parameters appear reason-
able. The average bag radius A 1.22 + 0.14 fm is
about 0.1 fm larger than the value found by Veit et al.
[16], but within the range 1.5 ) R ) 1.0 fm given by
Guidry [52] (the range is for simple to refined models,
and our model with massless quarks is simple). If we
restrict our fit to low-energy scattering and mass spec-
tra data we obtain B = 0.95 fm, which is not big and
indicates that larger B values arise from the efI'ort to fit
the high-energy data. The fitted meson decay constants
(fr=o, f~~=~, f =o) (99, 88, 91) MeV ppear quite close
to accepted [52) values (flc, f ) = (112,93) MeV, espe-
cially since SU(3) predicts f = f~

In conclusion, we believe the cloudy bag model has suc-
cess in reproducing much data —but clearly with limits.
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The difEculties may arise from trying to reproduce com-
plicated energy dependences with too simple a model.
We have kept only linear terms in the meson field and
have assumed a rigid and spherical bag of one size for
all baryons. The bag does not recoil and the pointlike
mesons do not arise from quarks. We expect this to cause
difhculties at the higher energies and higher momentum
transfers. We have used the MIT bag wave functions for
massless quarks in a square well, and so have form factors
proportional to spherical Bessel functions. This too is
rather restrictive. We have looked at zero-kinetic-energy
branching ratios, but have included isospin-breaking ef-
fects only at the Lippmann-Schwinger equation level not
at the Hamiltonian level. Clearly, all these effects may
be important in a more sophisticated study of branching
ratios and of the kaonic hydrogen level shifts. Further
improvements appear worthwhile as do applications of
the model within a nuclear environment.
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APPENDIX A: REDUCTION OF Hs

We convert H, (29) into a more calculable form by
partial integration:

0„- - (0„0„) - - 0„"
qZ"Ws&q 4 — " "

qW"&5&q (t — " ~ qW"Ws&q2f 2f 2f (Al)

Application of the Dirac equation for the bag (2) shows
the last term to vanish. The space derivative in the
first term is converted to a surface integration over a
infinitely large surface, which in turn vanishes since the
quark Geld is con6ned within the bag. The linear bound-
ary condition (3) and the surface delta function imply
—(8~0„)qp~psAq P/2f = —z'&b, qpsAq ((() and this yields

with one 1piy2 quark and two 18 quarks. The transi-
tion BM M Agpi thus has one quark absorbing a meson
and being excited from the 18 to 1piy2 state. The quark
wave functions are

qM(r t)
i

jo(~ ) li M —', j. 0(~ )
N,

g4~ (i(r rj) (pj, r) ) ~l

(Bl)
II = d x —qpsA qPb — "

Op(qp ps' qP)2f 2f
(A2)

~»
(

—~ "j~((d~~r) ~

v'4~ 4 ihip(~„gr) )
We use this H, in the derivation of the potential to follow
where we separate off a vertex function V in the Foch-
space Hamiltonian for BM ~ Bo..

Vp;(k) = Bo" (BpiH, io() Bp, (A3)

H, = ) d k [Vp, (k)a, (k) + Vot (k)at(k)]. (A4)

APPENDIX B: BM ++

Aspic

(1405) POTENTIAL

The quark model configuration for the bare Aspic (1405)
is one u, d, and s quark in an SU(3) flavor singlet,

xy, e ' "0(B—r),
2

1 (ds p+
2jp2((d. pI(.')Bs (d. , p ~ 1

Here y is the spin-Havor wave function of the quark,
jp and jq are sPherical Bessel functions, ((d„(d„q)
(2.04/R, 3.81/I(.') are the energies of ls and lp) y2 states,
and the K's are normalization constants [51]. The
BM ++ Aspic (1405) vertex function needed in the Foch-
space Hamiltonian H, (A4) and the form factor for the
Hamiltonian are accordingly

V~,
'

(k) = Ati, v~„, (k) B(),

v~,...(k) = (AsoilH lo)
—1 ' (Aso) i&jiB)'~

N JV»
(

2a*jo ( oo.& ljo (»» R )jo (kR)
(2vr) s2(d g

(B4)

(B5)

+((dk + (d —(d&y)

R
d«j(o(oo. ")jo(to»o) +jo(».o)jo(»ooo))jo(k )j (B6)
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The spin-flavor matrix element ' (Aspl ~A;~B)' is evaluated with the Wigner-Eckart theorem:

'(Aspic~&. ~B) —& (Iaza, IMzM~IBIM) oo), (B7)

where the bracket on the right-hand side is a Clebsch-Gordan coefficient. The coupling constants A are calculated
using the SU(6) quark wave function [16,29] and are listed in Table II. The potential z)~s l(k', p'; k, p) corresponds
to meson-baryon scattering through an intermediate As01 state, Fig. 2:

z)p = (PIH I Aspic) E M (Asol. III lcz)
S01

~)s)s'~p~~(IB'zB' j IM'zM' ~(IB'IM' j 00) (Iaza) IMzM )IBIM, 00) ug p(k)up ~(k)
E —Mg01 64f zl v( cd' I cd),

The partial wave matrix projection of this potential via (22) yields (35).

(Bs)

(B9)

APPENDIX C: BM ++ ADps(1520) POTENTIAL

The AD03(1520) has one u, d, and s quark in an SU(3) singlet with total spin 3/2 and wave function ls lpsg3. The
KN M ADQ3 transition thus has one quark absorbing the antikaon and changing from ls to the i@3)3 (8avor may
also change). The vertex function for the Foch-space Hamiltonian (A4) and the i@3/3 quark wave function are

g(D03) sky At d3 ik. s (AD03 ~~st Y5~i Cis + (Cds + Cdk Cdp3)'Vp f +5x(i Ps ~B)'
Bp,—2 fig(2zr)32(dk

M
( t) ~

~

21(~psr)
~
0(R )

iurssz—yM (0 y)"'g ~( )( )) (C2)

Here yi. is the spin-angle function, %ps is the 1psyz normalization constant [51], and cdp3
—3.20/R is the energy

level of the 1p3y2 state. We express the spin-angle function in terms of spherical harmonics and Pauli spinors, and
substitute ~AD03)' = P (lm; —M —m~1 —;—M)Yj ~Aspz)' for the ADp3 spin-flavor wave function (the same as
Aspl ) to obtain

'
(Aspl()cc —m)~A, oq~B(v)) = —V 3 A (zv; 1(1~ 21; zp, —m) (Iaia, IMi M~IBIM', 00), (C3)

u~ ...(p, ~) = —— ' "' ) ) z'( —1)'(lm; —,'p, —m((1-,', ', p)YI*.M( )—
3 (2zr) 32cd(,

x ' (Ssoi(V, —m)~lArrq~~s(x))' fS xYi q(x)Y; (S)YrM (i)j).(kx)

x (h, [gl (Cd, r)gl(Cdpsr) + gp(Cd, r)g3(Cdpsr)]

+~.( .+ ~ —,.)[~ ( ")~ (,")-~.( ")~.(.")])

) ) (—].) i v 2I, + 1YgM(k)u~ ) (k)(IO; 10[I1; 10)
47l f /3cdg

x '(Asol(p —m)~&i(rg~B(&))' (1m' zp m~12' zp)(L'M'1 mlIli &) (C5)

u~ l (k) = K,I(I„2Rj ((—d, R)j (cd„R)jr,(&R)

R
+((d + cd/ cdp3) dr r gl (kr) [gy (cd r)gy ((dp3r) $0(cd r)$3 (cdpst)]

0
(C6)

The coupling constants A are the same as in the BM i-+ Aspic case (Table II), and after lengthy algebraic manipulation
of the Clebsch-Gordan coefficients and 6j symbols, we obtain the vertex function
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pA
vAz, „(k;p, , v) = (Iaia,. IMiM IIaIM, 00)

47r Qcdy

x ) ) (—1) i /2L+ lYL~(k)(LO; OILl; 10)u~ (k)
LM mq

x (lm; —p —ml12, 2p)(LM; 1—mlI1; lq) (2v; lql21; 2p —m)
AAuA „(k)(I z; I i IIaI~, 00)(—v, 2p —vl 22, 2y) Y2(„)(k)47rfQCdk

The separable potential v~ ~ corresponds to meson-baryon scattering through the intermediate ADo3, Fig. 2; i.e.,
using Amos for Bo in (18),

vp. '(k' k) = ).(&(~') III.IADos(v)) (ADos(v) III l~(v))E —MDO3

z . ~ ..~( ') A .. ( ) (Iaia, ;I~ zM IIa IM;00)(Iaia, I~z~lIaI~'00)
167I f QCdk Mg' E —MD03

x ) Y2(„„)(k)Y2( „)(k')(-'p; 2v —mul 22; 2v)(2 p, '; 2v —mu'I-'2; 2v). (C8)

The partial wave projection of v(aos) involves extensive algebra and yields (34).

APPENDIX D' HM ++ Z~zs(1385) PQTENTIAL

The bare ZJ zs(1385) is a single u, d, and s quarks in a 10 representation of SU(3), with all quarks in the ls state.
The transition BM ~ Z~q3 thus has one quark changing its Aavor-spin state after absorbing a meson. The vertex
function and form factor for the Foch-space Hamiltonian (A4) are accordingly

Vo,". (k) = Zs(t2vg „(k)B , o

v~ „(k)= Zs(t2 (EazslII. lcz)Bo

1 d'r
2f Q(27r) '2&uk

11V, dr
2f 4~ g(2~)'2~k

e'"'jo(~ &)j~(~.&)~.'(~»slA'~. rlB)'

e* '(Zagsli8, qg, psA, qz, +i 9„~I,qz, p psA, q~, IB)

(Dl)

(D2)

(D3)

(D4)

1 N, —2

2f 4zr Q(2zr)'2~g
d r b, 4zr ) i jl, (kr)YIM(k)YLM(r)

LM

xjo(~.r)j j.(~.r) ) —Yj*q(r)' (Zazs
I
A;o, IB)'

2 2 ) .Yi*,(k)jo(~.&)ji(~.&)j~(k&)'(~»slA'~qlB)'.
4f zr (dA,

(D5)

To obtain the vertex function, we substitute (Bl) for the ls quark wave function, substitute the partial wave expansion
of the plane wave, substitute the explicit form for cr r", and use the signer-Eckart theorem

4' 1) Yj (r)oq, o+z o = + (0~ + o'y)~ Oz~

'(&»s(p)IA;o, lB(v))' = A (-', v; lql; —,'1-', y)(Iaza, IM4sIIaI~, 1o)

vz~„(k; y, , v) = (2v; lql21; 2p)(Iaza', IMzMIIaIM, 10)
27r f 3(dk

x Y,*(„„)(k)jo(~.B)ji (~.B)jz (kB).

(D6)

(D8)

The calculated coupling constants A~ are given in Table II. The potential v( )(k', p, ', k, p) is similar to v( ), but
now with an intermediate Kaqs (Fig. 2):
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p. '( ' k) = ).(&(p')III. I~»s(v)) E M (~»s(v)IH l~(~))E —Mg)3

I
'""'(" )"(""»',, (k a), ,(ka)~,.~..

12zr f g(dki (dk E —M2 ls

x ) Yi( „)(k)Yi( ~ )(k')(2p; 1v —mul 21; 2v)( —p'; 1v —mu'I —1; —v)

x (Iris' zg~., IM~ zMi IIrzi I~i, 10)(IgzIi, I~zM II~I~, 10).

(D9)

(D10)

Its partial wave projection via (22) yields (35).

APPENDIX E: CONTACT POTENTIALS

The space-derivative part of the contact potential is

.'(a
I
yds*e„q, .f...,~, (k'+ k) . &"(k-k )'&,.Ia)'

8f (2zl ) g(dk(dA, i

~ 2 R
drdn„rjp((d r)j i ((d r) (B

I f~ jAj O'IB')
4m

e ik' r(1' X k)eik r + (i' X ki)e ik' reik r

4(2zr) f Q(di (dpi

(El)

where we have substituted for the quark wave functions qz, and qz, . Since r x k and r x k' are the angular momentum
operators acting on e' ' and e' ', substituting the partial wave expansions of the plane waves yields

iI(I2A
vp' (k', k) = ) . Yi (k)Yi~ (k )2zr g(dy(dpi lmm'

dry p(~.r)i i(~.r)i i(kr)i i(k'r), (E3)

A = '(B'(p')I f;;~A~crIB(p))' dO Yi*,LYi

= ).(-1)' d~.Y* L.Y- '(a'(~') If".~' —.Ia(~))'

1 j.
='(&'llf:u~, ~II&)f ) (—&) +'+'v'(((+&)(2~+&) * ' . )

x(i p; lml2il; jm'+ p')(2ip', lm'I 2il; jm'+ p'), (E4)

where we have used the tensor notation for (r q and Lq as in (D6), the Wigner-Eckart theorem, and many manipu-

lations. The calculated coupling constants A&' are given in Table II. After substituting all these relations back, we
obtain

vp" (k', k) = —K, Ap'~ (I~z~, IM zM
I
IgI~, IO) (Ig~ zii~, IMI zM IIii IMI., IO)

x (—1)'+'+ &

I,jM, lmm'

x ( 2 p; lm
I 2 l jM) ( 2)M', lm'

I 2 l jM) Yi* (k)Yi~ (k') $6l (l + 1)(2l + 1)

dr rj ()((d,r)j, ((d,r)j i(kr)j i(k'r) —' —' 1

2f 7i vtidy(dpi l l (E5)

The equations for v( 'l and v(' l have the same form as Eqs. (2.8) and (2.9) in Ref. I17], but the coupling constants
(spin-flavor matrix elements) in Table II are difFerent. Finding the partial wave matrix elements of the potential v("l
is more complicated. We start with the definition (19), apply the orthogonal relations of the spherical harmonics, the
properties of the Clebsch-Gordan coeKcients, and lengthy manipulations to obtain (43).

APPENDIX F: EXTENDED HAFTEL-TABAKIN TECHNIQUE

We give here our extension of the Haftel- Tabakin technique I28] for solving the Lippmann-Schwinger equation (23).
For each channel p the integrand in (23) contains an integrable singularity at the "on-shell" channel momentum
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kp& —kp defined in (17). To permit numerical integration this singularity is removed by subtracting a term from the
integrand which leaves the integrand nonsingular [28], and then adding in the integral of the subtracted term:

p2V(k', p)T(p, k)
dp E —E(p) + ie

p2V (k', p)T(p, k)
dp E —E(p) + ie

+2pkpV(k', kp)T(kp, k)

p2V(k', p)T(p, k)
E —E(p)

—vripkp V(k', kp)T(kp, k),

2pkp2V(k', kp)T(kp, k)
k2 —p2+ i~

OO 1
citp

ko2 —p2 +is
irpkp2V(k', kp)T(kp, k)

k —p2

(F2)

where the right-hand side of Eq. (Fl) is evaluated analytically and where p = p~ is the relativistic "reduced mass"
for channel p:

=' dp'
2 de

Ei (kp~) Ei (kp~)
Ei(k ) + Ei(kp )

(F3)

We solve the integral equations (23) by approximating the integrals as sums over N Gaussian grid points (p; ~i = 1, N)
with weights (io;~i = 1, N):

T~.(k', k) = V~. (k', k) —) 2i&,k„v~, (k', k.,)T,.(kp„k)

2 ). p2Vp~(k', p, )T~ (p;, k)
7r E —E~(p, )

2p~kp2 Vp~(k', kp~)T~ (kp~, k)
2 2ko —p,-

(F4)

We convert (F4) to the set of linear equations

1%+1

Tnp, m~ ——Vnp, m~ + Vnp, 'p G.pTz
p=1 i=i

(F5)

by defining the supematrix elements for G, V, and T:

Vp (p„,p ) (n= 1N, m
Vp (kpp, p ) (n=N+1, m
Vp (p„, kp ) (n= 1N, m

, Vp (kpp, kp ) (n=N+1, m

2~-p.'l [~(E —E~(p-)1
2@~ P, ,[2'—, kp2 /7r(kp2 —p2)]—

= 1N),
= 1N),
=N+1),
=N+1),

zko&2p&

(n = 1N),
(n = N+ 1).

[Tl = [V)+ [VG]IT]
[1 —VG][T] = [Vl

[T] = [1 —«1 '[V].

(F8)
(F9)

(F10)

Because the solution for T is numerically intensive, we
have made a number of improvements to our former tech-
nique. First, while we previously determined the actual
inverse [1 —VG] i and evaluated (F10), we now solve
(Fg) for T using Gaussian elimination. This is 30'Fp

Here T p are the N, (N + 1) unknowns for N, chan-
nels and N Gaussian grid points (the +1 arising from
the on-shell point). The potential V is taken as the sum
of the 5 terms in (18), N, = 5 for the five independent
isospin channels in (24), and we use 24 or 32 Gaussian
grid points in each channel. We then solve the N2 (N+1) 2

coupled equations (F5) by rearranging the matrix equa-
tion

faster than matrix inversion. Next we obtain an even
greater savings by utilizing the symmetry of the poten-
tial V and the diagonal nature of the Green's function G
to reformulate (F9) as

[G ' —V] [GT] = [V]. (F11)

Since [G —V] is symmetric, we solve a symmetric linear
system of equations for [GT] which is much faster than
a general system. From this [GT] we easily obtain the
value of [T] since [G] is a diagonal and its inverse is quick
to compute.

If there are some elements of G which vanish, the re-
formulation is a little more complicated. For example,
we assume the last element of G vanishes while none of
the others do (if it is not the last element, we can always
rearrange columns and rows to make it last). The linear
system is now
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1 —vg 0 t
—v g 1 t„ t~

V Vc

v„vM (FI2)
—v„gt+ t„=v„,

—V7 gt& + tM ——VM ~

(F15)

(F16)
Here v is an (M —I) x (M —1) symmetric matrix, g is a
(M —1) x (M —1) diagonal matrix, t is a (M —1)x (M —I)
matrix, v„and t are (M —I) x I row matrices, v, and t,
are (M —I) x 1 column matrices, and v~ and t~ are the
lower right-hand corner elements of V and T. We split
(F12) into the equations

(I —vg)t = v, (»3)
(1 —vg)t, = v, (F14)

and solve for t and t, with the symmetric matrix v (this is
fast). We then solve for t and t~ if needed. If there are
several elements in G which vanish, we follow the same
procedure recursively until we are left with a symmetric
system to solve. In practice, the direct lower triangular—
upper triangular (LU) decomposition method took 1214
s on an IBM RS/6000 Model-530, while the method using
symmetry took 493 s.
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