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Color transparency and final-state interactions in photonuclear charmonium

production
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The final-state interactions of quasielastically photoproduced charmonium have been computed
in a quantum-mechanical QCD-inspired model for a range of photon energies and nuclear targets. In
this model, charmonium in its rest frame interacts with an array of nucleon flux tubes via its color
dipole moment as color electric fields “flash” on and off around it. The photoproduction amplitude
is modeled as the narrowest superposition of open charmonium channels available at a given photon
energy. A complete calculation of the final-state interactions has been performed; this involves
retaining all the charmonium states present in the initial amplitude and produced upon interactions
with the medium, and allowing them to scatter into each other upon further medium interactions.
This work permits the computation of A% /A with and without “transparency”; the results support
the utility of a study of the energy dependence of A*% /A in elucidating transparency in the exclusive
process considered. Moreover, a comparison of the underlying J/vy-nucleon cross section with that
deduced from a Glauber analysis of the computed A dependence shows the Glauber analysis to be
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misleading.

PACS number(s): 24.85.+p, 25.20.L;j

I. INTRODUCTION

In this paper the final-state interactions of photopro-
duced charmonium with the nucleus have been calcu-
lated in a QCD-inspired model. In QCD, the interac-
tions of a color singlet cluster of quarks with the nuclear
medium depend on the relative separation of the quarks
in the projectile. Consequently, a “small” color singlet
state produced in the nucleus at large energies may in-
teract weakly with the medium. In this case, A%, the
total number of nucleons participating in the reaction,
is roughly A. This effect, called color transparency by
Brodsky and others, if observed experimentally, would
be striking: one can have “weak” strong interactions
[1-5]. Color transparency has most often been discussed
in the context of quasielastic (e, e’p) and (p, pp) reactions
at large Q?, where a “hard” (large Q2) process is presum-
ably followed [and, in the (p,pp) case, preceded as well]
by “soft” interactions with the nuclear medium. In these
reactions, pQCD arguments indicate that the initial state
produced by the hard process is “small” — relative to the
size of the proton — and these arguments suggest that
A°® /A — 1 at large Q2 [4,5].

In the present paper quasielastic charmonium produc-
tion is considered for the exclusive process in which the
J/ carries off the maximum momentum consistent with
momentum conservation (large zp, zero pr), as a func-
tion of the photon energy E,. By definition, the initial
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production process is “soft” [6], yet it will be argued that
the initial state in this case may also be small. In what
follows, it will be assumed that this produced charmo-
nium state is small relative to the size of the J/v, and
the final-state interactions will be computed as a function
of photon energy and Ansatz for the initial charmonium
amplitude in a simple, QCD-inspired model in a numer-
ically exact way. The highest energies explicitly consid-
ered here are a few tens of GeV. In this energy regime,
the approach of A°f /A towards 1 as a function of photon
energy would be regarded as a signature of transparency.

This work represents a departure from conventional de-
scriptions of hadronic final-state interactions in two dif-
ferent ways. First, the assumption of a spatially small
initial state means that the initial amplitude is a com-
plicated superposition of charmonium eigenstates, rather
than an amplitude for J/4 production alone. Second, the
propagation of the small superposition of states through
the nuclear medium implies that quantum mechanical co-
herence effects in the final-state interactions cannot be,
and are not, neglected. The Glauber formalism com-
monly used to treat hadronic final-state interactions as-
sumes that the projectile interacts independently with
the nucleons of the nucleus, ignoring these coherence ef-
fects. The primary goal of this paper is to compute the
final-state interactions in the nucleus when such coher-
ence effects are included. The results will be compared
with the conventional formulation where these effects are
neglected. In this way, a model calculation of the final-
state interactions is realized. The comparison of A /4
with and without “transparency” as a function of energy
and initial state Ansatz is an unique feature of this work.

One can also use this model study to examine the effi-
cacy of the Glauber analysis in extracting the total J /-
nucleon cross section from the measured A dependence.
That is, the underlying J/v-nucleon cross section is well
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defined, and this cross section can be compared with the
cross section deduced from the calculated A% /A, using
the Glauber formula. To the extent that transparency ef-
fects are present, the Glauber analysis is misleading as it
yields cross sections which are smaller than the “known”
J/¢-nucleon cross section given by the model [7].

The idea is to construct a model in which the compu-
tation of the final-state interactions, including coherence
effects, can be effected. This computational limitation
constrains the complexity of the model which may be
considered; indeed, many of the model assumptions are
heuristic. The model adopted here is a refinement of the
model adopted in Refs. [8-10]. The model will now be
outlined; the logic of the various choices is explained in
detail in Sec. II.

(1) Charmonium itself is modeled with a non-
relativistic harmonic oscillator, so that its rest-frame
Hamiltonian is given by

(e)®
2pc

Here the values p. = 0.92 GeV and Aw = 0.24 GeV
are used. C is defined so that Eq. (1.1) reproduces the
empirical J/v mass.

(2) The initial state of the charmonium system in co-
ordinate space is chosen to localize the state as well as
possible. For a few tens of GeV, threshold effects alter
the initial state. Consequently, the initial state is chosen
as the smallest state which can be constructed from the
available s-wave channels. At large energies, the initial
state is chosen to be

b= (%) oo (-5)

T

1
Hy(F) = — VZ+ iucwzrz +C. (1.1)

(1.2)

where «a;, and the size of the state, are limited by the
Compton wavelength of the heavy quark.

(3) The nucleons in the nucleus are modeled as flux
tubes; the color electric field of the flux tube is chosen to
be an uniform field in U(1) color with a circular bound-
ary. The radius of this circle is chosen to be 0.8 fm. The
field strength in the lab, E!2P  is chosen to be the meson
Regge string tension, such that |eE2P| = kpegge ~ 0.9
GeV/fm. The approximations leading to this choice of
geometry are illustrated in Fig. 1.

(4) The interaction of the charmonium wave packet
with the field of the flux tube is that of an U(1) color
electric dipole. Working in the charmonium rest frame
(defined by the mass of the J/%), the interaction Hamil-
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FIG. 1. Successive caricatures of the nucleon. The repre-
sentation of the nucleon as a “Y-shaped” flux tube is approx-
imated by a quark-diquark geometry, and the field configura-
tion of the latter is represented as a uniform field with circular
boundary.
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tonian is chosen to be of form

Hint(t) = —eyEQ) - 7O(t — 61)O(ts + 7/v — t) .

str

(1.3)

In this frame, the electric field is assumed to illuminate
the c¢ wave function uniformly for a time given by 7/,
where 7 = 7/c and 7 is the width of the flux tube in the
laboratory frame. The model is fit to (E,) =~ 120 GeV
photoproduction data to yield a flux-tube width of 7 =
1.3£0.3 fm. The field is assumed to be purely transverse
to the direction of motion of the c¢; consequently, the
magnitude of the electric field in the laboratory frame is
scaled by the Lorentz factor « in the rest frame.

(5) The multiple scattering of the c¢ wave packet with
the nucleons of the medium is modeled in the follow-
ing way: the nucleon-flux-tubes are assumed equally
spaced, where the spacing of the centers is given by
Dgpac = 2(3/47rp‘l;‘nif) 1/3 and pfnif is the uniform equiv-
alent density of nucleus A. The charmonium executes
straight-line motion through the nuclear medium (see
Fig. 2). The fields of the nucleon-flux-tubes are randomly
oriented around the transverse axis, so that observables
are obtained after averaging over the ensemble of flux-
tube orientations.

(6) The observables of interest are the occupation prob-
abilities |(1¢|¢cc(t))|? of charmonium in its J/1, x, or
1’ states after N flux tube interactions (see Figs. 7-12).
These probabilities can be connected to the 4°% /A asso-
ciated with the production of a particular c¢ state. Two
possible reaction mechanisms exist at high energies (see
Fig. 3). J/v may be produced either via a “shadowed”
process, i.e., via a long-lived virtual tower of hadrons
[11], or via a “direct” process, in which the c¢ fluctuation
is knocked immediately on-shell — this is the mechanism
considered in this paper. The importance of shadowing
with energy is estimated in Table II; for photon energies
of a few tens of GeV, it is not important. For direct J/
production, so that shadowing is ignored, A°%/4 is

[Aeﬂ] _ [adzd?bpa(2,b) Py y(Neg(z,b))
Al fAdzd2gpA(z,b)

(1.4)

pa(z,b) is the nuclear density, and Neg(z,b) is the effec-
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FIG. 2. Schematic of the medium the cc wave packet en-
counters in its exit through the nucleus after its production at
point P. The field configurations of the successive nucleons
may have some orientation 6; with respect to the first, though
in this figure all the nucleons are aligned. The schematic is
realized with a 4 : 7 ratio commensurate with that of Be.
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FIG. 3. Charmonium photoproduction at very high (a) and
at very low (b) energies. In (a), the photon may fluctuate to cc
well in advance of the target, so that the photon’s interaction
with the nuclear medium is primarily hadronic. In (b), the
photon interacts weakly with the nuclear medium and may
produce cc at point P.

tive number of nucleons with which the c¢ superposition
interacts, given an initial production point (z,g). z and
b are defined with respect to the center of the nucleus;
z is the reaction coordinate of the c¢ tower, parallel to
the incoming photon, whereas b is the impact parameter.
Pj/y(Neg(2,b)) is the J/1 occupation probability after
N.g flux tube interactions, normalized to its content in
a given initial state. Neg is given by

Neﬂ'(z$b) = [(;tjéi(‘zD—’b):l—c—)] 3

where ¢ 4(z, b) is the nuclear thickness function, t4(2,b) =
J°dz' pa(2',b), and the in-line brackets denote “near-
est integer.” Equation (1.4) can be understood as aver-
aging the J/1 occupation probability obtained after NV
flux tube interactions over the nuclear volume, weighted
by the nuclear density. In this way, A°®/A for J/v, x,
and 7’ production can be calculated, and its energy de-
pendence is determined by varying v in Eq. (1.3) (see
Tables X-XII).

The exact numerical calculation is made possible
through the structure of Eq. (1.3). One has a time-
independent Hamiltonian — either with or without the
cé-nucleon interaction — which persists for some finite
length of time. The time-dependent development of the
wave packet then becomes a superposition problem. Con-
sequently, the exact evolution of the cc wave function
with time can be computed from the eigenfunctions and
eigenenergies of ¢¢ within the nucleon flux tubes. The
number of states which must be retained in the evolu-
tion matrix for a meaningful calculation greatly increases
with energy; this limits the highest energy which may be
considered here to a few tens of GeV.

The basic model considered here was adopted previ-
ously by Hiifner et al. [8], Quack [9], and Blaizot et al.
[10]. The version considered here is more elaborate: the

(1.5)

nucleons are treated as flux tubes of finite, rather than
of infinite, length. The probabilities of producing J/,
X, or ' states as a function of energy and number of nu-
cleon interactions are computed explicitly. In addition,
the energy dependence of the shape of the photoproduced
charmonium state has been considered, as well as the con-
nection between the evolution of charmonium through a
sequence of flux tubes to its passage through a nucleus
with some given charge density. The other works were
interested, rather generally, in the interaction of a fast
c¢ with the nuclear medium. Here the specific process
considered is zero pr, quasielastic J/9 production from
nuclei.

The calculation of A°® /A with energy shows the overall
change of A°® /A to be less than 20% in the energy range
E, = 8.5-20 GeV, even though many of the model’s as-
pects enhance the effect of transparency. Moreover, in
the energy range considered, A°f/A may oscillate with
energy (see Table X). The overall change of A°f /A is not
large, yet the relative effect can be enormous. That is,
a computation “without transparency” yields less than
a 2% change in A°% /A in the same energy range, where
“without transparency” means that the initial superpo-
sition is the J/1 eigenstate and that only the J/4 state
is retained in the propagation of the ¢¢ wave packet be-
tween nucleons (see Table XI). Again, this comparison
is a unique feature of this work: the energy dependence
of A°®/A with and without transparency is computed in
the same model. Although the change of A°®/A in the
energy range considered is not large, this work supports
the use of the empirical behavior of A /A4 with energy as
a signature of transparency. Another interesting result of
this paper is that an increase in A°® /A with energy, albeit
much weaker, can be seen even if the initial superposi-
tion is just the J/4 eigenstate. Even if the initial state is
an eigenstate, the final-state interactions themselves will
produce a superposition of states, which will oscillate in
time, with a period (in the wave packet’s rest frame) de-
termined by the level spacing of the hadron spectrum
(see Figs. 7-9). In the lab frame, this period dilates, so
that “snapshots” taken in the lab frame at a distance d
from the initial interaction point at successively increas-
ing momenta show the wave packet at earlier and earlier
moments in its rest-frame expansion. Thus, as a nucleus
is of finite size, it “sees” more of the initial state as the
momentum increases. This illustrates the essential role
of the final-state interactions in yielding transparency.

The high energy limit of the model is used in various
ways. At high photon energies, the differing time de-
velopment of the states in the superposition due to the
small, but finite, differences in their masses is suppressed
by time dilation, so that the expectation value of the rela-
tive separation of the quarks becomes stationary in time.
Thus, this is called the “frozen” limit. In this model, this
limit can be explored analytically. This serves as a useful
check of the numerical calculation, provides a convenient
way of fitting the flux tube width 7, and is useful in pro-
viding qualitative insight. In this model in this limit,
A°f /A is energy independent because the product of the
field strength and the interaction time is energy indepen-
dent. This eventual saturation of A°® /A with energy has
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been predicted in other models of transparency [12-15].
Here the role of shadowing at very high photon energies
is also addressed, albeit superficially, and it is suggested
how the additional reaction mechanism might modify the
expected saturation of A°®/A at hundreds of GeV. In
addition, the J/- and '-nucleon cross sections can be
readily computed in perturbation theory and compared
with the exact numerical results. The poor agreement
serves as an explicit demonstration of how the existence
of transparency and the applicability of perturbation the-
ory need not be linked.

In order to effect the described calculations, many sim-
plifications have been made. It is useful to highlight some
of these simplifying assumptions, so that the limitations
of the model can be better understood.

This entire work assumes that the physics of the pro-
duction step can be factorized from that of the final-state
interactions. That is, the initial amplitude is taken to be
a superposition of physical charmonium states. Although
some separation of time scale may exist, it is clear that in
order to construct a complete description of the process,
including the production step, this assumption must be
broken, as final-state interactions must act to knock the
initial hadronic fluctuation on-shell. Although this is a
nontrivial complication, and ultimately an essential one,
it is deemed unimportant for a study of the phenomeno-
logical impact of such coherence effects, as is the goal
here.

The inclusion of open channels, such as DA, or 7 pro-
duction may have a significant impact, but they have
not been included. As it is highly impractical to in-
clude all these channels explicitly, some appropriate op-
tical model to describe the loss to the open channels
should be constructed. As transparency exists because
of rescattering to the J/v channel through final-state in-
teractions, it would seem that the inclusion of open chan-
nels should weaken the effect of transparency with energy
(see Figs. 13-15).

The charmonium rest frame has been defined by the
rest mass of the J/v. The mass of the charmonium sys-
tem, however, varies strongly with excitation, since no
strongly bound system is genuinely nonrelativistic. Per-
haps additional momentum-dependent phases should be
introduced to describe the boosts of the excited states of
charmonium in their rest frame to the J/v rest frame,
though this has not been done. As the photon energy in-
creases, the relative boosts of adjacent states do become
smaller. However, this additional dispersion of the wave
packet could also weaken the transparency effect in the
energy range of a few tens of GeV.

There are also some computational simplifications: the
ce-flux-tube interaction is assumed to “flash” on and off,
the flux tubes are treated as if they are purely trans-
verse, and they are assumed to be equally spaced, in or-
der to simplify the Monte Carlo integrations. Probably
the first is the most uncontrolled of these approxima-
tions. The uniform illumination of the c¢ wave function
by the nucleon’s chromoelectric field in Eq. (1.3) assumes
that the nucleon width is large compared to the size of
the charmonium wave function in the charmonium rest
frame. At very high energies, the Lorentz contraction
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of the proton wave function at rest invalidates such an
assumption. Seemingly, then, the passage of the narrow
proton — here a narrow flux tube — through the c¢ wave
function should be calculated explicitly. However, the
appropriate longitudinal dimension to be assigned to a
real proton boosted to high momenta is a matter of some
question [16-18]. At any rate, the computation of the ex-
plicit passage of a narrow flux tube through the charmo-
nium wave function is a much less manageable problem;
the choice of Eq. (1.3) is necessary to effect the compu-
tation. The interaction choice made is consistent with
grafting relativistic kinematics to non-relativistic quan-
tum mechanics. In the laboratory frame, the uniform
illumination approximation to the cé-nucleon interaction
is an excellent one; Galilean invariance requires that this
interaction be equivalent to the physics of the center of
mass frame. Certainly, the interaction Hamiltonian used
should be at its most meaningful in the near threshold
region considered.

The last three limitations discussed may modify the
energy dependence of A% /A computed in the E, = 8.5
to 20 GeV region. The qualitative discussions in the high
energy limit should be insensitive to the details of the in-
teraction. Although it is difficult to ascertain the effect
of the above computational simplifications on A°f /A, the
neglect of open channels and the choice of the charmo-
nium rest frame likely enhance the variation of A°f/A
with energy. These choices, linked with the use of an
optimally small initial state, make the final estimate of
the energy variation of A°f /A rather optimistic. Conse-
quently, the small effect in A°f /A seen (< 20%) in the
energy range studied strongly suggests that higher ener-
gies are required to observe transparency in this process.

In this paper, zero pr, large zr, quasielastic J/v pho-
toproduction is considered. For this exclusive process,
the states of the charmonium superposition are produced
more and more nearly on-shell as the photon energy in-
creases. Thus, in constrast to large-angle, quasielastic
(e, €e'p) or (p,2p) reactions, all the interactions are soft.
In this case, this behavior makes it reasonable to expect
that the initial photoproduced superposition of states be-
comes small in size as the photon energy increases. That
is, since the photon is pointlike, a fluctuation of the pho-
ton into charmonium states is also roughly pointlike. In-
teractions with the nucleon at the point at which the fluc-
tuation is produced could disrupt its initial size, yet this
possible effect should be strongly mitigated as the photon
energy increases, since the states of the charmonium su-
perposition become more and more nearly on-mass-shell
with energy in this exclusive limit. This process is also
convenient in that fixing the pr and z of J/9 to the val-
ues desired here (presuming a known photon energy) is
sufficient to specify the exclusive process. That is, other
processes, involving multiple particle production, could
produce a J/¢ with pr = 0; yet, such J/¢’s will always
have momenta smaller than the maximum J/4¥ momen-
tum permitted in pr = 0 quasifree production.

The existence of transparency in J/v photoproduc-
tion is not necessarily restricted to this particular ex-
clusive process; however, it can become difficult to “pick
out” experimentally. For example, one can also study
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quasielastic charmonium production as a function of pr
and zp. For zp away from 1, regardless of pr, J/v de-
tection alone is not sufficient to determine the exclusive
process uniquely, as various processes, with different fi-
nal states, could produce a J/9 with the same pr and
zr. The exclusive process, in such a case, can be specified
only through a coincidence measurement of the produced
J /v and knocked-out nucleon. For nonzero pr and large
zp, the exclusive process is well specified, but the ar-
gument presented for the “smallness” of the initial state
no longer applies. As to other exclusive processes, in
which additional particles are present in the final state,
the worry is that contributions to the process that result
from multiple particle production at the initial produc-
tion step need not possess a small initial charmonium
state.

Color transparency and J/v production were first dis-
cussed on general grounds by Brodsky and Mueller,
though they were primarily concerned with p — A re-
actions [12]. Farrar et al. considered color transparency
in inclusive J/1¢ production and computed A°%/A as a
function of the lab momentum of the J/v¥ in a semi-
classical approach [13]. Kopeliovich and Zakharov have
recently considered c¢ photoproduction in the same ex-
clusive limit discussed here [14]. They, too, have a non-
relativistic quantum mechanical model, but apply it to
photon energies between 20 and 160 GeV. Their inter-
action is purely imaginary and is of harmonic oscillator
form, proportional to the nuclear density. Their model
of the initial amplitude is also different. The model pre-
sented here is of a more microscopic nature. Though not
applied to c¢ production, a quantum mechanical model
of transparency has also been presented by Jennings and
Miller [15]. Discussions of other possible phenomenologi-
cal manifestations of color transparency and an extensive
set of references are presented in reviews by Frankfurt
and Strikman [19] and by Kopeliovich [20].

The model is described in detail in Sec. II. Its solu-
tion in the frozen limit — realized at large c¢ energies —
is presented in Sec. III. Here the J/1- and %’-nucleon
cross sections can be readily computed in perturbation
theory and compared with the exact numerical results;
this serves as an explicit demonstration of how trans-
parency can exist even when perturbation theory fails.
The existence of shadowing at very high photon energies
is also considered, albeit superficially, and it is suggested
how the additional reaction mechanism might modify the
expected saturation of A°®/A at hundreds of GeV. In
Sec. IV the evolution matrix calculation of charmonium’s
final-state interactions is presented, and it is shown that
the results of this formalism go smoothly to those of the
frozen limit as the photon energy increases. The results
of the evolution calculation are various, and they are de-
scribed in Sec. V. That is, as a function of the energy
and initial amplitude, the probabilities for the charmo-
nium superposition to be in either a J/4, x, or ¥’ state
are calculated as a function of the distance after the pro-
duction point for Be, Fe, and Pb nuclei and compared
simultaneously to the wave packet’s transverse size. The
occupation probabilities can then be converted into an
A°® /A for J/9, x, or ¢’ production for a particular nu-

cleus through integration over its nuclear density. The
J/¢- and 9¥'-nucleon cross sections are also calculated;
the model’s J/9-nucleon cross section is compared to
that deduced from a Glauber analysis of the computed
A dependence for J/1 production. Section V is followed,
finally, by a concluding section summarizing this work
and future prospects. Technical details essential to a
complete description of the work, yet deemed disruptive
to the flow of the main discussion, are relegated to ap-
pendices. Suggestions as to how information about the
quasielastic process discussed here can be extracted from
experiment are described in Appendix A, and an evalua-
tion of the various empirical ways the J/v-nucleon cross
section may be inferred is given in Appendix B. Appen-
dices C, D, and E contain details specific to the model.
The fit to obtain the flux tube width 7, the computa-
tion of the charmonium eigenenergies and eigenfunction
within a flux tube, and the construction of the initial
state Ansdtze are described within respective appendices.

1I. THE MODEL

The model described below combines many features
well-known from phenomenological models of confine-
ment motivated by QCD. I shall describe, in turn, the
picture of charmonium, the nucleons in the nucleus, and
the charmonium-nucleon interaction. I shall then pro-
ceed to discuss the nuclear picture, the reaction mecha-
nism, and the model for the initial photoproduced am-
plitude before turning, in Sec. III, to the computations
in the frozen limit.

Nonrelativistic quark potential models with Coulombic
and linearly confining potentials have long been success-
fully applied to the charmonium system [21,22]. Though
spin-dependent forces are also required to understand
the splitting of the scalar, vector, and tensor x states
and that of the 7, and J/¢ [23], merely the best fit
of a simple harmonic oscillator to the vector states is
considered in the present application, as the technical
complications of spin-dependent forces and linear con-
finement are deemed inessential. w is determined by
choosing 4hw = My (4040) — My (3007), a8 ¥P'(3686), due
to its closeness to DD threshold, is likely not a pure two-
quark state [24]. Following Eichten et al.’s fits [21], the
charm quark mass is chosen to be 1.84 GeV; a charm
quark mass greater than 1.5 GeV is also favored by the
relativized quark model calculations of Godfrey and Is-
gur [23]. With this w and m., the rms ¢g separation in
J/v is 0.52 fm, which is commensurate to but slightly
larger than the previously reported values of 0.37-0.47
fm [25]. Finally, the mass of the J/v is reproduced by
requiring that the harmonic oscillator potential is shifted
by the constant —0.937 GeV. The confining potential is
assumed to persist for all ¢ — g separations, so that no
open channels have been included. The picture is thus
analogous to a “quenched” approximation on the lattice.

Each of the nucleons in the nucleus is modeled as a
static flux tube of finite width. The string model of
hadrons, once purely phenomenological, is now supported
by lattice-gauge-theory calculations [26,27]. That the nu-
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cleon may be modeled as a static string of definite field
orientation is based on strong coupling QCD [28]; in weak
coupling, the string fluctuates and the notion of its field
orientation becomes ill-posed. Indeed, it is these fluctu-
ations which generate, ultimately, a finite string width
and the physical string tension. Here, for tractability, a
static string of finite width is presumed. Moreover, it is
assumed that the field configuration of the nucleon is sim-
ilar to that of ¢g, and that the field of the string is uniform
with a circular boundary [29] (see Fig. 1). These approx-
imations would be heuristic even if models of the nucleon
strongly supported a quark-diquark geometry [30]; they
are made, nevertheless, in the expectation that as the size
of the superposition of c¢ states decreases the field geom-
etry the tower sees should become unimportant — only
the field strength and local orientation should matter.
The field strength is determined by the string tension,
which is chosen to be bregge = 1/27(0.9 GeV™?) =~ 0.18
GeV?, the meson Regge string tension. Lattice-gauge-
theory and quark-model calculations support this choice
(30]. Given that the nucleon can be modeled as a uniform
field of strength determined by bregge, it is necessary to
determine the parameters which specify its physical ex-
tent [33]. The radius of the string configuration is simply
chosen to be the proton’s measured charge radius, 0.8
fm [34]. Its width, that is, the thickness of the planar
qqq flux tube configuration, need not be equal to its di-
ameter; this distance 7 is determined to be 1.3 + 0.3 fm
from a fit in the frozen limit to A°% /A of the highest en-
ergy ({(Ey) = 120 GeV), small pr, incoherent (“incoher-
ent” means production from a single nucleon of the nu-
cleus) photoproduction data available [35] (see Sec. III).
In principle, though perhaps not yet in practice, the
string “thickness” can be measured on the lattice; a re-
cent estimate for ¢g in SU(2). is of the order of 1 fim [36].
(A1l explicit impact parameter averages are ignored here,
so that it is meaningful to speak of a single number 7 as
the string width.)

Charmonium’s interaction with the nucleon flux tube
is that of a color electric dipole in U(1) color, i.e., as in

QED,

‘/int = —EE ST = "ERegge T (21)

where [ERegge[ = bRegge/(Fic). This choice involves two
different assumptions. First, interactions via charmo-
nium’s color-magnetic dipole moment are neglected [37].
Chromomagnetic fields may be generated by the nu-
cleon’s chromoelectric field in two possible ways. The
string beyond the leading order in the strong coupling
expansion fluctuates; the time-varying electric flux gen-
erated by the oscillations of the string produces a mag-
netic field. In the “strong coupling” picture — the straight
string is presumed to have finite width — adopted here,
these magnetic fields do not exist. Yet, even in this pic-
ture, magnetic fields cannot be avoided entirely, as they
can also be generated by Lorentz transformations. In the
charmonium rest frame, given that its laboratory mo-
mentum is parallel to the Z-axis,
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E;eSt = ’yEy: B«LESt = _'Yﬂc'é Eza (2-2)
Erest _ E Brest _ 0
z - zy z -

Here B.z and v are defined through the mass of the
J/4. For the ¢c¢ momenta considered, the transverse mag-
netic and electric fields are of the same magnitude, since
Bee ~ 1. The electric dipole interaction plays a larger
role, however, as the strength of the magnetic dipole in-
teraction — when finite — is suppressed by a power of the
charm quark mass; this, ultimately, is the basis for the
approximation made. As the transverse electric fields in
the charmonium rest frame are a factor of y larger than
the longitudinal component, the flux tubes are taken to
be purely transverse; this is an excellent approximation
for large ¢¢ momenta [38].

The second assumption in the interaction choice is
that it is sufficient to treat the ce-nucleon interaction
in U(1) color. The process considered in this paper is
zero pr, large zp, quasielastic photoproduction; the pro-
duced J/4 in this limit carries off the maximum momen-
tum consistent with energy conservation (see Appendix
A). In order to conserve momentum at the production
point, possibly a nucleon is ejected or soft pions are pro-
duced, yet no additional particles are produced via c¢’s
final-state interactions, by fiat. The interactions among
the cc¢ states in this channel must be, then, color sin-
glet; the U(1) interaction is chosen for convenience. In
perturbative QCD, one can construct a color-singlet in-
teraction from any number of gluon exchanges greater
than or equal to two. The analogue in non-Abelian elec-
trodynamics, in this case, is to combine the terms of the
perturbative expansion for the interactions of the color-
electric dipole with the flux tube’s color-electric field so
as to yield a color-singlet interaction. However, includ-
ing merely the second-order piece cannot be sufficient,
as then transitions between parity-odd and -even states
are forbidden. As the momentum transfers in the inter-
actions with the medium are infinitesimal by construc-
tion, multiple interactions with the medium are not sup-
pressed; in particular, the third-order piece can certainly
be finite. Thus, in the “soft” regime studied here, both
transitions between like and unlike parity states are al-
lowed; the U(1) color interaction is a simple realization
of this physics. (At high energies, however, x photo-
production in this model will be suppressed, due to the
“narrow” initial amplitude used for the photoproduced
charmonium state. This effect is consistent with known
high-energy phenomenology.) The interaction proposed
is purely real, as the potential which describes charmo-
nium is taken to be purely confining. Yet, open chan-
nels arise not only from virtual ¢g pair production, but
also from rearrangements within the flux tube to make

AF + D° and other charmed baryons. The formalism
required to include these rearrangements is described at
the end of Appendix D. For the purposes of the current
work, however, these complications are simply ignored.
Although the interaction is real, it is to be emphasized
that absorptive effects are included in the model. In-
deed, explicit numerical calculation of the forward elastic
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scattering amplitude in the model after passage through
a single flux tube yields a quantity which is predomi-
nately imaginary. The interaction with a single nucleon
is such that an incident charmonium ground state has its
strength fragmented into many different states. Absorp-
tive effects are included via the production of excited
charmonium states. This point deserves further expla-
nation. The coupling of charmonium states of high ex-
citation to the ground state is very small, though it is
not zero. If charmonium passed through an infinite nu-
clear medium, then all the excited charmonium states
could return to the ground state. In this situation, no
absorptive effects could be said to be included. How-
ever, in this case, the length of nuclear matter through
which the charmonium must pass is finite. Upon exit
from the nucleus, I have assumed that all charmonium
excited states are lost from the J/ exit channel. Thus,
in this sense, absorption has truly been included. It is
true that modeling absorption through the production of
charmonium excited states will enhance the significance
of the quantum-mechanical coherence effects discussed
here. Consequently, it is of marked importance that the
effect calculated (< 20% ) in the energy range specifically
considered is so small.

One final assumption about the interaction, or, rather,
its time dependence, must be discussed before I turn to
the model of the nucleus. In the laboratory frame, the c¢
wave packet is “small” relative to the nucleon flux tube
width, so that it is appropriate to write the cée-flux-tube
interaction as

Hine(t) = —eE) 7Ot —11)0(t, + 7 — 1),

str

(2.3)

where t; is the time the c¢ enters the field and 7 is the c¢’s
transit time in the laboratory. Equation (2.3) neglects
any edge effects the cc¢ suffers in passage into the flux
tube. However, the calculation is performed in the ce
rest frame. In this frame, upon neglecting the magnetic
interactions discussed above, the interaction as given in
Eq. (2.3) becomes

Hine(t) = —eyE() - 7O(t — t1)O(ts +7/7 - 1),

str

(2.4)

as the electric field and interaction time are modified by
Lorentz transformation. Equation (2.4) is the interac-
tion adopted in this paper. Yet, in the charmonium rest
frame, one might think that the passage of the flux tube
through the c¢ wave function should be modeled explic-
itly. This Hamiltonian is given by

Hipe(t) = —eyEQ - 70 (z - [zs(t) - ED

x© ([zs(t) + g] —z) .

zs(t) describes the position of the center of the flux
tube with time as it moves along the z axis, that is,
zs(t) = 2,(0) — vt. The equivalence of Eq. (2.4) and
Eq. (2.5) relies on Galilean invariance, but there is no
issue as long as the “edge effects” associated with the
passage of the flux tube through the cc wave function are

(2.5)
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small [38]. At very large vy, the Lorentz contraction of the
longitudinal dimension of the proton’s wave function at
rest indicates that “edge effects” are not small. However,
that does not mean that Eq. (2.5) is the Hamiltonian of
choice. As Bjorken [16] and Kancheli [17] have empha-
sized, a hadron boosted to high momenta has rather lit-
tle resemblance to the simple Lorentz contraction of its
rest frame wave function. It is supposed that the mov-
ing proton is a conglomerate of boosted vacuum fluc-
tations which have coupled to the boosted proton and
the Lorentz-contracted object which contains the origi-
nal three quarks [16,18]. The lowest momentum com-
ponents of this picture — the so-called “wee” partons —
are uncontracted [16,18]. Moreover, it is supposed that
interactions with the wee partons should comprise the
bulk of the diffractive interactions that charmonium suf-
fers in its exit through the nucleus [39]. Discussions of
boosted vacuum fluctations are rather far away from the
scope of the simple model considered here. They have
been mentioned in this context only to indicate that the
relevant longitudinal dimension of the nucleon which un-
dergoes diffractive interactions with charmonium is itself
a nontrivial issue. As the computational effort involved in
solving the multiple scattering problem associated with
Eq. (2.5) is prohibitive, Eq. (2.4) is the interaction of
choice. Thus, the form of Eq. (2.4), though heuristic, is
adopted as the model Hamiltonian, since it contains the
physics deemed critical to transparency: an interaction
which varies as the separation of the quarks, and time
dilation of the c¢ wave packet’s evolution through the
medium with energy.

Upon production at a point 7 in the nucleus, the char-
monium superposition “sees” a regular sequence of static
nucleon flux tubes, where each nucleon has some frozen,
random field orientation transverse to charmonium’s di-
rection of motion [40]. As no particular set of trans-
verse field orientations can be preferred, an observable is
the result of the average of that quantity over the sta-
tistical ensemble of all possible “snapshots.” The en-
semble average, in principle, should be performed over
the nucleons’ orientations as well as over their relative
separations. However, performing an additional ensem-
ble average over all possible flux tube spacings — con-
strained to some total density — is a markedly more
difficult computational problem. Consequently, the dis-
tance between the flux tubes, ¢4, for a particular nu-
cleus is fixed such that the internucleon spacing is given
by Dspac = T + €4 = 2(3/4nph ()1/3, and pA ;; is the
nucleus’ uniform equivalent density, pfmf = 34/ 47ngq,
where Req is the equivalent volume radius. A schematic
drawing of the geometry is shown in Fig. 2, and Dgpac
and ¢4 for various nuclei are given in Table I. Only
the spacing of the flux tubes is computed from p? ..; the
number of nucleons that the ¢¢ tower interacts with, given
a particular production point in a particular nucleus, is
determined from the nuclear thickness function, obtained
from the experimentally determined charge density [44].
(In a sudden approximation, the outgoing tower of cc
states interacts with the matter density of the original
nucleus.) The “crystal” picture presented relies on the
expectation that, in a dense liquid with a strong short-
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TABLE I. The typical nucleon-nucleon separation, £4, as a
function of A. £ is defined as Dspac — 7, where 7 is the width
of a nucleon “string.” Dspac is the typical spacing of the nu-
cleon centers; it is taken to be equal to 2Req/A'/3, where Req
is the uniform-equivalent-volume radius, taken from Ref. [44].

Nucleus Req (fm) Dspac (fm) £ (fm)
Be 3.12 3.00 1.70
Fe 4.84 2.53 1.23
Pb 6.98 2.36 1.06

range repulsion in its pair-wise forces, the inter-particle
correlation function will be peaked around some average
separation Dgpac. The approximation is the insistence
on a linear array. For the purposes of transparency, it
would be preferable to consider a true liquid, as regularly
spaced nucleons could enhance the effect of the coherent
superposition of states. The picture adopted, then, is
consistent with an optimal scenario.

The above discussion implicitly presumes that the pho-
ton may produce charmonium at any point in the nuclear
volume; however, this picture is altered at sufficiently
high photon energies, due to shadowing. Two different
reaction mechanisms exist. Figure 3 presents a schematic
of c¢ photoproduction for (a) the “shadowed” process,
i.e., via a long-lived virtual tower of hadrons [11], and for
(b) the “direct” process, in which the c¢ fluctuation is
knocked immediately on-shell. Following Feynman [18], a
real photon is a bare photon plus a virtual hadron, where
the latter, according to perturbation theory, is weighted
by a factor of 1/AE, with AE = ,/E2 4+ m} — E,, the
energy difference of a momentum state as a hadron with
mass my and as a photon. The factor 1/AF is also an
estimate of the “lifetime” of a particular hadronic fluc-
tuation, that is, crudely, the distance before the target
that the conversion may occur. Table II shows 1/AFE (in
fm) for J/4 production as a function of the photon en-
ergy E.,. One may crudely judge the relative importance
of the “direct” and “shadowed” contributions by com-
paring AE with the typical nucleon separation, which
is of O(1fm). For energies less than 30 GeV, the “di-
rect” process likely dominates, whereas the “shadowed”
process would certainly seem to dominate for energies
greater than 200 GeV. These considerations are essential
in converting the occupation probability of a particular

TABLE II. “Lifetime” of a J/v fluctuation in the labo-
ratory frame given a photon with energy E,. Note that

AE = [E3+m3,, — B,.

E, (GeV) (1/AE),/y (fm)
8.5 0.36
15 0.62
30 1.24
60 2.47
120 4.94
200 8.23
400 16.5

final state computed for a linear array of N flux tubes to
that appropriate for a nucleus A. For the “direct” case,
A /A is given by

[Aeff] _ [adzd?bpa(z,b) Py (Neg(2,b))
A Ly Ja dz d?bp4(z,b)

(2.6)

pa(z,b) is the nuclear density, and Neg(z,b) is the ef-
fective number of nucleons with which the cc_tower in-
teracts, given an initial production point (z,b). z and
b are defined with respect to the center of the nucleus;
z is the reaction coordinate of the cc tower, parallel to
the incoming photon, whereas b is the impact parameter.
Pj/y(Neg(2,b)) is the probability of observing J/4 after
N.g flux tubes, normalized to its content in the initial
state. With this definition, A°% /A for H is 1. However,
in the calculations presented here, this additional normal-
ization will be omitted, so that “A°¥/A” is well-defined
for the higher-mass charmonium states as well, regardless
of the initial state’s content. Note that

vt = | (52|

where t4(z,b) is the nuclear thickness function, t4(z,b) =
J.° dz’ p(2,b), and the in-line brackets in Eq. (2.7) de-
note “nearest integer.” Now for the completely shadowed
case, A°f /A is given by

(2.7)

Aeff bmax b db Py 1oy (Negt|oa
[ _ fo J/¢( fflp th) . (2.8)

A ]w N == b db

In this limit the ¢¢ fluctuation occurs well outside the
nucleus, so that the average number of nucleons partic-
ipating in the reaction is determined by averaging Py,
over the possible paths across the nucleus. by,.x is the
b for which Neg|path = 0. As before, ]5J/¢ is the prob-
ability of observing J/4 after N.g flux-tube interactions
(given some initial state), where Neg|patn is the effective
number of nucleons with which the c¢ tower interacts over
a particular path. Here

(2.9)

Negt|path = [M] :

A
PunitDspac

The in-line brackets in Eq. (2.9) denote “nearest integer.”
Throughout this paper, as a result of the photon ener-
gies considered, the direct process is assumed to dominate
and Eq. (2.6) will be used to calculate A°f/A. Equation
(2.8) will be employed briefly in Sec. III, in an attempt
to discern the qualitative effect of this additional reac-
tion mechanism at large photon energies. In this way,
through use of Egs. (2.6) and (2.7), the occupation prob-
ability for a particular c¢ final state computed for a linear
array of N flux tubes is converted to the nuclear-averaged
probability A°®/A for a particular nucleus A.

The survival of the J/¢ depends on the wave func-
tion of the initial photoproduced state. The photon is
pointlike, so that it is presumed that the photon’s cou-
pling to ¢g is also pointlike. This means, then, that the
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amplitude required for the photon to fluctuate to a par-
ticular charmonium state should be proportional to its
wave function at the origin. This picture is supported
by the the two- and three-photon decays of the s-wave
states of charmonium [45]; these decays are controlled by
the charmonium state’s wave function or its derivative
at the origin. Thus, the photon fluctuates to a tower of
s-wave vector charmonium states; the fluctuation is nar-
row, as the photon is pointlike. For the particular exclu-
sive process considered, the initial fluctuation is produced
more and more nearly on-shell as the photon energy in-
creases, so that it is supposed that the medium interac-
tions which knock the fluctuation on-shell do not disrupt
its small size. Even though the fluctuation is narrow, it
cannot be pointlike, as the size of this virtual state must
be limited by the Compton wavelength of the charmed
quark. That is, the fluctuation’s ¢g rms separation is
such that (7‘2@>1/2 > hc/mgj;y ~ 0.127 fm. Following a
“best case” scenario for transparency, the initial state at
very large photon energies is parametrized as a Gaussian
wave packet of form

NGRS

= (2.10)

where a; = 3/2(r?) and (r2)Y/2 = hc/my;y [46]. (As
a result of interactions with the medium, the amplitude
for | # 0 states may also be finite, but this possibility is
ignored, consistent with the assumption that the interac-
tions which knock the state on-shell do not significantly
affect it.)

Kopeliovich and Zakharov [14] do not assume the
parametrization of Eq. (2.10) for their initial state at
large photon energies. Rather, they calculate the ampli-
tude, in the infinite momentum frame, for a photon to
fluctuate to a free cc pair. In this approximation, the
photon-to-c¢ amplitude is ¥y x Ko(mep), where g is
the transverse separation of the ¢ and ¢. They explicitly
include a two-gluon interaction cross section o(p) with
the nucleon, to write, in the frozen approximation,

¥7 (p) o< Ko(mep)a(p) (2.11)

T (p) is the on-shell initial c¢ wave function in the trans-
verse coordinate. This initial wave function, although
specific to the infinite momentum frame, is used directly
in their evolution calculation for the cé-medium interac-
tions. The latter calculation is formulated in the char-
monium rest frame, as it must be, due to their choice
of a nonrelativistic harmonic oscillator model for char-
monium. The issue of the overall consistency of this ap-
proach is not addressed. Equation (2.11) is of a trans-
verse size comparable to that of the J/+, and, hence, is
J
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rather larger than the initial state used here.

At lower energies, the initial photoproduced superpo-
sition can be affected by threshold effects. For a par-
ticular photon energy, it is presumed that the states
which contribute significantly to the initial amplitude are
those s-wave states which can be physically produced in
quasifree kinematics with a nucleon. Given some num-
ber of states which contribute, the initial state is fixed
by Ansatz: the smallest state which can be constructed
from the available channels is chosen as the initial state
(see Appendix E). This prescription could also enhance
the possible effect of transparency. Alternative Ansdtze
are explored in Sec. V as well.

For near threshold energies, the frozen approximation
which yields Eq. (2.11) is crudely broken, so that Kope-
liovich and Zakharov [14] compute A /A for a variety of
Ansdtze. Namely, they consider %7 (p) « exp(—p?/a?),
where a = (1 — 3)/m,. and the transverse size (p?)1/2 ~
(1 — 3)/m.. The Ansdtze considered in Sec. V have a
somewhat larger transverse size, (p?)1/% ~ (2—3)/m,, in
their units. Kopeliovich and Zakharov do not consider
threshold effects.

The electric-dipole interaction in this model does have
the behavior needed for transparency, and the initial
charmonium superposition becomes “small” at high pho-
ton energies. Thus, it is to be expected that the model
will exhibit behavior consistent with color transparency;
the interesting issue is its magnitude at the energies con-
sidered. Ishall first solve the model in the limit where the
charmonium’s internal motion is frozen and then proceed
to solve it through numerical construction of the evolu-
tion matrix.

III. THE FROZEN LIMIT

Analytical progress can be made when the expectation
value of the ¢€’s relative separation is frozen in its passage
through the nucleus [8]. The Hamiltonian which defines
the eigenstates of cc is

(he)?
2

Hy(F) = — Vit %ucwzrz +C, (3.1)
where p. = 0.92 GeV and Aw = 0.24 GeV. C is defined
such that my,y = 2m. + Egs; Eg is the ground state
energy of Eq. (3.1) (see Sec. II). In the high energy pic-
ture adopted here, charmonium executes a straight line
path through a linear array of N flux tubes, so that as a
function of time, due to passage through the flux tubes,
the Hamiltonian is

Hy(t) = Ho(7) — eEY) - 7Ot — t1)O(t, + 7r — t) — e B2 - 7O(t — t2)O(t2 + Tr — t)

str

— i — BN 7Ot —tn)O(ty + TR — 1) .

str

Equation (3.2) is written in charmonium’s rest frame;
in this model, the electric fields uniformly illuminate
the c¢ wave function for a time 7r. The interaction
time in the c¢ rest frame is g = 7/, where v is

(3.2)

-

the usual Lorentz factor and 7 is the flux-tube transit
time in the lab frame. The flux-tube interactions are
spaced by £, where £ = £4/vc and t; = t;—, + &8,
t1 = EI“%. (é4 was defined in Sec. II, see Table 1) As
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noted earlier, the flux tubes are chosen purely trans-
verse to the charmonium’s direction of motion z, so that
upon introducing cylindrical coordinates 7 = (&, z), one
has |eEstr| = YkRegge@ (R — |5]) with R = 0.8 fm and
kRegge =~ 0.9 GeV/fm. (7, the flux tube width in the
lab frame, will be found equal to 1.3 £+ 0.3 fm through
fitting to the highest energy photoproduction data avail-
able, and ¥ = 7/c.) Tr does not depend on the partic-
ular flux tube encountered as they are purely transverse
to charmonium’s direction of motion. The wave function
U(7,t) associated with Eq. (3.2) may be written as

Vig

R

+ 2
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X _imye
U(F,t) = g(rt) Y e F Cgs() . (3.3)
i=1
Here the amplitude at ¢t = 0 is ¥;(7) = }:N“’" C;d; (7"'),

where Ho¢p; = E;¢;, Nyop is the total number of states in
the initial amplitude, and the C; are constant coefficients.
Due to the interaction, the components ¢; of the initial
amplitude are modified by the same phase factor g(7,t).
Requiring that Eq. (3.3) satisfies iAZ¥ = Hy(t)¥ in
passage through the first flux tube ylelds

—

—eBW .7

[

For sufficiently high energies, (Ho — E;)g(7,t)¢;(7) = 0,
as g(7,t = 0) = 1, so that the terms with spatial deriva-
tives of g become negligible relative to the interaction;
thus, after successive interactions with N fields, g(7,t)
takes the form

g (f‘,t > N(fr + fﬁ)) = exp ( Z eEY . *> . (3.5)

This is the eikonal approximation, and it is valid as long
as ’YIERegge ‘ F] > Tzkfz{egge/2lj'c and > CTkReggeK'rel/ﬂc,
where k¢ is the typical relative momentum of the free
cc eigenstates; these inequalities are satisfied if the c¢ lab
energy is a mere 10 GeV. However, to make the frozen ap-
proximation, that is, to require that the j components of
Eq. (3.3) do not evolve relative to one another — “decor-
relate” — over the width of the flux tube and subsequent
evolution to the next flux tube, one must require that

g

Ntop AE Dspac

g Zl-vm*’ Cjexp(—iE;t/h)¢;

str

)

Niop AE is the energy difference between the top state in
Eq. (3.3) and the ground state, and Dgp,c, as introduced
in Sec. II, is 7 + £. This is clearly a more restrictive
constraint: if Niyop = 10, AE ~ 0.2 GeV, and Dgpac ~ 2
fm, then Eq. (3.6) can only be reasonably well-satisfied
for energies in excess of a 100 GeV. Restricting, then, the
discussion to the frozen limit, the probability that the ce
initially in state |¢;) ends up in state |¢y) is

-

Piei(N) = [(¢5lg(7, D)3 (3.7)

where the bar denotes an average over the ensemble of
all flux-tube orientations. Here I compute the probability
and then average over the ensemble of flux-tube orienta-
tions. For fast charmonium, the orientation of the flux
tube is frozen during its transit, so that computing the
ensemble average of the probability is appropriate. In-
troducing cylindrical coordinates, ¥ = (&, z), where z is
oriented along the direction of the ¢¢’s motion, allows one

1. 3.6
Ficy < (3.6) to rewrite the absolute square in Eq. (3.7) as
J
s ieF
-, R 7 =(z - * (=
Prei(V) = [ [ @sae [Lexp (“FRUER) 5= BQ) - 71) pru(oa(a) (38)
=1

where pg;(5)

= ffooo dz ¢%(8,2)i(8,2). The orientations of the flux tubes are all independent, so that the average

over the ensemble of all possible flux-tube orientations may be performed by averaging over the orientation of each
one of them. Letting 1 be the angle between |O(R — s)§ — O(R — s')§’| and any EY Eq. (3.8

stro ) becomes

N

27 -
Prei) = [ [ @505 pyu(@105u(5 )[% / dnexp(”“R,;—ig”|@(R—s)é'—e<R—s')g'lcosn)]
0

R=)3)).,

- k eggeT -
= [[ 5 op@pana (FsTiow - 97— of (3.9)
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where Jj is a Bessel function of the first kind of order 0.
7, the flux-tube width in the lab frame, has been intro-
duced; all factors of v have canceled, so that Eq. (3.9)
contains no explicit energy dependence [47]. The behav-
ior of Eq. (3.9) for large N may be determined by noting
that NJ¥(z) ~ §(z) as N — oo [48], so that, in leading
order,

4mhe N
Ps i(N) ~ Nhregger /d23|Pfi(57|2 .

(3.10)
The argument of Jy is also zero for s,s’ > R, but this
contribution is exponentially smaller than that given in
Eq. (3.10), if ps;(35) is nonzero. Note that if one were to
average over the E field and then to compute the sur-
vival probability, that the final result would go as 1/N?,
rather than as 1/ in the large N limit [19]. Equation
(3.10) is quite distinct from the exponential form famil-
iar from Glauber theory [49-51]. As explained by Ne-
menov [52], the exponential form results if one assumes
that the nucleons of the nucleus independently modify the
initial wave packet, that is, that sufficient time exists be-
tween successive nucleon interactions for the wave packet
to decorrelate to a size typical of the stationary states.
Alternatively, the exponential form results if all excited
states are “lost” and cannot rescatter to the ground state.
(Actually, the independent nucleon assumption is pre-
cisely consistent with this latter statement; with the ex-
pectation that similarly sized states should interact in a
similar way, this assumption is roughly equivalent to Ne-
menov’s restatement in terms of a decorrelation time.)
The time between successive nucleon interactions in the
wave packet’s rest frame can be made arbitarily short due
to Lorentz dilation; thus, the propagation of the corre-
lated wave packet and the subsequent 1/N form is a rel-
ativistic effect. The distinction between Eq. (3.10) and

an exponential form was noted previously in the study
of ultrarelativistic positronium scattering from metal foil
[62-55]; an empirical measurement of the positronium-
atom interaction cross section with v ~ 103, however,
was unable either to confirm or to rule out the predic-
tion [56]. A confirmation would be extremely interesting,
as it would demonstrate the qualitative importance of
quantum-mechanical coherence effects in the final-state
interactions.

The transition probability upon passage through a lin-
ear array of flux tubes is given by Eq. (3.9); however,
this does not suffice to compute A°% /A for a particular
nucleus, which is necessary to fix 7, the width of the flux
tube. The procedure necessary to effect such a computa-
tion, and the resulting fit to high-energy photoproduction
data to determine the flux-tube width 7 is described in
detail in Appendix C. The flux-tube width is determined
to be

7=13+03fm. (3.11)

I shall now proceed to investigate the relative produc-
tion of J/v, x, and ¢’ in the frozen limit. The probabil-
ities in Egs. (C1)—(C3), computed from the above choice
of 7, are plotted in Fig. 4(a); the x yield is strongly
suppressed relative to that of J/¢ and ¢’. That is, in
constrast to Fig. 4(b), where |¢;) = [1;/y), the initial
state is strongly localized near the origin; the node of
the x, then, trivially explains the suppression. The ini-
tial wave function is normalized; the small values of the
“survival” probabilities for J/v, x, and 1’ indicate that
most of the initial wave packet scatters to — or remains
in — a higher excitation state. The A°%/A for J/4v, x,
and v’ for the nuclei used in the Sokoloff experiment
[35], computed from these probabilities and Eq. (2.6),
are shown in Table III. In the case of H, the A°% /4 are
given by the initial-state probabilities. A°%/A for x pro-

"frozen'' limit
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FIG. 4. J/v, x, and 9’ probabilities with N in the frozen limit, as computed from Eqs. (C1)—(C3), where in (a) the initial
state, which is taken to be of form ;(r) = (au/7)?/* exp(—cur?/2), is determined by the Compton wavelength of the heavy
quark, a; = 3(ﬁc)2/2m3/¢, and in (b) the initial state is the J/1 wave function, a; = ay.
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TABLE III. “Raw” AeH/A for J/v, x, and ¢’ in the “frozen” limit.

State H Be Fe Pb

J/p 9.94x1072 7.93x1072 6.87x1072 6.00x1072
X 0. 2.76x107* 3.58x107* 3.97x107*
P’ 6.67x1072 5.41x1072 4.72x1072 4.15%1072

and for J/1 once feeding is included...

J/ 0.166 0.134 0.116 0.102

duction is quite small relative to that of J/v and #'; this
is merely an echo of the relative size of the J/v, x, and
1)/ probabilities. The absorption coefficients, a, can be
found through fitting A% to A°®/A; zero @ means zero
absorption or production. The results are in Table IV;
evidently the a’s show some sensitivity to whether the H
data are included in the fits. The fit for 7 includes the H
data (and feeding effects from the decay of higher char-
monium states, as described in Appendix C), as the fits
by Sokoloff et al. do [35]. It is notable that feeding effects
do relatively little to the A dependence of J/v¢ produc-
tion; the apo feea fit to the J/v data of the first row of
Table IIT is Gno feed = —9.3 X 1072 — a mere 3% change.
The a’s associated with x production are fit using the
Be, Fe, and Pb numbers only; a,, is greater than zero as
it is produced through final-state interactions — no x is
present in the initial state. It is interesting to note that
the a coefficient associated with ¢’ production is less ab-
sorptive than that associated with J/t, contrary to the
naive expectation that ¢’ should suffer more absorptive
interactions than J/v¢ in the medium, due to its larger
size. As the initial superposition is frozen in its transit
through the nucleus, this result is likely sensitive to the
particular initial state chosen.

The J/v-nucleon and %’-nucleon cross sections can
also be computed. Semiclassically, the absorption cross
section is the inelastic transition probability times the
head-on area of the object. At high energies, 0% is
approximately o%°*, due to the preponderance of open
inelastic channels (here equated to charmonium excited
states). This can be seen in this model through ex-
plicit calculation of o°!; it is, indeed, much smaller
than o®t [57]. The “head-on” area, which sets the

TABLE IV. Absorption coefficients « in the “frozen” limit,
determined by fitting A% to the A°®/A given in Table IIL
The sign of o determines whether the quantity considered
decreases or increases in the medium; a < 0 corresponds to
absorption. Qno feea denotes the absorption coefficient associ-
ated with direct J/+ production, and osfeea is that associated
with J/v production once feeding effects due to electromag-
netic decay of x and 9’ states are included.

a With H data Without H data
Qfeed -0.0900 —-0.0856
Qno feed -0.0930 —-0.0880
ay — 0.117
ay ~0.0874 -0.0835
Oy J /4 h— 0.196
ayriap 6.71x1073 5.28x1073
Oyt — 0.193

scale, is mR%? ~ 20 mb. The scale is appropriate, as
azt,‘;,t ~ 27 R?; the experimental p — p total cross section
is 40 mb. The inelastic transition probability for J/% is
1—Pj/p1s(1)/Pyjyp15(0), so that from Egs. (C1) and
(C2) (with the above 7) one obtains
05y, Ny =60mb o3y =56mb, (3.12)

where the inelastic transition probability for 7’ is defined
in analogy to that of J/%. Note that the narrow Gaussian
wave packet, Eq. (2.10), has been used as the initial state.
The smaller 7' — N cross section is consistent with the
previously computed absorption coefficients [58]. It is
also of interest to compute the J/¢ and 1’ cross sections
in the event that the initial state is either a pure J/v or
¢’ state. Using Eq. (C1) with [¢;) = [¢;/4) and Eq. (3.9)
with |¢;) = |¢y), one obtains

o5% _n =192mb and o3y =19.8mb, (3.13)
respectively. With these initial states, the relative size of
the J/v and ¥’ cross sections are now reversed. These
cross sections can also be calculated in perturbation the-
ory. For weak fields, that is, for small 8, the Jy in
Eq. (3.9) [noting Eq. (C1)] can be expanded to obtain

1 ﬂz —-X2 2
Pyrpegp(l) =1— §a—f[1 —e e (X5, +1)]

4

vol2 (3.14)
Oy

and
1 32 7 _x2
Poew ) =1 32 (<t =t = 2 ) e

Thus, to lowest order in perturbation theory, Egs. (3.14)
and (3.15) yield

o3h _n =545mb and o3’y =587mb. (3.16)
This disagrees rather dramatically with the exact nu-
merical results of Eq. (3.13), though the cross section
ratios are much closer: %Ipert = 1.08, whereas the ra-
tio for the exact calculation is 1.03. If X, is large, the
cross section ratio is equal to (r2)¢:/(r2)1/¢,, or % Thus,
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the often-quoted pQCD cross section behavior [59,60],
o o (r?), can be realized in this model only in lowest
order perturbation theory for infinitely long flux tubes;
the actual parameters of the model violate this behavior
rather severely.

The above calculations have been performed assuming
that the photon interacts weakly with matter: the prob-
ability to produce charmonium at a point in the nucleus
depends only on the nuclear density at that point. How-
ever, Table II shows that at energies above 100 GeV this
cannot be a completely realistic picture; yet, changing the
reaction mechanism to include shadowing is non-trivial.
As a simple estimate of the effect of the inclusion of this
physics, 7 is re-fit assuming that the process at 120 GeV
is strongly shadowed, even though this is a crude carica-
ture at this energy. Thus, the nuclear average given by
Eq. (2.8) is used, and 7 becomes

7=1.0+02fm. (3.17)
7 is smaller as the effective number of nucleons with
which the produced c¢ must interact is larger. Evidently,
the fitted 7 parameter is not very sensitive to the way
in the which the nuclear average is performed—perhaps
because the empirical A°® /A is already rather close to 1.
The “true” 7 is likely intermediate to the values deduced
assuming the reaction mechanism is either due entirely to
the direct process [Eq. (3.11)] or to the shadowed process
[Eq. (3.17)]. The 7 found using Eq. (2.6), 7 = 1.3 £ 0.3
fm, will be used in the following sections, as I think the
direct process is a better caricature of the physics at 120
GeV (see Table II). At any rate, repeating the absorp-
tion cross section estimates for the 7 of Eq. (3.17) yields,
in constrast to Eq. (3.12),

05} _n=36mb o3y =3.4mb, (3.18)
which shows that the deduced cross sections are sensi-
tive to the change in 7, though the relative magnitude is
retained. This example perhaps illustrates what would
happen as the reaction mechanism changes for fixed 7.
Without shadowing, the frozen limit has no energy de-
pendence at all, so that A°® /A should saturate with en-
ergy. Yet, as energy increases, the change in reaction
mechanism will cause the effective path of the produced
c€ in the medium to increase and, thus, may cause A°% /A
to decrease. This trend may explain some preliminary
data from NA37 at CERN on quasielastic muon produc-
tion of J/4¢ [61]. Certainly, the change of the reaction
mechanism at high energies complicates the elucidation

of transparency effects. |

IV. THE EVOLUTION CALCULATION

The computation of the time development of an ini-
tial superposition of physical c¢ states due to interaction
with the color fields of the nucleus is performed in char-
monium’s rest frame: this is defined by the rest mass
of the J/v. This definition implicitly ignores the phase
differences of the states in the wave packet due to the
momenta of the higher mass c¢ states relative to the J/4
[62]. Yet, unlike the previous section in which the relative
propagation of the states in the wave packet was frozen in
time, now the phase differences of the states due to their
differing mass must be included in order to examine the
wave packet’s time development. To illustrate that this
approach is consistent with an assumption of moderately
large c¢ energies, consider the time development of the
following two state system:

[T (2)) = ™" |po) + e (moFD¥|py) . (4.1)

For E, >> mo = mj/y,, the momenta of these states,
Y /¥

presuming both are on-shell, after quasielastic photo-

production with zero pr and large zp, will be py ~

/B2 —m§ and

P11~ E,% b (mo + 6)2

~ \/E2 —m3{1 — mo6/(E2 — md) + O(8°)}.

If mod/(E2 — mj) is small, then it is entirely reasonable
to ignore the relative momentum boosts of the states in
the cc¢ tower and include only the phase differences aris-
ing from their varying masses. If mg ~ 3.1 GeV, é ~ 0.25
GeV, and E, ~ 12 GeV, then p; — po ~ —0.07 GeV/c
and (p; —po)?/(2my/y) ~ 8 x107* GeV [63]. In the rest
frame — as defined here — the c¢¢ wave packet is station-
ary while the fields flash on and off. The Hamiltonian
which specifies the interactions of the system is given in
Eq. (3.2), and a schematic drawing of the geometry is
shown in Fig. 2. As in the frozen limit, the path of the
evolving cc is a straight line; the elastic scattering ampli-
tude is forward-peaked for sufficiently high energies. In
the rest frame, this geometry is manifested by flux-tube
encounters which are equally spaced in time, as shown
in Fig. 2. To illustrate the procedure to come, consider
some initial c¢ wave function |¥(¢ = 0)) at £ = 0. Then
the wave function for ¢ > t,, after propagating to t = ¢;
in free space and from t; to t2 in a flux tube, is

[T(t > ta)) = D exp (—iwfo(t — t2) — iwpiT (t2 — t1) — dw 1) (Y[ [50) (Pra [YE ) (VR [T (2 = 0)) [97°) , (4.2)

n,m,l

where the free and str superscripts denote the exact cc
eigenfrequencies and eigenstates in free space and in the
flux tube, respectively. The operation on |¥ (¢ = 0)) can
be repeated with ¥(¢ > t3)) to yield the evolution of the
initial wave packet through a second flux tube, and so on.

[

To begin, it is technically convenient to write the initial
superposition of states in the form:

(z,y,2[¥(t=0)) = 3 CMVD, (2)T(z,9),

¢ne

(4.3)
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TABLE V. An occupation number basis — { [see Eq. (D1)
ff] in terms of ng and n,.

IR B N CRSNILN
o= OO o8
or o R o

where z is parallel to the on-coming flow of flux tubes.
As the flux tubes are transverse, the z coordinate fac-
torizes, so that the ®,_(z) are the usual harmonic os-
cillator functions [—d2?/dz?% + 2%]®,_(2) = €5, ®x,(2), in
units z = z4im/b, where b is the harmonic oscillator con-
stant. ( is a compact way of counting the excitations
in the z and y oscillators, so that ( = (n,,n,) and
Ue(z,y) = ®n,(z)Pn,(y). A translation between the
and (n,,n,) representations is shown in Table V. After

propagating in free space for a time £g and in the flux
tube for a time Tg, the coefficients Cé::t) become

(N=1) __ ¢n, (init)
Comy = 2 el (010G
[$1.0%

0, is the orientation of the first flux tube. The form of
the “transfer matrix” T is readily deduced from Eq. (4.2)
when t = t5, so that

(4.4)

TE,",;, (1) = (Sn,znze—i[EcEA+Enl (Ea+T)] pets
X D (e ) (| W) BT w45

n
E, and l‘i’n) are the eract two-dimensional eigenvalues —

in dimensionless units — and eigenstates of the c¢ inside
|

™

(N=j) _ 1 (N=3)
PJ/¢J —W/;wdﬁz---(MﬂCw 770,04, ...

1
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/

FIG. 5. “Head-on” nucleon field configuration the c¢ en-
counters. The orientation of the first nucleon flux tube defines
an axis against which the orientation of successive nucleons
may be measured; here the nucleon is rotated by 8; with re-
spect to that axis.

the flux tube, and =y is the Lorentz factor. The com-
putation of these two-dimensional eigenvalues and eigen-
functions is described in Appendix D. They depend on
the orientation of the flux tube, as illustrated in Fig. 5.
Thus, T itself may have some 6 dependence, as indicated.
After the jth flux tube,

O = 37 T (05)T(O5-1) -+ T(O)CLE s (46)

(ng...

where the additional indices, which are summed over,
have been suppressed. The C’éz,:” can be readily com-

bined to yield the probability for J /¥, x, or ' production
at a particular V; however, since the time evolution has
thus been computed for a fixed set of nucleon flux-tube
orientations, an ensemble average over all (transverse)
flux-tube orientations must still be performed in order to
yield the true probability of producing J/v, x, and 3’
states after traversing IV flux tubes. 6; defines the orien-
tation axis, so that the final averages are of the form:

0;)1 (4.7)

PWN=i) = _/ d92...daj[|c§f=j)(o,92,...,9,~)|2+lc;év:ﬁ(o,ez,,,,,aj);u|c§3v=f>(o,02,...,oj)|2], (4.8)

(2m)i-1

and

— 1 ™ 1 N=j N=j; N=j
Py J):W/—dez..-dajg[10§2 (0,05, ...,0;) + CN=(0,6,,...,0;) + C& J)(o,oz,...,ej)ﬁ]. (4.9)

The Monte Carlo integrals in Egs. (4.7)—(4.9) are performed naively; that is, the integration points are chosen randomly
on [—m,w|. The integrands in Eqgs. (4.7)—(4.9) are rather smooth, and they differ in their dependence on 6;, so that
the naive method is judged the most practical. It is also of interest to examine the size of the wave packet as it
evolves through the nucleus. To this purpose, consider the longitudinal and transverse rms separations, (r%)l/ 2 and
(r2)1/2 such that the rms ¢g separation (r?) = (rZ)+ 2(rZ). It is useful to make a separation of the longitudinal and

transverse sizes as the interactions with the medium are purely transverse. Thus, (rZ) = (22) and (rZ) = (=% + y?).

These quantities can be readily realized in terms of the Cégz) coefficients, that is,

N *(N N *(N N * (N
()™ = S [CA LN (@, 1221@n.) + ()N, + O 2 CE ) (@ 12271 20)

¢z

(4.10)
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and

1 *
B® =2 3 [C0,n Cr) (@ [221@0.) + (@, [1]20,))

Nz, Ty,MNz

*(N *
(C'r(llj'r)tynzcn(,+)2nynz + C( ng+2nyn; Cng‘r\f!), )<¢nz+2|m2|©"z> (411)
*(N N *
+ (C'lgzivnynzcn;(,n:+2n C7(1 7)zy+2nz Cniﬁin,)<ény+2|y2|¢ng/>] )

where ¢ has been replaced by (ng,ny). The matrix elements over the one-dimensional harmonic oscillator wave

functions are well known. In general,

1 27q!

(B,]2%®,,) = S {5nm(n+(] 5) + bnm—2(n + 2)(n + 1) + 20nm42} - (4.12)

The evolution of the longitudinal size is trivial and, thus, is independent of the orientation of the flux tubes, so
that the ensemble-averaged longitudinal size X, is equivalent to /(r2)(¥). Indeed, as a useful numerical check, Xr,
from Eq. (4.10) can be compared against the simple form

<T2>free

X =
L 30tf

with

i 1 - 1
(r? Vree = (CZ {271 — ~] —2C,Cr_14/(n—1) (n — 5) cos(2nzrxn)) s
1

where n = aghc/pcfeey, ay = 3/2(r3/¢), and z;x, 1s
the reaction coordinate. This follows from Eq. (E3); the
coefficients C,, are those of the t = 0 expansion in s-wave
basis functions, (% (,—1)00)-

However, <r%)(N) depends on the interactions, so that,
as in Egs. (4.7)-(4.9), Eq. (4.11) must be averaged over
the ensemble of flux tube orientations. The ensemble-
averaged transverse size Xr is given by
XF(N) =

W/ dfz -~ d0;(r5)N=9(0,0s,...,0;).

(4.14)

The calculation of the probabilities to measure J/%, X,
and 9’ and of the longitudinal and transverse sizes of the
cc wave packet during its evolution through the nucleus
represents the computational core of this paper. The en-
ergy dependence of these quantities is contained in the vy
factors in Eq. (4.5) and in (, and (, in the equation of
motion for the c¢ eigenstates in the flux tube, Eq. (D1).
The growth of v with energy means that the electric fields
the stationary charmonium sees also grow, allowing the
cC to scatter to higher and higher excitation states. This
makes the realization of the computation in Eq. (4.6)
practically impossible at many tens of GeV. The com-
putation is still tractable at 20 GeV, however; here the
J

N p?
Prjpegp(N)=1— —‘—f[

w2
2 a —e Xs"( str+1)]

x{( = Xdae X0 4201 — X (XA, + 1)) + 2[1 - e He (X, + 1)12}+0(c576)

and

LY v -)

(4.13a)

(4.13b)

[

highest excitation required in the one-dimensional basis
is 20. In order to calculate the two-dimensional eigen-
states and eigenfunctions in the flux tube for this degree
of excitation reliably, the matrix to be diagonalized must
be much larger: the highest one-dimensional excitation
required in the diagonalization was 35 in order to guar-
antee the stability of the needed eigenstates and eigen-
functions. The high degree of excitation to which the c¢
may be scattered is certainly a consequence of the neglect
of all open channels. The formalism required to include

the open channels due to production of A + D’ and
other charmed baryons via flux tube rearrangements is
described in Appendix D, though such complications are
ignored for the purposes of the present work.

The computation of the probabilities in Egs. (4.7)—
(4.9) may be verified through comparison with the results
of Egs. (C1)—(C3) at extremely high energy. Due to the
convergence problems discussed above, quantitative com-
parison of the results of the evolution calculation to those
of the frozen limit can be carried through only at smaller
values of the string tension, i.e., for k = IO_ZkRegge. For
small values of the string tension, an asymptotic series in
powers of 3%2/a; may be developed for the probabilities
in the frozen limit, in place of Egs. (C1)-(C3). Thus,
expanding Jo(z) in a power series around z = 0 and as-
suming ;) = [¢7/4) yields:

oy
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TABLE VI. Comparison of the J/1, x, and 9’ probabilities computed with the evolution ap-
proach with those of the “frozen” limit in the case where the string tension k = 10 %kgregge. The
evolution-approach probabilities are computed with a J/v energy of 300 GeV. 2R is the total length
of the string.
R (fm) P Evolution “Frozen”
Pjy 0.999850 0.999848156027
0.80 P, 1.322x107* 1.32223560x10~*
Py, 1.3x107° 1.324x107°
Py 0.9998256236 0.999825639647
1.61 P, 1.743602x10~* 1.74343710x10~*
Py 5.07x107° 5.066x107°
N 3? _x? 2 s 1 (N B4
Px(—J/¢(N):__[1_e sn'()(s':r4_1)] - > _+N(N—1) 2
2 af 4\ 2 oy
—X2_(y2 4 —x? X2 (2 B°
X[l —€ st (Xstr + 1)][_Xstre s+ 2{1 —€ ser (Xstr + 1)}] +0 &_3 (4~16)
f
Whereas
1 (N B* s —xz -X2 pBe
Py (V) = = (2 4 NV = 1)) By (x8e %% — 1 — e Xh(x2, + )24 0 (2 ), (4.17)
12 \ 2 of o
[
with X = ,/a7R. The results of the evolution calcula- sons of practicality, the parameters of the model limit

tion and the frozen limit for N = 1 are tabulated in Ta-
ble VI as a function of R, where for this test 7 = 0.970546
fm, &4 0, and Ej/; = 300 GeV. The numbers are
quoted as per their estimated accuracies; convergence is
more difficult to realize for the smaller R, as the po-
tential’s sharp cutoff in R requires many basis functions
to produce accurate flux tube eigenvalues and eigenfunc-
tions. The O(8°/a3}) corrections to the asymptotic forms
have also been computed and included in the tabulated
numbers; they are of order 10712 for the above parame-
ters. A particular partial sum of any of the asymptotic
series given in Egs. (4.15)—(4.17) will agree more closely
with the “true” result as k decreases; thus, the slight
discrepancies seen in the R = 1.61 comparison need not
arise from round-off error in the evolution calculation. In-
deed, the comparison at R = 1.61 fm is quite good; this
simultaneously assures the numerical accuracy of the evo-
lution calculations and guarantees, if the calculation were

the largest energy which may be considered in this ap-
proach to tens of GeV. In order to convert the probabili-
ties obtained earlier to physically meaningful observables,
it is necessary (i) to make some model for the production
amplitude, and (ii) to average over all possible produc-
tion points in the nucleus to obtain A°*%/A. Point (ii)
has been described previously: for the low energies con-
sidered here, shadowing cannot be significant; thus, the
computation of A°f /4 proceeds from Eq. (2.6). Point (i)
is rather more problematic. Certainly, at lower energies,
the initial photoproduced superposition of c¢ states must
be affected by threshold effects. For a particular photon
energy, the states which should contribute significantly to
the initial amplitude are those which can be physically
produced in quasifree kinematics with a nucleon; that is,
the mass of any v, that satisfies the following equation
is included:

tractable, that the A-dependence of A°®/4 from the evo-

lution matrix approach at extremely high energies would
agree with that of the frozen limit.

V. RESULTS

The evolution matrix approach described in the previ-
ous section permits computation of the final-state inter-
actions, given an initial wave packet of on-shell charmo-
nium states, from J/1 threshold to the high energy limit.
This is merely a statement of principle, however; for rea-

TABLE VII. The number of open c¢¢ channels as a function
of the initial photon momentum p,. Pmax is the maximum
J/v momentum for the given p, if pr = 0.

Py (GeV/e) Nopen Pmax (GeV/c)
8.5 1 7.17
12 2 11.4
15 3 14.6
20 5 19.7
25 7 24.8
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1
Py~ oMy

where pr = 0 and n € [0,1] as the momentum of the
nth cc state is py, = npy. As argued in Sec. II, it is
assumed that this amplitude is composed solely of | = 0
states — only these states have finite amplitude at the
origin. (Again, any ! # 0 admixtures are neglected.)
Table VII gives the number of states which satisfy this
constraint as a function of the initial photon momentum
p~. Table VII also reports the maximum J/v momentum
which satisfies Eq. (5.1) for a particular p,; this pmax is
used to compute the (. and « input to the evolution
calculation.

The number of states which should contribute to the
initial amplitude at a particular energy is not sufficient
to determine its shape. To explore this freedom, I shall
now consider three different Ansdtze for the initial state
|%;). The first is to construct an initial state with ex-
pansion coeflicients C,, proportional to the charmonium
wave function’s at the origin; that is, C,, o< ¥(,,_1)00(0),

so that |4;) = Y0 Cpl¥(n_1)00)- Thus,

I'(n+1/2)
Cn —_— 5.2
o T(n) (5:2)
which, unfortunately, is divergent in n. The §-

function expansion is not well posed in this basis,
so that this initial-state choice is discarded. A sec-
ond option is to consider the expansion of |¥;(r)) =
(o /7) % exp(—a;r?/2), the initial state assumed at very
high energies, on the |¥(,_1)00) hadronic basis. This of-
fers a smooth parametrization as a function of IV; to the
initial wave function chosen at high energies. The coeffi-
cients, C,,, have the form

1
My = J\_J;{\/(M"z’" +n%p2 + p7)[MF, + (1 —1)%p2 + p2] — n(1 — )P + p%} ,

(5.1)

o\ 34 9 3/2
o= Wt = () (G, 1)

I'(n+1/2) (ai — af>"_1
C(n)['(3/2) \ o + ay

(5.3)

Another alternative is to determine the initial wave
packet by choosing the amplitudes of the |¥ (n—1)00)
states such that the narrowest possible state for a partic-
ular truncation IV; is obtained. The numerical realization
of this approach is presented in Appendix E. These latter
two alternatives are compared as a function of truncation
in Fig. 6, and the rms ¢g separation of the wave function
in each approach with truncation is shown in Table VIII.
The shapes of the two different Ansdtze are not particu-
larly different, so that the minimum-size Ansatz is cho-
sen; this parametrization of the threshold effects’ energy
dependence is consistent with a “best case” scenario for
transparency. Although the logic of this choice is clear,
the experimental data which can either confirm or rule
out such a choice is meager. One confrontation with ex-
periment is afforded by the work of Camerini et al. [64].
At a photon energy of 21 GeV (assuming elastic J/v¢ and
¢’ production), they extract the cross-section ratio

do ((3100)) /dt

R T L =68+24 5.6 2.2
do ((3700)) /|, 824

(5.4)
upon assuming that the average branching ratio of ¥’ into

either e or p pairs is 1%, where tpi, = 0.069(GeV/c)?
for J/¢ and 0.164 (GeV/c)? for 9'. The second value

truncations minimization
12b5 \_l.l LI | T T TT l T rrr l TTrTrT ] TT T‘LL"LTI T I T rrT ' TTrTrT I Trrr I T ]
F (@) (b) A
[ \,"frozen" T W"frozen” ]
[ I ]
10.0 ! ]
- \ -
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FIG. 6. Various initial state Ansdtze as a function of the number of terms in the | _100) basis. Truncations of the frozen-limit
Ansatz are shown in (a), whereas the minimum-size state for a given number of terms is shown in (b). The J/ and frozen-limit

wave functions are also indicated.
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TABLE VIII. Root-mean-square separations and J/4v : ¢’ ratios for the Ansdtze considered as
a function of N;, the number of terms in the initial state. “trunc” refers to the truncations of the
initial-state Ansatz in the “frozen” limit, whereas “min” refers to the minimum-size prescription.

N; (\/ <7'2>)trunc (fm)

(PJ/qp : Pq/;’)trunc

(/(r?))min (fm)

(P1/y * Py')min

2 0.494 0.849
3 0.470 0.849
4 0.446 0.849
5 0.423 0.849
10 0.319 0.849

0.406 4.44
0.346 2.16
0.307 1.57
0.278 1.31
0.203 0.930

reported in Eq. (5.4) results when the 1991 Particle
Data Booklet value for the average branching ratio of
P —ete” and ¢ — putu~, 0.82+0.15%, is used. They
estimate inelastic contributions to be around 20 — 30%,
and tpni, is not small, so that the usefulness of Eq. (5.4)
is perhaps unclear. Nevertheless, it is of interest to
compute |[(¥ /| W)/ (¥y|¥;)|? for the Ansdtze consid-
ered; this ratio is tabulated in Table VIII. For the
Ansatz which consists of a truncation of the expansion
of exp(—a;7r2/2), the J/v:1)’ ratio is independent of N;;
that is, |[(¥ooo|¥i)/(P100|¥:)|* = 3l + s /(s — af))*.
Although the difficulties which bar ready interpretation
of the J/4:7' measurement in Eq. (5.4) have been stated,
it is clear that neither Ansatz proposed for use at 20 GeV
compares favorably with the measured ratio. This may
simply imply that the initial state at 20 GeV does not
differ appreciably in size from that of the J/v and that
the minimum-state Ansatz is overly optimistic. Never-
theless, I shall proceed to explore the consequences of
such an initial-state choice.

Given the narrowest-state Ansatz for the initial state,

one can proceed to compute the probabilities of measur-
ing J/v, x, and ¢’ as a function of the initial photon
energy and number of states V; in the initial state. Ta-
ble VII shows the number of channels open for a par-
ticular E,, as per the criterion given in Eq. (5.1). In
order to examine the sensitivity of the final-state inter-
actions to N; and E,, the following cases will be exam-
ined: (N; =1 ,E, = 85 GeV), (N; =1 ,E, = 12
GeV), (N; =1,E, =20 GeV), (N; =2 ,E, = 12 GeV),
(N; =2 ,E, =20 GeV), and (N; = 5 ,E, = 20 GeV).
Figures 7-12 show the J/v, x, and v’ probabilities in
the cc wave packet, as well as its longitudinal and trans-
verse size, as a function of the reaction coordinate z for
Be, Fe, and Pb nuclei. It should be emphasized that
the computations for the various nuclei are distinct, as
the differing £4’s (due to the differing uniform equiva-
lent densities) alter the development of the wave packet
between interactions with successive nucleons. The prob-
abilities are all plotted together, though the probabilities
for a particular nucleus are readily identified, as they are
spaced by multiples of D, (see Table I). Contrary to
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FIG. 7. J/4, x, and 4 probabilities (a), and the c¢ wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is that of the J/4 and the photon energy is 8.5 GeV.
The calculations for Be, Fe, and Pb are superimposed on each other, though they are readily identified since they are spaced
by different values of Dspac, as tabulated in Table I. Here the longitudinal size Xy, is trivial and is shown by the solid line in
(b). The transverse size X7 is shown by the plotted symbols; the rms c¢¢ separation in the charmonium wave packet is given
by (r®)'/? = (X} + 2X2)/2. The size of the error bar from the Monte Carlo average over the nucleon field orientations is
typically contained within the size of the plot symbol; the error bars of the exceptions are plotted.
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FIG. 8. J/, x, and 9’ probabilities (a), and the cc wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is that of the J/ and the photon energy is 12 GeV. See

Fig. 7.

the high energy limit, the probability of producing x is
now much enhanced relative to the J/¢ and 9’ survival
probabilities. The x enhancement is quite natural, given
the parity-odd interaction Hamiltonian; the x suppres-
sion in the frozen limit is due to the initial-state choice.
To untangle what happens as F, increases, consider the
N; = 1 initial state (J/v only) incident on a single nu-
cleon as E. varies. Here the probabilities are indepen-
dent of Dgp,. in the first time step, as the initial state is
a pure state. The J/9 occupation probability evidently

increases with E, for E, = 8.5 to 20 GeV. This is a con-
sequence of Lorentz dilation — the interaction time in the
cc rest frame scales by 1/+ — though it is not trivial, as
the interaction strength also scales with . Moreover, it
should be noted that this effect cannot persist with in-
creasing energy, as at E, = 20 GeV, the J/1¢ occupation
probability exceeds that of the frozen limit, i.e., Eq. (3.9)
with |1;) = |1s/4). The absolute and relative magni-
tudes of the probabilities are controlled by the develop-
ment of the wave packet in the interaction basis during
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FIG. 9. J/4, x, and ' probabilities (a), and the c¢ wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is that of the J/1 and the photon energy is 20 GeV. See
Fig. 7.
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(2) 12 GeV
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FIG. 10. J/9, x, and 9’ probabilities (a), and the c¢ wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is the minimum-size wave packet composed of J/+ and
1’ states only and the photon energy is 12 GeV. The calculations for Be, Fe, and Pb are superimposed on each other, though
they are readily identified since they are spaced by different values of Dpac, as tabulated in Table I. Here the longitudinal size
X1 is given by Eq. (4.13) and is shown by the dotted line in (b). The transverse size Xt is shown by the plotted symbols; the
rms cC separation in the charmonium wave packet is given by (r?)1/2 = (X2 4 2X2)*/2. The size of the error bar from the
Monte Carlo average over the nucleon field orientations is typically contained within the size of the plot symbol; the error bars
of the exceptions are plotted.

charmonium’s passage through the flux tube. Perhaps a logarithmic rise as the energy increases. In the case
the energy dependence of the experimental Utf/t¢ N Can of J/%, this latter energy-dependence is inferred, assum-
serve as a model constraint, as the energy dependence of ing vector-meson dominance, from do /dt|;—o[YN — ¥ N]
this quantity should be connected to that of the J/v sur- data, implying a 40% increase in U{O/JPN from 60 to 300
vival probability. It is well-known that the total hadron- GeV [65]. Unfortunately, the energies amenable to study

nucleon cross sections vary weakly with energy, showing here cannot confront this data, and the assumptions im-
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FIG. 11. J/4, x, and ¢’ probabilities (a), and the c¢ wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is the minimum-size wave packet composed of J/v and
9’ states only and the photon energy is 20 GeV. See Fig. 10.
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FIG. 12. J/%, x, and ' probabilities (a), and the c¢ wave packets’ longitudinal and transverse size (b) as a function of the
reaction coordinate z in the case where the initial-state wave function is the minimum-size wave packet composed of 5 |1noo)

states and the photon energy is 20 GeV. See Fig. 10.

plicit in this application of vector-meson dominance be-
come suspect at lower energies. Proceeding with the re-
sults in Figs. 8-12, and comparing the J/4, x, and ¢’
probabilities after passage through a single flux tube for
N; # 1, it is evident that the relative magnitudes of these
probabilities are quite sensitive to the initial state. At 20
GeV, the ratio of J/¢ and v’ probabilities is greater or
lesser than 1 depending on N;.

In subsequent nucleon interactions, the precise super-
position of c¢ states between the flux tubes is critical in
determining the J/v, x, and ¢’ probabilities. In order
to make studying the probabilities plotted in Figs. 7-12
more meaningful, these figures also show the longitudinal
and transverse rms ¢¢ separations associated with those
probabilities. The evolution of the longitudinal coordi-
nate with z is trivial, but the wave packet’s transverse
size is generated by interactions with the medium: the
final-state interactions systematically act to “push out”
the wave packet. There is, moreover, a correlation be-
tween the transverse size and the J/v survival probabil-
ity measured there — as an illustration, the dip in Xr
for Be and Fe in the N; = (1), E, = 8.5 GeV case corre-
sponds to a jump in the J/v probability. The oscillations
in X7 manifest at 8.5 GeV damp out as E, increases,
and increasing the photon energy does ultimately result
in a larger c¢ wave packet. Yet, for a fixed initial state,
increasing E, acts to decrease the wave packet’s trans-
verse size for some finite distance zg, after the produc-
tion point; only at large z does the wave packet become
bigger than at the lower energy. This can be readily un-
derstood, as the higher energy means that the c¢¢ can
be knocked into higher states of excitation, which cer-
tainly have larger rms separations. At a fixed energy,
the initial size of the packet is determined by N;, yet the
transverse size for large z, e.g., z > 10 fm at E, = 20

GeV, seems to be quite independent of N;, almost as
if the developing wave packet has only a finite memory
of its initial state. The observation of a decreased X
and an increased J/v survival probability for some fixed
z and initial state as E, increases offers qualitative sup-
port for the color transparency hypothesis; it will be seen
later that the retention of all excited c¢ states in the evo-
lution between the flux tubes, that is, the coherence of
the final-state interactions, is responsible for this effect.
Even if some “weakening” of the final-state interactions
can be seen, the ultimate behavior of the extracted ab-
sorption coefficients from the computed nuclear average
as E, increases is unclear. Before proceeding with the
above probabilities and computing A°%/A for J/v, x,
and 1’ production, it is useful to examine the role of
coherence effects in producing the previously described
behavior.

Figures 13-15 compare the “full” calculation of the
final-state interactions with one in which the number of
states in the free evolution between nucleons is truncated
to n = 2, where n denotes the maximum excitation of a
single oscillator in the |¥,,_n n,) basis. The logic of this
is to gauge the sensitivity of the results — in a crude way
— to the lack of open channels and to understand what
changes their inclusion might yield. The comparison is
made for the V; = 1 case (J/4 only) for Fe as a function
of N, the number of nucleons through which the c¢¢ wave
packet passes, for E., ranging from 8.5 to 20 GeV. Both
the probabilities and X7 are plotted for each calculation,
so as to allow simultaneous comparison. What is quite
striking is how much larger the J/%, x, and 9’ probabil-
ities are in the “full” calculation than in the truncated
case as N increases. It is also noteworthy that this be-
havior is manifest even though the wave packet’s trans-
verse size may be much larger in the “full” calculation
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than in the truncated one — this is true for all the ener-
gies studied. Evidently the correlation between survival
probability and X7 noted earlier is only meaningful if all
possible intermediate states are included. The truncated
calculation is constructed so that its Xp is the n = 2
portion of the “full” calculation’s transverse size; the X
of the truncated calculation varies only weakly with N
and E,. There is a miniscule shift towards smaller Xr
in the truncated calculation for N = 1 as E, increases,
but the more palpable change in the full X+ with E,
is due to the inclusion of higher mass c¢ states. It is
interesting to note that the J/v survival probability in
the full calculation at NV = 5 is rather insensitive to the
change of energy, even though Xr varies markedly; evi-
dently, the higher mass charmonium states, though im-
portant in determining X, do eventually decouple from
the ground state. The J/% survival probability with NV
is larger for the n = 2 calculation than if no coherence
effects were included at all, as in the event of no coher-
ence, Py y(N) = [Ps/4(1)]"; thus, the increase in the
J/v survival probability as the number of intermediate
states increases for large N alters the weakening of the
final-state interactions seen in a quantitative, rather than
qualitative, manner. It must be emphasized that the ef-
fect of the » = 2 truncation on the computed A°%/A is
not clear for the lower energy cases, as the N = 2 J/v¢
probabilities are larger for the truncated cases, though
A°f /A would be expected to be smaller for E, = 20 GeV,
as the truncated J/vy survival probabilities are system-
atically smaller than those of the full calculation. Thus,
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a “real world” calculation in which inelastic channels are
included, so that the free propagation of the n > 2 states
is strongly damped, may offer a weaker change in A°f /A
with energy. What this calculation suggests is quite dif-
ferent from the popular picture: usually one speaks of the
interactions with the nucleus which lead to multiple par-
ticle production as “stripping away” the color nonsinglet
components of the initial state, leaving a small, color-
singlet state to propagate through and interact weakly
with the medium [66]. This calculation shows the ef-
fect of the open channels — leading to 7 production, say
— to be rather more subtle; it is certainly not clear that
their inclusion enhances the effect of transparency. These
statements lack significance in the absence of a quantita-
tive calculation of A°f/A for the probabilities obtained
in the “full” calculation; thus, these calculations are dis-
cussed next.

Using the probabilities plotted in Figs. 7-12, A°%/A4
[from Eq. (2.6)] is computed for Be, Fe, and Pb nuclei
using the fits to the experimental charge densities as tab-
ulated in Landolt-Bornstein [44]. The results are shown
in Table IX. As before, the A°f/A tabulated under the
“H” column give the probabilities of J/4, X, or 9’ in the
initial state. The errors in A°% /A due to the uncertainties
in the Monte Carlo averages have been calculated using
the standard formulas for the propagation of errors; these
errors are typically in the fourth significant figure. A°¥/A
for J/% is much larger than that for x and +’, though this
is a consequence of the initial-state Ansdtze used. This is
illustrated when one compares the A /A for x with that
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FIG. 13. Illustration of the importance of coherence effects in the computation of J/, x, and %' probabilities (a), and the
c¢ wave packets’ longitudinal and transverse size (b) as a function of the number of nucleons IV, in the case where the initial
state wave function is that of the J/v¢ and the photon energy is 8.5 GeV. The computation is performed with the 4 of Fe,
as given in Table I. The “full” calculation is shown at integer IV, where the maximum single oscillator excitation required is
n = 15, whereas the calculation in which only the free states with n < 2 are allowed to propagate between nucleons are off-set a
quarter unit to the right. Here the longitudinal size X, is trivial and is shown by the solid line in (b). The transverse size Xt
is shown by the plotted symbols; the rms c¢ separation in the charmonium wave packet is given by (7'2)1/2 =(X?+ 2X%)1/2‘
The size of the error bar from the Monte Carlo average over the nucleon field orientations is typically contained within the size
of the plot symbol; the error bar of the exception is plotted.
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FIG. 14. Illustration of the importance of coherence effects in the computation of J/%, x, and v’ probabilities (a), and the
cc wave packets’ longitudinal and transverse size (b) as a function of the number of nucleons N, in the case where the initial
state wave function is that of the J/v¢ and the photon energy is 12 GeV. The computation is performed with the £4 of Fe,
as given in Table I. The “full” calculation is shown at integer N, where the maximum single oscillator excitation required is
n = 20, whereas the calculation in which only the free states with n < 2 are allowed to propagate between nucleons are off-set

a quarter unit to the right. See Fig. 13.

for ¢’ at E, = 20 GeV for N; = 1,2,and 5. If N; = 1,
the A°® /A for x exceeds that for 3’ — this is natural as
the Hamiltonian is parity-odd — whereas if the 9’ proba-
bility is finite in the initial state, the A°% /A of ¢/ exceeds
that of x. Given these A°®/A and their errors, the ab-
sorption coefficients «, defined through the parametriza-

tion A*®/4 « A, can be determined for J/+, x, and
1’ by making a least-squares fit. a has been computed
not only for direct J/v production, but also once feed-
ing from x and v’ states are taken into account. As
noted previously, the degree to which feeding contami-
nates the observation of J/v depends on the resolution

(1) 20 GeV Fe
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FIG. 15. Illustration of the importance of coherence effects in the computation of J/, x, and v’ probabilities (a), and the
cc wave packets’ longitudinal and transverse size (b) as a function of the number of nucleons N, in the case where the initial
state wave function is that of the J/¢ and the photon energy is 20 GeV. The computation is performed with the £4 of Fe,
as given in Table I. The “full” calculation is shown at integer N, where the maximum single oscillator excitation required is
n = 20, whereas the calculation in which only the free states with n < 2 are allowed to propagate between nucleons are off-set

a quarter unit to the right. See Fig. 13.
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show the least-squares fits to the calculated Aeﬂ/A if the H data is included in the fits, whereas the dotted lines show the fit if

the H data is not included.

of the experiment; as before, these effects are included
naively, as per Eq. (C4), in order to gauge the maximum
size of the effect. In Table X, the a’s for J/v produc-
tion, with and without feeding effects, are shown for the
various cases considered. The fits to determine the ab-
sorption coefficients are performed with and without the
inclusion of the H data; the relative sizes of the a’s are
retained, though Table X illustrates that the overall size
of the absorption coefficients are rather sensitive to its in-
clusion. This evident disparity arises since no final-state

interactions are required to produce the H data. This
is shown in Fig. 16, which compares A°%/A and the fit
with and without H data for J/v¢ production with feed-
ing in the frozen limit and in the N; =1, E, = 8.5 GeV
case. The final-state interactions are quite large in the
lower energy case; hence, the greater disparity upon the
inclusion of the H data. The fit without H data fits the
remaining A°f /A’s much better; thus, only the absorp-
tion coefficients fitted in this way will be considered in
the discussion and tables to come. In studying the o’s in

TABLE IX. “Raw” A°®/A for J/4, x, and v’ as a function of N; and E, for H, Be, Fe, and Pb.
Here the minimum-size prescription is used for N; > 2.

State H Be Fe Pb
N;,=1 E,=85GeV
J/ 1 0.439 0.284 0.190
X 0 0.105 0.103 9.30x107 2
P’ 0 2.80x1072 3.14x107? 2.95x1072
N;.=1 E,=12GeV
J/ 1 0.441 0.281 0.187
0 9.65x1072 9.46x1072 8.56x1072
X
P’ 0 2.63x107? 2.90x107? 2.84x1072
N;=1 E,=20GeV
T/ 1 0.448 0.289 0.195
X 0 9.70x1072 0.100 8.36x10°?
P’ 0 2.33x107 %2 2.53x1072 2.34x1072
N; =2 E,=12GeV
I/ 0.816 0.365 0.236 0.159
X 0 6.66x1072 6.51x10"2 5.98x1072
P’ 0.184 0.104 8.08x1072 6.33x107?
N;=2 E,=20GeV
T/ 0.816 0.380 0.248 0.171
X 0 6.67x1072 (6.72£.01) x 1072 6.01x1072
P’ 0.184 0.115 8.57x1072 6.40x1072
N;=5 E,=20GeV
T/ 0.418 0.207 0.146 0.106
X 0 3.72x1072 4.17x107? 3.95x107?
' 0.318 0.160 0.111 7.85x1072
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TABLE X. Qfeed and ano feed computed from fitting the Aeﬂ/A of Table IX to A% as a function
of the number of terms in the initial state, NV;, and the photon energy E,. Gno feea is the absorption
coefficient associated with direct J/v production, whereas afeea includes the contributions to J/4
production from electromagnetic decay of x and 1’. The sensitivity of the fits to the inclusion of

the H-data is shown.

(Nl) E‘Y (GCV) Ofeed Qno feed Ofeed Qino feed
With H data Without H data
) 85 ~0.277 ~0.306 ~0.231 ~0.257
(1) 12 -0.282 -0.309 -0.241 -0.270
(1) 20 -0.277 -0.302 -0.232 -0.251
(2) 12 -0.276 -0.301 -0.232 -0.259
(2) 20 -0.266 -0.289 -0.225 -0.243
(5) 20 —0.246 -0.252 -0.202 -0.202

Table X, it is evident that they can oscillate with energy.
This is so for the N; = 1 case and for the “optimum” case
in which one considers the narrowest state composed of
the open channels at a given energy. Yet, in both cases
the a’s without feeding effects are smaller at 20 GeV than
they are at 8.5 GeV. These trends are meaningful; the er-
rors in the a’s are typically in the fifth significant figures.
However, the total magnitude over which the absorption
coefficients vary is not large — the change is barely 20%
in the largest case — that is, from the N; =1, E, = 8.5
GeV to the N; = 5, E, = 20 GeV cases. The naive inclu-
sion of feeding effects tend to blur these effects markedly,
though presumably these can be largely controlled by the
resolution of the experiment. The trend towards smaller
a’s upon inclusion of feeding effects can be readily un-
derstood: the depopulation of the J/v channel with N
is compensated by the production of x and 7', so that
the J/v probability as a function of IV is flatter.

In order to understand how coherence effects impact
the a’s reported in Table X, the absorption coefficients
for J/4 production without feeding in the V; = 1 case
are computed when no coherence effects are included.
Thus, Py/y(N) = [Py/4(1)]V is used in the computation
of A°¥ /A as per Eq. (2.6). The resulting qincon are shown
in Table XI, where they are compared with the absorp-
tion coefficients of the full calculation. ajncon changes
very weakly with energy, thus confirming the hypothesis
that any significant change in a with energy is due to co-
herence effects, a.k.a. “color transparency.” Even though
the variation in e feed OVer the interval E, € [8.5,20]
GeV is not particularly large, it should be emphasized

TABLE XI. The sensitivity of the J/v absorption coeffi-
cients to coherence effects. ano feea and ageea are defined as
in Table X; here cincon denotes the absorption coefficient for
direct J/v production when excited charmonium states are
not allowed to scatter back to the J/i channel. The line
labeled “frozen” repeats the calculations of the high energy
limit reported in Table IV with the substitution |¢:) = |¥s/y).

(N:) E, (GeV) Qfeed Qno feed Qincoh

1 85 20.231 ~0.257 ~0.299
(1) 12 -0.241 -0.270 -0.296
(1) 20 -0.232 -0.251 -0.295
(1) “frozen” -0.205 -0.224 -0.295

that it is enormous compared to the “baseline” compu-
tation, as offered by ajncon-

As the trend in oy, feea With energy is not especially
sensitive to the initial state, it is useful to examine the
absorption coefficients of x and %’ and their ratios to
J /v for the cases studied previously. These a’s are tab-
ulated in Table XII; note that A°®/A for o' : J/4, for
example, is simply the A°f/A for ¢’ divided by that of
J/1. Again, as previously, the error in a quantity is not
explicitly reported if it does not appear in the first three
significant figures. A positive « indicates that that state
is produced in final-state interactions. These absorption
coefficients are rather more sensitive to the initial state.
A measurement of a, and ay (or of ayr.y/y and ouy.yr)
might be quite interesting: Table XII shows that one of
these quantities changes sign whenever a different initial
state is considered.

As most experiments report a J/¢-nucleon total cross
section in addition to the measured A dependence, it is
of interest to examine the J/- and v’-nucleon cross sec-
tions in the context of this model. The absorption cross
section, is defined as earlier, so that o355, = (7RZ,)[1 -
Py74(1)/Py/4(0)] and 03° = (mR%,)[1 — Py (1)/ Py (0)].
(Here o2P* is also approximately ot°t [57].) At any rate,
these cross sections are tabulated in Table XIII, for the
initial states and photon energies studied previously. The
J/v-nucleon cross sections are quite large and vary only
moderately with energy. The 1’ absorption cross sections
are actually smaller than those for J/v. This may seem
non-intuitive since 1’ is larger than J/+, but this is par-
tially a consequence of the initial-state Ansdtze employed.
To demonstrate this, Tables XIV and XV examine these
same cross sections for a variety of Ansdtze. That is, in
Table XIV, initial states with fixed J/v : ¢’ ratios and
varying sizes are employed to decouple the cross sections’
dependence on these two quantities. Since the minimum
J/v : ¢’ ratio for the functional form used in Table XIV
is 2:3, Table XV examines the cross sections for Ansdtze
composed only of J/¢ and ¢’ with varying J/¢ : ¢’ ra-
tios. Upon examination of Table XIV, it is apparent that
the J/v¢ and ¢’ absorption cross sections depend more
strongly on the J/1 : 9’ ratio than on the initial-state
size. Comparing with Table XV, one concludes that de-

creasing this ratio increases the size of 0';7},’8 relative to

ojt/’fb. It is amusing that the pure ' state has a smaller
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TABLE XII. Absorption coefficients for x and 1’ states, their ratio, and their ratios to J/¢ as a function of N; and E,,

determined by fitting A* to the A°® /A given in Table IX.

State Oty Qy! Qyrig/y QAx:J/% Q!
(1) 85 —(2.92+0.03) x 1072 (3.18+£0.02) x 1072 0.288 0.226 ~(6.25+0.04) x 1072
(1) 12 —(2.42+0.01) x 1072 (2.9640.03) x 10™2 0.299 0.236 —(6.2840.04) x 10™2
(1) 20 ~(3.5140.06) x 10™2 (5.81+0.21) x 1073 0.273 0.227 —(4.3740.07) x 1072
(2) 12 —(2.8740.02) x 1072 -0.150 0.106 0.229 0.123
(2) 20 ~(2.4540.05) x 1072 -0.176 (7.2340.02) x 1072 0.226 0.155
(5) 20 (2.5340.07) x 1072 -0.221 —(1.31£0.01) x 102 0.235 0.249

absorption cross section than the pure J/v state; here,
though, the spatial shape of ¢’ — due to its radial node
— allows it to have a larger overlap with the wave func-
tions in the flux tube basis. Perhaps, then, the previously
noted correlation between the wave function’s transverse
size and the J/4 survival probability is not readily gener-
alizable to the excited states in the c¢ tower. Minimally,
it would seem naive to assume that 1’ should interact
more strongly with the nuclear medium than J/v sim-
ply because of its larger size. In the event of an initial
mixed state, the implications for the relative survival of
J/¢ and 1’ are complicated still further.

Thus far, only the behavior of the J/v and ¥’ cross
sections as defined by the model have been discussed.
In practice, however, experimentalists infer a value for
the total J/v-nucleon cross section from the measured A
dependence. For example, Anderson et al. [67] measured
the ratio of A°®/A’s for J/1 production from Be and
Ta with a photon bremsstrahlung beam of 20 GeV end-
point energy. From this, they inferred a J/v-nucleon
total cross section of 3.5+0.8 mb using the nuclear-optics
model of Gottfried and Yennie [68] (see Appendix B), in
which A°f/A is given by

eff oo oo
A7 21/ bdb/ dz p(z,b) e~ untale®) | (55
A A 0 — o0
where all the nucleons in the nucleus are assumed to be
able to participate in the process. t4(z,b) is the nuclear
thickness function, as defined previously. Unfortunately,
the form given in Eq. (5.5) is not justifiable merely on
the basis of the Glauber theory, as the exponential form

TABLE XIII. J/+ and ' absorption cross sections as a
function of N; and E.,,, computed from the J/v and v’ sur-
vival probabilities after passage through a single nucleon. As
the initial wave packet is assumed to propagate a distance £
before its interaction with a nucleon, the cross sections for
the N; > 2 cases depend on the £4 chosen. Here {4 for Be,
£a = 1.70 fm, is used.

(N:) E, (GeV) 0'31/’; (mb) cr;l,“ (mb)
(1) 85 19.6 -
(1) 12 19.3 —
(1) 20 19.1 —
(2) 12 [Be] 19.0 7.1
(2) 20 [Be] 18.3 11.2
(5) 20 [Be] 16.8 16.7

is only appropriate if the number of nucleons the J/v
encounters after creation at a point (z, g) is very large.
Thus, in order to compare my previously calculated ab-
sorption cross sections with those inferred from the cal-
culated A dependence, I shall adopt the form

eff 4 oc
AT _ 2 / bab / dz p(2,b) (1 — w)Nr =¥ (5.6)
A A Jo —oo

for A°¥ /A, which is consistent with the basic assumptions
of the Glauber theory. w is the inelastic transition prob-
ability, so that the inferred absorption cross section og;
is g1 = (TR, )w [69]. Neg(z,b) is defined by Eq. (2.7).
Following the procedure of Anderson et al., but using
Eq. (5.6), the inferred cross sections o) are extracted
from [A® /A]g./[A°® /A]p} for the cases tabulated in Ta-
ble IX for direct J/4¢ production. These results are tab-
ulated in Table XVI, along with the cross sections com-
puted directly from the model. As the Glauber theory as-
sumes that all nucleon interactions are independent, the
agreement between 031/)15/) and og) for the row marked “no
coherence” is necessary. og) essentially tracks the behav-
ior of e feed, as in Table X, with energy; the exception
is the N; = 2, E, = 12 GeV case. AS 00 feed 1S Only very
slightly larger than that of the N; = 1,E, = 8.5 GeV
case, it is not surprising that the og; extracted from two
of the A°f/A’s in the fit should yield a slightly smaller
cross section. As o) follows the behavior of ay, feeq quite
closely, its calculation offers no further insight; moreover,
if one’s goal is the determination of the J/4-nucleon cross
section, this approach — in the exclusive process studied
here — does not seem to be useful, though it could offer
a means of determining the cross section’s lower bound.

It should be mentioned, in passing, that the model
in Eq. (5.5) has been used as a starting point for
semiclassical models of transparency (see, for example,
Refs. [13,19]). In these models, a}?ﬁpNtA(z, b) is replaced

by

/ N dz aeﬁ(ﬁ,z)pA(z) s (5.7)

where the effective cé-nucleon cross section, o*f(g,2),
introduced to mock-up the weaker interactions of the
J/¢ in a “narrow” wave packet, depends on the cc’s
momentum and its distance after the production point.
The point is that Eq. (5.5) is derived assuming that the
J/v-nucleon interactions are independent, so that any
quantum-mechanical coherence effects in the final-state
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TABLE XIV. J/1- and %'-nucleon absorption cross sections as a function of E., for a variety of
initial state Ansdtze. Here the Ansdtze considered are truncations with NN; terms of a 1s harmonic
oscillator wave function with scale factor o, so that the cross sections’ dependence on the J/v : 9’
ratio and the initial-state size can be decoupled. The scale factor for the initial state Ansatz used
in the “frozen” limit is 92.37 fm~2. The ¢4 used in these calculations is that of Be, £€4 = 1.70 fm.

o5, and 05?° (mb) 057y and 03?° (mb)

o (fm™2) (V) J/ ! (r?)% (fm) at at

E, =12 GeV E, = 20 GeV
92.37 (2) 0.849 0.494 19.9 17.6 16.7 16.0
92.37 (5) 0.849 0.423 19.8 15.6 15.0 19.1
92.37 (6) 0.849 0.401 19.8 14.5 14.8 19.7
12. (2) 4.98 0.406 19.0 13.9 18.4 10.5
12. (5) 4.98 0.354 194 12.9 18.4 11.1

interactions have been neglected. As the possibility of
weakened final-state interactions arise from these effects,
the usefulness of Eq. (5.7) as an effective single-channel
description of transparency is unclear.

VI. CONCLUSIONS

The final-state interactions of photoproduced charmo-
nium with the nucleus have been calculated in a QCD-
inspired model as a function of photon energy for the ex-
clusive process in which quasielastically photoproduced
J/ carries off the maximum momentum consistent with
momentum conservation (large zp, zero pr). Color
transparency can be understood in this context as arising
from the coherent interference between the final-state in-
teractions of a spatially small superposition of photopro-
duced c¢ states. In the language promulgated by Gribov
and others, the phenomenon may be restated in terms of
the inclusion of all the “Glauber corrections due to inelas-
tic screening” [1,3], i.e., via transitions from ¢’ < J/¥,
etc.

This work represents a departure from conventional de-
scriptions of hadronic final-state interactions in two dif-
ferent ways. First, the assumption of a spatially small
initial state means that the initial amplitude is a com-
plicated superposition of charmonium eigenstates, rather
than an amplitude for J/9 production alone. Second, the
propagation of the small superposition of states through
the nuclear medium implies that quantum mechanical co-

herence effects in the final-state interactions cannot be,
and are not, neglected. The Glauber formalism com-
monly used to treat hadronic final-state interactions as-
sumes that the projectile interacts independently with
the nucleons of the nucleus, ignoring these coherence ef-
fects.

The calculation of A% /A with energy shows the overall
change of A°®/A to be less than 20% in the energy range
E, = 8.5 to 20 GeV, even though many of the model’s
aspects enhance the effect of transparency. Moreover, in
the energy range considered, A°%/A may oscillate with
energy (see Table X). The overall change of A°f /A is not
large, yet the relative effect can be enormous. That is,
a computation “without transparency” yields less than
a 2% change in A°® /A in the same energy range, where
“without transparency” means that the initial superposi-
tion is the J/v eigenstate and that only the J/4 state is
retained in the propagation of the c¢¢ wave packet be-
tween nucleons (see Table XI). This comparison is a
unique feature of this work: the energy dependence of
Asft /A with and without transparency is computed in
the same model. Although the change of A°®/A in the
energy range considered is not large, this work supports
the use of the empirical behavior of A /A4 with energy as
a signature of transparency. Another interesting result of
this paper is that an increase in A°f /A with energy, albeit
much weaker, can be seen even if the initial superposi-
tion is just the J/1 eigenstate. Even if the initial state is
an eigenstate, the final-state interactions themselves will
produce a superposition of states, which will oscillate in

TABLE XV. J/v- and v¥'-nucleon absorption cross sections as a function of E, for initial-state
Ansdtze composed of J/v and v’ only. The wave-function coefficients are assumed to be positive
definite, so that the J/1 : ¢’ ratio specifies the state. For the entries marked “—”, the absorption
cross section is not defined, as the probability for that state increases upon interaction with the
nucleon. The £ used in these calculations is that of Be, £4 = 1.70 fm.

o"}‘}f,, and a;t,’s (mb)

aaf/’fl, and 0':},’5 (mb)

T/’ (r?)% (fm) at

E, =12 GeV E, =20 GeV
0. 0.793 —_— 18.2 — 17.9
0.01 0.763 — 18.2 — 17.8
0.25 0.617 15.0 18.1 12.9 17.0
4 0.406 19.0 14.8 18.3 11.7

100. 0.479 19.3

— 19.0 —
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TABLE XVI. J/v absorption cross sections as a function of N; and E,, compared with the
J/v-nucleon cross sections in the Glauber approach, inferred from the ratio of A°¥/A for Be and
for Pb from Table IX for direct J/¢ production. The line marked “frozen” uses the Aeﬁ/A of the
high energy limit, as reported in Table III. As described in Table XIII, the N; > 2 results depend
on £4, so that the absorption cross sections for both Be and Pb are reported. In the case marked
“no coherence,” the excited charmonium states are not allowed to scatter back to the J/1 channel.

(Vi) Ey (GeV) (AT /Alpe/[A°7 /Alpy o5y (mb) oc1 (mb)
(1) 8.5 [no coherence] 2.57 19.6 19.6
(1) 85 2.31 19.6 16.2
(1) 12 2.36 19.3 16.9
(1) 20 2.30 19.1 16.1
(2) 12 [Be,Pb] 2.29 19.0,18.7 16.0
(2) 20 [Be,Pb] 2.23 18.3 ,18.2 15.1
(5) 20 [Be,Pb] 1.95 16.8 ,15.1 11.7
“frozen” 1.32 6.0 4.2

time, with a period (in the wave packet’s rest frame) de-
termined by the level spacing of the hadron spectrum
(see Figs. 7-9). In the laboratory frame, this period di-
lates, so that “snapshots” taken in the laboratory frame
at a distance d from the initial interaction point at suc-
cessively increasing momenta show the wave packet at
earlier and earlier moments in its rest-frame expansion.
Thus, as a nucleus is of finite size, it “sees” more of the
initial state as the momentum increases. This illustrates
the essential role of the final-state interactions in yield-
ing transparency. It should be emphasized, however, that
the computed change in A°% /A depends critically on the
choice of the initial state.

In the event that color transparency is observed in this
process, what does it mean? This model shows signifi-
cant variations in 4°f /A with energy (see Table XI), yet
perturbation theory does a dismal job of predicting its
cross sections even at high energies, though, for the spe-
cific exclusive process considered here, the momentum
transfers are never large. Thus, an observation of color
transparency in this process does not simultaneously val-
idate the application of pQCD, since this model study
serves as a specific counterexample. However, one could
perhaps imagine other processes in which the validity of
pQCD and the existence of color transparency could be
more closely tied. What is true, though, is that trans-
parency, if observed, makes a subnucleonic picture of the
nuclear medium and of the particles produced in it es-
sential. That is, transparency’s existence relies on an
interaction which depends on the relative separation of a
projectile’s quarks. Thus, its existence could be regarded
as a concrete example of the elusive “quark signatures”
long sought in nuclear physics.

The possible existence of transparency in this process
can also be regarded as a “weak” test of QCD, or, rather,
of charge screening; both QCD and QED have this prop-
erty. That is, the correlation observed between the wave
packet’s transverse size X and the J/v survival proba-
bility for a given initial state is a consequence of charge
screening. The comparison of the survival probabilities
for J/v and ¢’ when Ansdtze of varying size and cc state
composition are used demonstrates the fallacies in apply-
ing color-screening intuition too freely (see Tables XIV
and XV).

This model study, in which many of the approxima-
tions involved are consistent with “maximizing” trans-
parency, yields a relatively small variation in A°f /A for
J/v with energy, though this variation is much larger
than that of the baseline calculation, in which no coher-
ence effects are included in the final-state interactions.
Certainly, the absolute magnitudes of the absorption co-
efficients are very sensitive to the inclusion of coherence
effects, though I would not regard the absolute magni-
tudes of the A°®/A computed in this model as predic-
tive. That is, through ignorance, the overall interaction
scale has been specified by the choice of 7, which was fit
to the A dependence of the Sokoloff data [35]. This is
basically a reasonable procedure: the cause for concern
is generated by both the uncertainty in the experiment
— zp is not measured — and in the initial state. Thus,
the variations in A°f /A are regarded as being of greater
significance. What is important is that this model study
demonstrates the feasibility of an A-dependence study
with E, in determining the existence of transparency, as
the baseline calculation in the energy range studied is
quite flat. Moreover, the model demonstrates how the
A dependence of A°f/A for J/v¢ production may oscil-
late with energy, simply because of quantum mechani-
cal effects. Such oscillations can never be obtained in
a semiclassical picture [13,19]. Perhaps this contributes
to the oscillation in A°% /A noted in the (p,2p) data at
Brookhaven [70]. In this model, such oscillations can
occur only at relatively low energies; any oscillations in
the wave packet’s transverse size damp out with energy,
as seen here through explicit numerical calculation. In-
deed, in the absence of a change in reaction mechanism,
this model — and indeed all other transparency models
— shows a “saturation” of A°®/4 at very high energies.
In the event of a change in the reaction mechanism at
high energies, as discussed at the end of Sec. III, this
prediction will not hold; this may explain the energy de-
pendence of some early data from NA37 [61].

The comprehensive study of the J/v, x, and ¢’ sys-
tematics with A and E, in this model demonstrate that
the absorption coefficients associated with x and v’ prop-
agation through the nucleus are much more sensitive to
the unknowns of the production process, i.e., the initial-
state Ansdtze, than that associated with J/v. This could
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be extremely useful in unraveling the physics of the pro-
duction process. Moreover, irrespective of the absorption
coeflicients, the overall magnitude of x production rela-
tive to that of J/¢ and v’ is indicative of the initial-state
composition and its interactions with energy, with x pro-
duction becoming strongly suppressed at high energies.

In this model, the J/¢-nucleon total cross section is
well determined. Thus, one has the opportunity to com-
pare the total cross section inferred from the computed
A dependence, the usual empirical procedure, with the
actual J/4-nucleon cross section defined by the model.
This comparison shows that the Glauber analysis is quite
misleading, yielding J/-nucleon cross sections rather
smaller than those of the actual model. However, at least
for the cases studied, it does serve as a lower bound. The
empirical extractions of the J/-nucleon total cross sec-
tion, both from the measured A dependence and from in-
voking vector-meson dominance, using the forward elas-
tic cross section do(y + N — J/¢¥ + N)/dt|t=0, are com-
pared in Appendix B. As the VMD extraction is from
a H target, it is not affected by the possible existence
of coherence effects in the final-state interactions, and,
thus, hopefully should serve as a more reliable estimate
of the J/v-nucleon cross section. However, the cross sec-
tions derived from VMD are rather smaller than those
deduced from the measured A dependence at a compara-
ble energy scale, quite the opposite of the behavior shown
in this model. This disparity could be explained either
by uncertainty in the ~y-vector-meson coupling constant
needed for the VMD analysis, or by a novel dependence
in the nuclear absorption with =z, since the model com-
parison is performed for zp — 1, whereas xp is not mea-
sured in the A-dependence experiments. Indications of
changing physics with zr have been noted in hadropro-
duction measurements of J/4 off nuclear targets, though
such effects have not been studied in photoproduction
[71,66,72]. It could also imply that the initial state grows
in size with energy (implying “color opacity”), but this
seems nonintuitive, as the photon’s coupling to ¢¢ in the
forward diffractive process should be pointlike, as consis-
tent with the vy and vy~ decays of ce.

In order to effect the described calculations, many sim-
plifications have been made. It is useful to reiterate some
of these simplifying assumptions and, thus, point the way
for further work. First, this entire work has assumed that
the physics of the production step can be factorized from
that of the final-state interactions. Although some sepa-
ration of time scale may exist, it is clear that in order to
construct a complete description of the process, includ-
ing the production step, this factorization assumption
must be broken, as final-state interactions must act to
knock the initial hadronic fluctuation on-shell. This is
an essential piece of physics: the states of the c¢ tower
must be produced in such a way that the remaining nu-
clear fragments are identical, so that the coherence effects
may exist. Although this is ultimately important to un-
derstanding transparency, it is thought unimportant for
the phenomenological study undertaken here. However,
what may be important phenomenologically is the inclu-
sion of open channels, such as DA, or 7 production. It is
highly impractical to include all these channels explicitly,
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so that some appropriate optical model to describe the
loss of states to the open channels must be constructed.
There are also some computational simplifications: the
cc-flux-tube interaction is assumed to illuminate the cc
wave function uniformly, the flux tubes are treated as if
they are purely transverse, and they are assumed to be
equally spaced, in order to simplify the Monte Carlo in-
tegrations. If all the underlying model parameters were
well known, then the Herculean computational effort in-
volved in relaxing these last restrictions would perhaps be
justified; however, that is not currently the case. More-
over, as the variation in A°®/A for J/+4 production is
relatively small with energy, the results would not seem
to demand such improvements. It seems more instruc-
tive to try to use the results of the current calculations
to construct some reasonable, few-channel, effective de-
scription of transparency, so that the calculations can be
extended to higher energies. The change of the reaction
mechanism with energy, that is, the onset of shadowing,
can then be modeled explicitly.

In conclusion, an explicit microscopic model has been
constructed and solved in a numerically exact manner
in order to explore the role of coherence effects in the
final-state interactions of charmonium with the nuclear
medium and their impact on the phenomenology of the
A dependence of quasielastic J/v, x, and %’ photopro-
duction with energy. It is to be emphasized that these
effects have been computed only in the pr =0, zp — 1
limit. The overall variation of A*f/A for J/v¢ produc-
tion for the energy range E, = 8.5 to 20 GeV is small,
though it is much larger than its variation when no coher-
ence effects are included. However, as the overall effect is
small, it is possible that larger energies will be required to
observe transparency. Regardless, this model study sup-
ports the feasibility of elucidating the existence of color
transparency from the energy variation of the nuclear de-
pendence of J/1 production in this exclusive limit.
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APPENDIX A: ON IDENTIFYING THE
EXCLUSIVE PROCESS

To isolate the exclusive process discussed here, it is
necessary to measure both zr and pr of the produced cc
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particles; thus, it is also necessary to perform any mea-
surements with a photon tagger. However, for extremely
high energies, it might be more practical to consider a
measurement of quasielastic electro- or muoproduction
of c¢ in place of photoproduction. The purpose now is
merely to emphasize that the quasielastic process with
small pr and large zr discussed here can be isolated ex-
perimentally and, thus, is not an idle theoretical con-
struct. The difficulty is that as the energy increases, the
coherent peak begins to dominate the small pr region
overwhelmingly. Thus, cuts in pr must be performed to
remove any coherent contamination, yet one must guar-
antee that the production is still predominately elastic.
In a study of J/4 photoduction from H at a mean energy
of (E,) ~ 105 GeV, Denby et al. have determined the
pr dependence of elastic and inelastic J/4 production
[73]. Placing the lowest pr bin of the Sokoloff exper-
iment, 0.15 (GeV/c)? < p2 < 0.55 (GeV/c)?, on the
Denby data yields a ratio of 2 : 1 for the elastic relative
to inelastic events [35,73]. Thus, it should prove possible
to isolate the exclusive process studied here.

APPENDIX B: INFERRED J/%-NUCLEON
TOTAL CROSS SECTIONS

In Sec. V the Glauber method of determining the to-
tal J/y-nucleon cross section from the measured A de-
pendence was evaluated in the context of this model.
The objective here is to examine different experimen-
tal determinations of the total J/-nucleon cross sec-
tion, in order to see what consistency may exist be-
tween the varying approaches. In fact, there exist just
two: using Glauber theory to infer the cross section from
the measured A dependence or invoking vector-meson
dominance and the optical theorem (assuming the real
part of the scattering amplitude to be zero) to infer
the cross section from the forward-elastic cross section,

It is not difficult to review the world’s data: there
exist merely two experiments which measure the A de-
pendence of J/v photoproduced in nuclei. The first,
the previously discussed measurement of Anderson et
al. at SLAC, uses Eq. (5.5) and their measurement
o(Be)/o(Ta) = 1.21 £ 0.07 to infer a total J/+-nucleon
cross section of 0y/y.y = 3.5+ 0.8 mb [67]. Unfortu-
nately, they use an uniform density approximation in
place of integration over the experimental charge den-
sities. Correcting this error, and it is such, as Be is pri-
marily surface, yields 0;/y.y = 4.5 £ 1.5 mb. Yet, as
discussed prior to Eq. (5.5), the exponential form itself is
not well motivated for finite nuclei. Replacing Eq. (5.5)
with the model given by Eq. (5.6) shifts the central value
to 3.7 mb, which is close to the result originally reported!
The other experiment is that of Sokoloff et al. at Fermi-
lab [35]; they report a o j/y.x of 1 —2 mb, even though
their pr-averaged A dependence is the same as that of
Anderson et al. Thus, they should have reported a cross
section comparable to that of the Anderson data; for the
smallest pr bin, for which the absorption coefficient is
slightly larger, Eq. (5.6) yields o7/4.ny ~ 4.2 mb. It is
interesting that two experiments at such different energy
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scales ((E,) ~ 120 GeV versus an end-point energy of 20
GeV) should have nearly identical A dependences. How-
ever, the comparison is clouded, as the SLAC measure-
ment is performed for a pr of 1.65 GeV/c, whereas the
Fermilab experiment integrates over the pr spectrum.
Moreover, g is not measured.

Many more experiments exist which invoke VMD and
the optical theorem to extract the total J/v-nucleon
cross section from iﬂlﬂv—;’t—‘l@ﬂv—lh:o. Typically the
sizes of these cross sections are 1—2 mb; in particular, the
experiment of Binkley et al. at (E,) ~ 150 GeV reports
a total cross section of 05/ = 1.5+ 0.2 mb [65]. The
cross sections from the VMD and A-dependence methods
are distinct; what is striking, moreover, is that the VMD
cross sections are smaller than those inferred from the A
dependence. The above model study shows how the cross
section inferred from the A dependence can be markedly
smaller than the true J/-nucleon cross section in the ex-
clusive limit studied. This points up the oddness of the
empirical situation: the VMD approach does purport to
measure the total cross section associated with the elas-
tic process discussed here, and the cross section inferred
from the A dependence with small pr should also arise
mainly from elastic production of J/4. Yet, the relative
sizes of the two cross sections are different from those
of the model study. The possible causes of this dispar-
ity are various, though they are all interesting. First,
the VMD approach could simply be wrong, or that the
vector-meson coupling constant is inferred in an inappro-
priate way. Second, as the A-dependence measurements
do not measure z, there could be a novel dependence
on this quantity. Third, perhaps the appropriate initial-
state Ansatz at a photon energy of a 100 GeV or so is
much larger in size than that of a pure J/4 state, though
this seems nonintuitive. Conservatively, it seems entirely
fair to echo the comment of Brodsky and Mueller and
say that the J/v-nucleon cross section has not yet been
determined [12].

APPENDIX C: DETERMINATION OF THE
FLUX TUBE WIDTH r

In this section the computation of A°®/A and the re-
sulting fit of the model to high-energy photoproduction
data to extract the flux-tube width 7 is described. In
order to compute A°® /A, the specific reaction geometry
must be discussed, and the initial-state input in Eq. (3.9)
must be fixed as well. As mentioned in Sec. II, there
are two possible reaction mechanisms at high energies —
a shadowed and a direct process (see Fig. 3). The en-
ergies at which shadowing becomes important are esti-
mated in Sec. II (see Table II); for the purposes of this
work, this alternative reaction mechanism is essentially
ignored, so that the nuclear-averaged probability 4°% /A,
for J/4 production, is given by Eq. (2.6). The probabil-
ity PJ/,(b(Neﬂ‘) in both Egs. (2.6) and (2.8) can now be
determined. As discussed previously, |1;) is chosen as a
Gaussian wave packet where the ¢g rms separation is that
of the Compton wavelength of the heavy quark, that is,
Yi(r) = (ou/m)3* exp(—a;7%/2), with a; = 3/2(r2) and
(r#)1/2 = hc/my)y. Given this [¢;) and Eq. (3.9), the
probability as a function of N that J/v is produced is
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For x, summing over all final m-states using >,

Y7500, 0) Y1 (0, ¢") =

{z2' + s5' cos(¢p — ¢')} yields
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The probability in Eq. (C1) is not, however, the probabil-
ity of observing J/+. In principle, electromagnetic decays
from higher charmonium states must also be included. In
hadroproduction experiments, these corrections can be
quite large; for example, Lemoigne et al. have observed
in 185 GeV/c n~-Be interactions that 30.5% of the ob-
served J/vy production comes from the x; and x2 states
[74]. As x states are not to be directly photoproduced,
the role of x states should be less important here. Never-
theless, the feeding of the J/v channel by higher cc states
could be significant, and, thus, the J/1 probability input
to Eq. (2.6) and Eq. (2.8) takes these effects into account.
That is,

PJM;(N) = Pjy/ype1s(N) + Pye1s(N) x | VY e

+P¢’<—ls (N) X F¢’—>J/1/J+anything . (04)

Typically, the decays will cause the J/v’s which arise
from higher charmonium states to have finite pyr or to
have slightly less momentum; however, for large momenta
of the parent particles, the daughter J/+’s with small pr
will be indistinguishable from those produced directly.
The effect of the decays, then, depends on the resolution
of the experiment. The kinematic factors are ignored
here in order to see simply the maximum size of the ef-
fect. The branching ratios used are taken from the 1991
Particle Data Book; Fw'—>J/¢+anything = 0.57, whereas
Iy g/¢p+y = 0.1667 was obtained by making a (2J + 1)-
weighted average over the reported branching ratios for
the xo, X1, and 2 states. Feeding of the J/v channel
from 9’ via an intermediate x state is ignored as the
product of branching ratios is ~ 0.01. One might worry
that the produced x and v’ might decay before exiting
the nucleus: however, even in the case of xo with its full

></ dz cosz I ((0,8% + O, 5% — 20,0,:55' cos 93)%) .

(C3)

f

width of W = 14 £ 5 MeV, this is highly unlikely as
heBeey/W > Rpp ~ 7 fm even for Ej/y ~ 8 GeV, so
that the form given in Eq. (C4) is justified. Feeding from
still higher charmonium states to either J/v, x, or ¢’
is conceptually possible, but unmeasured; thus, only the
J/v probability is presumed modified by feeding effects.

Given the form for PJM, in Eq. (C4), and Egs. (2.6),
(2.7), and (C1)—(C3), one can now determine 7, the lux-
tube width in the laboratory frame. The direct pro-
cess, Eq. (2.6), is assumed to dominate at these ener-
gies, though this is unclear (see Table II). This assump-
tion will be examined more carefully later. 7, which
is assumed energy independent, is determined by fitting
A°f /A from Eq. (2.6) to the highest-energy photoproduc-
tion data available. This is provided by an experiment
at Fermilab by Sokoloff et al. which measured the rela-
tive yield of J/4 from real photons in the energy range
of 80-190 GeV ({E,) ~ 120 GeV) incident on H, Be, Fe,
and Pb targets [35]. Their resolution in pr allows them
to extract the A dependence of both coherent and inco-
herent production. (In “coherent” photoproduction, the
nucleus recoils in its ground state as a result of the pro-
duction of the c¢.) Fitting their yields per nucleus to the

power law form o con = amcohA"‘m“h they report

&incoh = 0.94+0.02+0.02  pZ > 0.15(GeV/c)?,

(C5)

where the cut on pr has been made to avoid severe con-
tamination by the coherent peak. Note that AeH/A
A&incob—1 = A< js adopted throughout this paper. The A
dependence of incoherent production is also determined
for various bins in pr:
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0.91 £ 0.03, 0.15 (GeV/c)? < p2 < 0.55 (GeV/c)?,

Qincoh =

0.92 £ 0.04, 0.55 (GeV/c)? < p2 < 1 (GeV/c)?,

(Ce6)

0.99 £ 0.04, p2 > 1 (GeV/c)2.

Denby et al. have previously determined that low-p2.
J/v production is elastic (v + N — ¥ + N), whereas
for p2 > 1 (GeV/c)? it is mainly inelastic (y + N —
¥ + N + X) [73]. Thus, variations in &ncon with p3
may indicate that elastic and inelastic J/v production
have differing A dependences, which could be relevant
to understanding transparency. Unfortunately, it is also
true that the effective photon energy also varies with the
pr bin. Here the photon energy is ill-determined, so that
the p2 > 1 (GeV/c)? bin originates from a larger share of
high-energy photons, perhaps explaining the apparently
different A dependence in this bin. At any rate, the mea-
surement which is closest to the one desired is that of the
smallest pr bin, 0.15 (GeV/c)? < p2% < 0.55 (GeV/c).
A similar bin in pr placed on the Denby et al. photo-
production data from H with a mean energy of E, ~ 105
GeV yields a ratio of 2 : 1 for the elastic relative to inelas-
tic events [73]. Even if the production is primarily elastic,
one can not guarantee that the subsequent interactions
are also elastic. For that, a measurement of zr and p2
is required (see Appendix A), though no such data is
available. Fitting A°® /A computed from Egs. (2.6) and

[<02 - 82 + 2% + 4 — 2(Cew + () O(Xete —

where dimensionless units such that ¢ = z4im/b have
been introduced. b is the usual harmonic oscillator con-
stant, \/A/wpe, so that {; = [yb3kRreggette/ (Bc)?] cos b,
whereas (; = (ptanf and X, = R/b. Labeling the
eigenenergies and eigenfunctions by 7 is a compact way
of denoting the occupation of the  and y oscillators; Ta-
ble V shows the translation from the 7 [(] to the (ng,ny)
representation. To solve Eq. (D1), let

Uy(@,9) = 3 Con®3()8m(v) (D2)

where 7 = (j,m) and 5 = (i,n). The ®’s are
one-dimensional harmonic-oscillator wave functions, i.e.,
[—d?/dz? + 2?]®,;(z) = &;®;(z). Thus, the elements of
the matrix C,; are the overlap functions between the
free and flux-tube eigenfunctions needed to calculate the
evolution matrix through a flux tube, Eq. (4.5). One pro-
ceeds by inserting Eq. (D2) in Eq. (D1) and multiplying
by [ dz ®;(z) 20 dy ®,(y) to yield

> i [(65 + Em)ban — 261y = 26,1%)] = ByCor
7

(D3)

[

(C4) to the measured A dependence in this bin yields —
as reported in Sec. IT -

7=13%+0.3fm, (c7)
where the error bars result from repeating the fitting pro-
cedure for the upper and lower bounds of the experi-
mental &jncon. The fitting procedure uses realistic nu-
clear charge densities as tabulated in Landolt-Bornstein
[44], and Dsgpac for the various nuclei is given in Table I.
Clearly, the stronger absorption requires the larger 7.

APPENDIX D: COMPUTATION OF THE FLUX
TUBE EIGENFUNCTIONS

Here the numerical computation of the eigenenergies
and eigenfunctions of the c¢ in the nucleon flux tube is
described. As the flux tubes are purely transverse, the
flux-tube basis is nontrivial only in two dimensions. La-
belling the transverse dimensions by = and y yields the
following equation of motion:

(:1:2 +y2)1/2)] U, (z,y) = E’nwn(g;,y) , (D1)
I
with
=] e dy B1(z) 7 @, (2) %0 (1) (3)
(22 +y2)1/2< X
(D4a)
and

1=/ o dy @,(2); (2) 2 (4) Y B (1),
(22 +y?)1 /2 < Xor

(D4b)

Equation (D3) can be readily solved for C,;. Thus, a
two-dimensional matrix problem has been reduced to
a one-dimensional one with matrices of size (n®** 4
1)(nPax42) /2, where n*®* denotes the highest excitation
state of the one-dimensional oscillators. This method
readily generalizes to n dimensions, at the price of solv-
ing an ever larger one-dimensional problem. The largest
value of n*** needed is 35, so that the matrix inversion
problem is still practicable. It can now be seen why the
flux tube’s field configuration was chosen to have a cir-
cular profile. For this geometry, I,;(xz) and I,;(y) are
independent of the flux tube’s orientation 6 and need be
calculated only once; however, Eq. (D3) has to be recom-
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puted at every point in the Monte Carlo average over the B o—i+n+1—(C2+2)/2 D5
flux tubes’ orientations. The computational saving of " (Ce )/ (D3)
having theta-independent I,,;’s is needed for tractability. and
The computation of the Cy,;’s can be tested in the limit
when X, grows large. In this limit, the two-dimensional C.. = / / dz dy . (2)® b (x
eigenvalue problem decouples, and each one-dimensional e Y 2;(2)8m(y)¥a(z,9)
wave function is a harmonic-oscillator wave function with = (Yi|U:) 2 (Um|Un)y (D6)
a shifted coordinate. The computed E,, and C,;5’s can be
compared to where
J
1 LoNE ([ PANG)TILT(G)), G <
~ 2
(yjlFi)e = exp (—ZCI) (27:7.7.) { _ o (D7)
24l(=Ce)? TP LIT(CR/2), G =i

The L?™* are generalized Laguerre polynomials, and replacing (, by (, yields (y;|§:)y. The E, and Chi given in
Egs. (D5) and (D6) are reproduced quantitatively by the solutions to Eq. (D3) for large Xgt,.

The flux-tube eigenfunctions generated by Eq. (D1) exclude the existence of open channels, though they certainly
exist in reality, either via ¢g pair production to produce DD or via rearrangement of the quarks in the flux tube to
produce DA, or DY.. To explain this notation, it should be noted that isospin breaking effects are ignored, so that

30, ¥F, and =} are degenerate, as are D’ and D-. Pair production effects are rather more difficult to include as
the free ¢ spectrum must be modified as well. Thus, merely the modification of the c¢ eigenfunctions in the flux tube

to include “string flips” is discussed here, so that Eq. (D1) becomes

ﬁz

e

1 .
ViU + (§ucwzrz — eEg: - f’) U+ fa.(r)é1 + fo.(r)¢2 = BV

R 1 In (Ia, +1)A2
- Loz(rgy) + el T Uy 9 = (B Ba )y
20pa, T 2upp.T
R 1 Iy (lg + l)ﬁz
- -9 Ze\the T )7 = _
2ups, T " (ré2) + 2upy, 2 ¢z + fo. ¥ = (E — Ex.)¢2, (D8)
[
where E is defined relative to 2m.+C, Ex, = mp+ma,—  with ka = /2up,(E — EA)/A%.  j; is the spheri-

my —2m., —C, and Ex, = mp+ms_—mpy —2m.—C.
¢1 and ¢, are the relative wave functions of the DA,
and DY, systems, respectively. The mass difference
mp, +mp—my —myy is ~ 150 MeV, so that the chan-
nel mixing cannot be regarded as weak. The channel
couplings fa and fs, which are real, depend on the rela-
tive orientation of the c¢¢ and nucleon flux tubes and in-
crease monotonically with r, though their functional form
is not well-constrained. As the produced DA, and DX,
result from a “short-circuit” of the nucleon flux tube, it
is reasonable to treat them as free particles. Thus, the
following one-channel reduction can be effected:

52
2pc

1 P
Viy + (5,ucw2'r2 —eFy, - r) U+ fAGY, , fAY

+f2Gl, i fr¥ = BV, (DY)

0 0 : )
where G}, ;, and G} . are the free Green function’s as

sociated with DA and DX production, respectively. That
is,

1. X
Gy pa(ir') = —HJIA(’“AR)"?: (kars) (D10)

cal Riccati-Bessel function of order I, whereas izf is
the spherical Riccati-Hankel function. Unfortunately,
Eq. (D9) is not only nonlocal, it also fails to be sepa-
rable in either spherical or Cartesian coordinates. Thus,
the decoupling of the z coordinate, so convenient earlier,
no longer exists. Solving Eq. (D9) is quite nontrivial;
perhaps a phenomenological approach to the inclusion of
open channels would prove more practical, e.g., via an
optical model potential with an imaginary part.

APPENDIX E: CONSTRUCTION OF THE
INITIAL STATE

As discussed in Sec. V, the initial state used as input
for the evolution calculation is constructed by minimiz-
ing the size of the wave packet for a fixed number of basis
states. That is, presuming this initial state to be com-
posed only of |¥,,00) states, one wishes to determine the

coefficients C,(LN'““‘) such that

Nmix
(Wi|r?|@;) = Z Cp{Nmix) C{Nmix) (U, 100[7%| W _100)
n,m=1

(E1)
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is minimized, subject to the constraint that
ZN““" |CNmix|2 = 1. This can be immediately realized

n=1
as MC = AC, where M,,, = (¥,,,_100/72|¥p_100); the
eigenvector associated with the smallest eigenvalue A,

consists of the desired C,,’s. Now

U, 2w, _ = —
( 100|"‘ | 100) o

3 3
6m,0§ - 50,171—-1\/; ’

1 6m,n[% + 2”] - 5m,n—1 'I’L(TL + %) — 6n,m—1
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v _ 3/4 | n! (3) 2
\IJnOO(r) - \/éaf F(TL + 3/2) L~ (afr )

x exp (—aysr?/2) (E2)

so that

(n+1)(n+3), mn>1 (E3)

otherwise .

The generated C,,’s must be decomposed on the Cartesian basis |®,, ., ».) in order to generate the starting coefficients
g eTyT: g g

(init)

Ctn. [( = (ng,ny)] as given in Eq. (4.3). (®n,n,n.|¥noo) can be readily computed, so that

_ ) DnonDnynDp,n , if ng,ny,n, are even and =g, "Ty, T <n
(‘bnlnynzlql'rwo) - { 0 , otherwise ) (E4)
where
ng 1 Nng! : 2n= 1 Ng

D, .= (-1 — =+ = E5
e =(=1)7 (ﬁﬂs/4\/<r(nz+3/z))) \/(w) (2+ 2) (ES)

and, for completeness, where

1 1

@, (z) = af (m) H, (\/asz) exp (—oysz?/2) . (E6)

Thus, the C’éi::t) to be used as input to the evolution calculation are generated.
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