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A refinement of the first-order optical potential is introduced, consistent with multiple scattering
theory and the spectator expansion. A systematic formalism is presented to treat medium contri-
butions associated with the difference between the effective NN t matrix as required by multiple
scattering theory and the free NN t matrix. A mean field potential is used to represent the ac-
tion of the residual (A —1) nucleus upon the struck target nucleon (medium efFects). We calculate
elastic proton and neutron scattering from Ca, using the full Bonn interaction and two different
mean field potentials taken from realistic and proven nuclear structure models. Results indicate
that the medium contributions are insignificant at energies above 300 MeV and provide a significant
improvement of the theoretical predictions for laboratory energies between 48 and 200 MeV.

PACS number(s): 24.10.Cn, 24.10.Ht, 25.40.Cm, 25.40.Dn

I. INTRQDUCTION

The early successes of the erst-order representation of
the optical model potential derived from multiple scat-
tering theories had been expected to be followed by illu-
minating higher-order studies which would yield signi6-
cant new information about the nuclear force and various
kinds of correlations in nuclei. Such expectations have
not been realized. At this time improvements in the the-
ory, in calculational techniques, and in the accuracy and
availability of data suggest that such expectations may
now be realistic. If higher-order studies are to be pursued
in earnest, it is essential that the theory and understand-
ing of the erst-order calculations be completely reliable.
Recent refinements of erst-order multiple scattering the-
ory calculations include, among others, (1) full-folding
calculations, which incorporate the effects of the nonlo-
cal density matrix [1—3]; (2) binding energy effects [4]; (3)
exact treatment of the Coulomb potential in momentum
space calculations [5, 6]; (4) second-order studies of Pauli
effects [7]; (5) Coulomb exchange correction [8]; and (6)
proper treatment of isospin [9].

In this work a further refinement of the first-order
theory is introduced, which improves both the under-
standing of the multiple scattering process and the pre-
diction of the data. In the first-order Watson [10] or
Kerman-McManus- Thaler (KMT) [11] theory, the com-
mon practice has been to perform the standard "impulse
approximation" in which the free nucleon-nucleon t ma-
trix enters. This essentially entails the replacement of
the many-body propagator with the free propagator. In

this paper the difference between the many-body propa-
gator and the &ee propagator is analyzed and modeled
in a microscopic mean field approach. A formalism is de-
veloped as an extension to the erst-order multiple scat-
tering theory, where a mean Beld potential is used to
represent the effects of the medium acting upon the tar-
get nucleon. Consistency with multiple scattering ap-
proaches, specifically the spectator expansion [12, 13], is
maintained throughout. Since in this paper known quan-
tities are used to represent the required physical ingredi-
ents, it must be emphasized that there are no adjustable
parameters. Calculations are performed for Ca. While
the resulting effects are not large, they systematically im-
prove the correspondence between calculation and mea-
surement for both proton and neutron elastic scattering,
especially when the projectile energy is below 200 MeV.
With these new results the physical meaning of succeed-
ing calculations should become clearer.

In the case of pion-nucleus scattering there exist some
calculations which model medium effects by using simple
one-body central potentials [14], based upon a formalism
developed in Ref. [15]. In these calculations a set of three-
body-like coupled equations are used to give the medium
correction.

The theoretical derivation of the formalism is pre-
sented and discussed in Sec. II. The results are separated
into three parts in Sec. III. In the first two parts elas-
tic proton-nucleus and neutron-nucleus calculations are
shown. The third part gives an analysis of the energy de-
pendence of the nucleon-nucleon interaction as provided
for in the formalism. The conclusion follows in Sec. IV.
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II. THEORETICAL FRAMEWORK

&IA tfree —t (6l p7-I A
oi oi oi +0 4 J oi (4)

The difFerence between the use of v'; of Eq. (4) in place
of 7; of Eq. (3) is the subject of the present investigation.

We have now to return to Eq. (2) to examine the re-
lation between Gp(E) and the free two-body propagator.
We observe that HA can be reexpressed as

The nucleon-nucleus multiple scattering formulation
used in this paper is essentially that of Ref. [12], in which
the Pauli principle is incorporated into the spectator ex-
pansion for the optical potential. This treatment of Pauli
antisymmetry effects follows the philosophy growing out
of the early work of Watson [10] and developed via the
spectator expansion [12]. In the spectator expansion the
transition operator, T, or the optical potential opera-
tor, U p& is presented as a sum over n-body operators,
where n goes from 2 to A+1, such that T = g +2 T
or U pt

—P 2 U . In the lowest order the two-bodyA+1

antisymmetry is achieved through the use of two-body t
matrices which are themselves antisymmetric in the two
"active" variables. In the next order, the three-body t
matrices which appear are taken to be antisymmetric
with respect to the three "active" variables, and so on.
The effect of the Pauli principle in the next order of this
expansion has been estimated in Ref. [7] and found to
be very small in the energy regime under consideration
here.

The one-body transition operator for elastic nucleon-
nucleus scattering is represented as

T =
Unapt + UoptGp(E)PT,

where P is the projector onto the target ground state and
Gp(E) is the free propagator for the projectile-nucleus
system defined as

Gp(E) '—:E —hp —H~.

The energy E is the total energy of the (A+1)-body sys-
tem, ho is the kinetic energy operator for the projectile
nucleon and HA is the target Hamiltonian. In the specta-
tor expansion the lowest-order contribution to the optical
potential becomes U pt —P, z r „or Uopt 7 p, where

p is the density of the target and v i is given by

r; = v + v;Gp(E)Qr, .

It should be noted that this is also the Brst-order term in
the Watson expansion. In Eq. (3) v, is the two-body
nucleon-nucleon interaction between the projectile nu-
cleon "o" and the "i"th target constituent nucleon and
Q = 1 —P is the projector ofF the target ground state.
As usual, it is assumed that there is complete antisym-
metry among the target nucleons. It is also assumed
that there exist only pairwise forces between the nucle-
ons. The standard approximation to the Brst-order Wat-
son or spectator expansion is the so-called "impulse ap-
proximation. " This approximation is characterized by
the substitution of the &ee two-body propagator gp(e)
for the many-body propagator Gp(E) in Eq. (3). In this
way the operator 7 of Eq. (3) becomes rr, a two-body
operator, which is related to the &ee t ". as

where

U, = v~

The mean Beld potential Ui is a one-body operator and
s' is a c number (an energy shift). At this point any
discussion of the averaging process implied by the '( )'
symbol is postponed, and the crucial theoretical question
involving the treatment of (g.&. v,~ + H' —U, —s') is
deferred until later. After these averages are taken, the
propagator, Gp(E), becomes

Gp(E;, i) = (E —s*) —hp —h, —U;

= Ei —h, o —h, —Ui.

The energy, Ei, is

E; = E —s' = E —[s' + s;] + s;
=E+c;,

where ci is the ith nucleon's single-particle energy and
s' + s; = (H~) is chosen to be zero. The propagator
Gp(E, i) is a two-body operator and the operator

t; = v; + v;Gp(E;, i)t,
is likewise a two-body operator.

The operator t; will be related to the &ee nucleon-
nucleon t matrix on the one hand, and on the other hand
to the operator, w „defined as

r; = v, + v;QGp(E;, i)Q~;, (12)

where v p will represent the lowest-order approximation
to the optical potential [Eq. (3)].

By elimination of v; between Eqs. (11)and (12) above,

7. ; = t; —t;PGp(E;, i)P~;
is obtained. The operator of interest is P7,P, since
P g,. r;P corresponds to the one-body optical potential
operator in the first-order theory. The operator P7 iP
is easily obtained as a solution of the one-body integral
equation

(P7;P) = (Pt, P) —(Pt;P}Go(E;,i)(P7,P) (14)

A

H~ = h;+) v;~+H',
jgi

where H is the residual Hamiltonian involving the (A —1)
particles (exclusive of particles o and i), h; is the kinetic
energy operator for nucleon i, and v,z is the interaction
potential between target nucleons i and j. Clearly HA
is an A-body operator and hence Gp(E) is an (A+1)-
body operator. We then deBne a one-body Hamiltonian
H; as a particular average of H& over the (A —1) j g i
nucleons, such that

HA~ H; —= 6, +Ui+~',
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Next t; may be written in terms of t ',.", since

t.",- = i., + v.;gp(e) t".,-,
with

gp(e)
' = e —hp —h;. (16)

t; = t', (e) + t ',"(e)[Gp(E;, i) —gp(e)]t, , (17)

The obvious relationship between t; and t ',"is then

where the parametric energy e is as yet undefined. The
difference between Go and go corresponds to the medium
effect under discussion in this work. This is the only such
effect included in the first-order theory, as discussed at
length in Ref. [12]. It is, of course, possible to take a dif-
ferent attitude toward the manner in which one includes
the projectile-target antisymmetrization in the multiple
scattering expansion (cf. Ref. [16]). The present treat-
ment is a direct descendant of that first proposed by
Takeda and Watson [17].

The quantity, Gp(E;, i) —gp(e) can be rewritten as

Gp(E;, i) —gp(e) = Gp(E, , i)[gp(e) ' —Gp(E;, i) ']gp(e)
= Gp(E;, i) [e —hp —h; —E; + hp + h; + U;]gp(e)
= Gp(E;, i) U;gp(E;)
= go(E*)&(E')gp(E')

The effective nucleon-nucleon t matrix t, becomes

t ' = to' (E') + to' (E') (E')&(E*) (E*)to'
= t.; (E') + '(E') o(E*)to'

with io; (E;) defined to be

~-*(E') —= t".,' (E')go(E') 7'(E').
It then proves convenient to rewrite Eq. (20) as

so that

A; =—t';-gp(E;)ii;(E;),
with g, given by

(20)

(21)

(22)

9-(E') = -(E*)+ -(E*)go(E')%'(E') (24)

The formal derivation iinplied by Eqs. (1)—(24) can be
realized in the following set of steps.

(1) Find or choose a mean field potential to represent
U,

(2) Solve the integral equation, Eq. (19), for 7;(E;).
(3) Construct io;(E,.) using Eq. (21).
(4) Solve the integral equation, Eq. (24), for q;(E;).
(5) Construct A using Eq. (23).
(6) Add b, ; to t ' to obtain t;, cf. Eq. (22).
(7) Take matrix elements of the effective nucleon-

nucleon t matrix, t,. using target nucleus wave functions
(i.e. , folding t, with the nuclear density matrix).

(8) Solve the implied one-body integral equation,
Eq. (13), for ~;.

(9) Obtain the first-order opt model potential U, zi ——

Q,. P7. ;P; i.e., U pi ——~p.
(10) Solve the one-body Lippmann-Schwinger equa-

tion, Eq. (1), for T, the nucleon-nucleus transition op-
erator for elastic scattering.

It is noted that although Gp(E) is a complicated many-
body operator, the operator Gp(E) P, which appears in

where we have chosen e = E, for obvious reasons. The
operator 7;(E;) is, of course, the transition operator cor-
responding to the internal target potential U;, i.e.,

&(E,) = U, + U;gp(E, )&(E,) . (19)

Eq. (1) is the trivial one-body operator, Gp(E) P = (E+
i e —hp) i P.

An alternate approach to a calculation of a medium
correction is presented in Ref. [15],where a set of coupled
three-body integral equations are derived to give L;.
This method has been applied to pion-nucleus scattering
[14], where local, central square-well and Woods-Saxon
potentials were used to represent the interaction between
the target nucleon and the residual nucleus.

The formalism presented here should be differentiated
&om other approaches in the field of nucleon-nucleus
scattering. Specifically, models exist which attempt to
represent a medium correction through the introduction
of a Fermi gas Pauli blocking operator within a local den-
sity approximation of nuclear matter to derive an effec-
tive nucleon-nucleon (NN) t matrix [18,19]. Although, a
degree of success can be attributed to the results obtained
in these other approaches, a cleaner and more precise un-
derstanding of the physical interpretation and construc-
tion of medium effects is called for. In contrast, in the
present approach familiar quantities can be taken &om
realistic and proven nuclear structure calculations and
nucleon-nucleon scattering to model the medium contri-
butions, while consistency with multiple scattering the-
ory and the spectator expansion is maintained.

The above step-by-step treatment is a straightforward,
precise formulation of the procedure for the calculation
of the elastic optical potential in lowest order in the spec-
tator expansion. In practice, however, the ten steps out-
lined above are awkward to realize, because the oper-
ator, io;(E;) (step 3) is an operator in the variables
(k', k,', k, k;), which does not separate into the two-body
form ip, = h[(k' + k!) —(k + k, )] x to;(k' —k!,k —k, ).
This is, of course, the form which all Galilean-invariant
two-body operators take, so that two-body equations can
be reduced to effective one-body equations. In order to
facilitate calculations we approximate tu, in such a fash-
ion that it does so factorize into a pair-momentum con-
serving delta function and a function of the relative mo-
menta. The rationale for such an approximation to m,.

follows.
Equation (21) can be written in momentum space as
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h(»7' —p")t',"(q; ', q, ")8(k"—k )7;(k,"—k;)

~(»
' —P")t'. '(q'', q' ")~(k."—k-)7*[(k!'—k.") —(k' —k-)] s - s-

E; —hp (k") —h; (k,") + ze
(25)

where h, is the kinetic energy operator for particle i and where, to simplify the argument, we have taken 7; to be
local. It is to be noted that the choice of 7; as local is for clarity alone and is not essential. The variables»7 and q;
are deffned as p = k + k; and q =

2 (k, —k ), so that in terms of these variables Eq. (25) becomes

(p' —p") '. '(q'', q'") [-,'(P" —p) —(q'" —q*)]7'(q'" —q') d, „d,
E —-h(p") —-'h(q ")+ ze

For sufficiently large nuclei, 7, is long ranged (in coordinate space), especially as compared to the short-ranged free
nucleon-nucleon t matrix, t '. Since Eq. (26) involves a folding of 7; with the short-ranged t;", in t-he region where
the integrand is large 7; should be approximately constant in coordinate space. If 7, were infinitely long ranged, then
it would be represented by a delta function in momentum space, so that the delta function 8[(p" —p) —(q,

" —q;)]
would become 8(p" —pg. With this in mind Eq. (26) can be approxiinated as

tfree( ~ I ~ I/g P ~ II

(k'k'i ik k)=b( ' — ")2 ' *'' ' ' *
dE —-'h(»7") —-'h(q ") + zE

(27)

The approximation given in Eq. (27) is that used in these
calculations. In that case, the momentum conserving
delta function b(p' —p") factors out of the integral and
the remaining steps (4—10) are integrals or integral equa-
tions involving only the relative momenta of the projec-
tile and target nucleon. Without this approximation, it
would be necessary to account for the recoil of the resid-
ual A —1 nucleus via the solution of a six-dimensional
integral equation instead of a three-dimensional equation.
The accuracy of this approximation has not been tested,
but we are confident that this is a reasonable procedure
for heavier nuclei.

III. RESULTS

Step 1 involves choosing a model to represent the aver-
age mean field potential, U;, which is felt by the ith target
nucleon. It would be ideal to construct U,. &om the same
nucleon-nucleon interaction, which is used to construct
the &ee nucleon-nucleon t matrix. The problem though
is that it has been shown, through numerous attempts
to construct (via, for example, Brueckner theory) the
nuclear mean field using accurate representations of the
&ee nucleon-nucleon interaction, that such approaches
fail to provide realistic and accurate descriptions of nu-
clear structure and nuclear matter [20]. Hence the choice
is made here to incorporate realistic and proven nuclear
mean field models to represent U;, models which utilize
effective nucleon-nucleon interactions.

Two different mean field potentials are used in our cal-
culations, so as to isolate any model dependence which
may exist. One is the nonlocal nonrelativistic mean
field potential taken &om a Hartree-Fock-Bogolyubov
microscopic nuclear structure calculation, which utilizes
the density-dependent finite-ranged Gogny D1S nucleon-
nucleon interaction [21, 22]. This model formalism has
been shown to provide realistic, accurate representations
of a variety of nuclear structure efFects. Calculations us-
ing this potential to model the medium efFects will be

referred to as HFB. The second choice involves a non-
relativistic reduction of the mean field potentials result-
ing from a Dirac-Hartree calculation based upon the O.-w

model [23]. The calculations with this potential will in
turn be referred to as DH. Comparisons of calculations
with these two models may isolate the medium efFects,
as well as indicate any dependence upon the model used
to construct the nuclear mean Geld potential.

The full Bonn potential [24] is used to calculate the free
nucleon-nucleon interaction, t ', for projectile energies
less than 300 MeV. This interaction includes the effects
of relativistic kinematics, retarded meson propagators as
given by time-ordered perturbation theory, and crossed
and iterative meson exchanges with W%, NA, and LA
intermediate states. For energies greater than 300 MeV
a high-energy extension of the Bonn potential [25], which
incorporates the effects of pion production, is used.

The series of equations described in steps 1—6 are pro-
jected upon a helicity basis, which allows for the full an-
gular momentum content of the theory to be included.
Hence, the efFects due to the spin-orbit term in U,. and
the spin structure of t '; ' are treated explicitly. With the
approximation embodied by Eq. (27) each of these equa-
tions reduces to a set of one-dimensional equations. The
helicity basis, as applied to two-body integral equations,
is described in detail in Refs. [24, 26].

Step 7 is approximated using the optimum factoriza-
tion approximation as described in Ref. [27], where the
fully off-shell efFective t matrix, t;, is used, but with
the diagonal density. The full folding of the ofF-shell t
matrix and the fully nonlocal density matrix has been
shown to give significant effects using model wave func-
tions. The proton densities are taken &om electron scat-
tering [28], while the neutron densities are those calcu-
lated from the Hartree-Fock-Bogolyubov calculation de-
scribed above [21].

Steps 8—10 are straightforward one-body integral equa-
tions which are solved in partial wave form. The effects of
the Coulomb interaction in the case of proton scattering
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are included nonrelativistically using an exact method as
described in Refs. [5, 6]. All of the calculations in this
paper are performed in momentum space. Therefore, the
medium correction and the description of the nucleon-
nucleon interactions include the nonlocal and ofI'-shell ef-
fects.

The results for the calculations shown in the following
sections are for scattering from Ca, which is doubly
magic and spin saturated. By assuming a spin saturated
target, only the spin-independent and spin-orbit terms
of the efI'ective t matrix t, need be included in step 7.
The calculations used to generate the results presented in
Secs. III A and III8 assume that E; as defined in Eq. (9)
is equal to E. It is found that the nucleon-nucleus scat-
tering results are rather insensitive to changes in E. Ef-
fects due to the difference between E; and E are shown
in Sec. IIIC.
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A. Proton-nucleus scattering results

In Figs. 1—6, 10, and 11 elastic scattering calculations
of the angular distribution of the differential cross sec-
tion, analyzing power A„, and spin rotation parameter
Q are shown, where the solid curves correspond to the
use of the free off-shell KN t matrix, t '(E) in place of
the ofI'-shell operator, t „in step 7, and will be referred
to as the &ee result. The solid curves correspond to the
standard impulse approximation to the optical potential,
in which no medium contributions are included [t~ '(E)
replaces t; in step 7]. The dashed curves include the full
medium contributions corresponding to steps 1—6. Use
of the local DH potential to represent the mean field, U, ,
acting upon the target nucleon gives the short-dashed
lines and the corresponding calculation using the nonlo-
cal HFB potential gives the long-dashed lines.

It is generally expected that the first-order im-
pulse approximation is valid for projectile kinetic ener-
gies T~ greater than 200 MeV. Our calculations for
T„= 200 MeV are displayed in Fig. 1. The solid line
represents the result obtained with the free NN t ma-
trix, the dashed lines include the modifications due to
the nuclear medium. The two medium results are very
similar and it can be said that there appears to be little
model dependence on the manner in which U; is repre-
sented. This is true for all of the cases studied. In con-
trast to expectations that any complicated higher-order
processes would cause the difI'raction pattern in the dif-
ferential cross section to be less distinct, what is found
instead is that although the medium has a small effect
upon the difI'erential cross section, at T~ = 200 MeV it
causes the minima to be deeper and also shifts them to
higher scattering angles. For the spin observables the
medium is non-negligible causing the analyzing power to
have deeper minima at slightly larger angles, where at the
first minimum the theoretical curves are actually moved
significantly closer to the data. The spin rotation pa-
rameter, Q, does not favor any one of the curves over the
other.

The medium contributions should become more im-
portant at lower projectile energies. In Fig. 2, where
T„= 160 MeV, efI'ects similar to those seen in Fig. 1

I
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FIG. 2. Same as Fig. 1, except the projectile kinetic en-
ergy is 160 MeV and the data are taken from Ref. [33].

FIG. l. The angular distribution of the difFerential cross
section (z~), analyzing power (A„), and spin rotation func-
tion (Q) for elastic proton scattering from Ca at 200 MeV
laboratory energy. The calculations are performed with a
first-order optical potential obtained from the full Bonn in-
teraction [24] in the optimum factorized form. The solid curve
represents the free impulse approximation using the free NN t
matrix in step 7. The medium contributions are included in
the dashed curves, where the DH mean potential is used for
the short-dashed curve and the HFB mean field potential for
the long-dashed curve. The data are taken from Ref. [32].
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result. The diffraction pattern for the differential cross
section and Az are slightly deeper and shifted to larger
angles, so that it might be said that the incorporation of
medium effects makes the nucleus appear slightly more
compact. The medium contribution brings the structure
of the A„closer to the data, although there still exists
some lack of agreement. Again little effect is seen in Q.
In Fig. 3 at Tp: 100 MeV a ledge appears in the A„
data at angles 10 —20 . While the medium has a small
effect in the differential cross section, the A„ is system-
atically brought closer to the data. The ledge is clearly
better represented when the effects due to the medium
are included. In addition the spin rotation parameter is
reduced, but there are no data for comparison.

It is felt that the first-order multiple scattering expan-
sion should begin to become inadequate at energies less
than 200 MeV, and should have serious Qaws at ener-
gies less than about 100 MeV. While no claims are made
about the validity of the first-order multiple scattering
theory, studies of the medium contribution are presented
in Figs. 4—6 for Tz & 80 MeV. The effects become more
important at these lower values of the projectile kinetic
energy. In Fig. 4, where T„= 80 MeV, the medium
contribution now causes the minima in the differential
cross section sometimes to be less deep. The shift to
higher angles is more pronounced than that observed in
the previous figures. It is clear that although the agree-
ment with the data remains imperfect, the medium con-
tribution brings the differential cross section closer to the
data. The ledge in the A„ is deeper than that seen in
Fig. 3. The prediction of A„ is even more improved than
what was observed at T„= 100 MeV, providing a better
representation of the ledge and likewise shifts the peaks
towards the data. There is a larger shift downward of the
spin rotation than observed in Fig. 3. At T„=65 MeV in
Fig. 5 the medium enhances the differential cross section
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I
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FIG. 4. Same as Fig. 1, except the projectile kinetic en-

ergy is 80 MeV and the data are taken from Ref. [33].

towards the data improving the agreement with the data.
The ledge in the A„ is more pronounced than at higher
T„, and the medium contribution continues to improve
the prediction. There is a significant improvement in the
description of the ledge. The data between 35 and 55
is missed by the solid curve, but the dashed curves pro-
vide excellent agreement with the data. At this energy
there exists spin rotation data. The medium shifts the Q
downward significantly and at angles less than 60, this
shift results in excellent agreement with the data. Fig-
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FIG. 3. Same as Fig. 1, except the projectile kinetic en-
ergy is 100 MeV and the data are taken from Ref. [34).

FIG. 5. Same as Fig. 1, except the projectile kinetic en-
ergy is 65 MeV and the data are taken from Ref. [35].
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FIG. 6. Same as Fig. 1, except the projectile kinetic en-

ergy is 48 MeV and the data are taken from Ref. [36].

FIG. 7. The real part of the phase shift bL, and the ab-
solute value of the S-matrix gL, are shown as functions of
the orbital angular momentum L for scattering from Ca at
200 MeV laboratory energy. The solid line is the free result,
while the short- and long-dashed lines include the medium
contributions using the DH and HFB mean 6eld potentials,
respectively.

ure 6 contains results at T~ = 48 MeV, where it can be
seen that the medium effect shifts significantly the dif-
ferential cross section predictions towards the data. The
shape of the A& is modified. by the medium to provide
better agreement with the data for angles less than 60 .

It is clear &om Figs. 1—6 that the medium contribution
as represented in our model provides a systematic and
significant improvement of the theoretical predictions of
the data. The improved agreement with the data be-
comes systematically better as the kinetic energy of the
projectile is reduced. In the paraxneter-&ee, a priori for-
malism derived. here it is found that the resulting calcu-
lated effects are important in providing better agreement
with the data.

To illustrate the effects of the medium contribution in
more detail, the real part of the phase shifts, bL„along
with absolute values of the S matrix, gl„are shown as
functions of the orbital angular momentum, L. The
J = L + 2 and J = L —

2 cases are separated to dis-
play any spin-orbit effects. The results with T„:200
and 100 MeV are shown in Figs. 7 and 8, respectively.
In comparing these two figures the phase shiftd are de-
creased significantly by the medium. At Tz ——200 MeV
the medium causes a reduction of bI, for L & 15, where

b& for L = 11,12 is actually negative. This re-.{J=L—1/2)

duction exists for L & 10, where Tz ——100 MeV. The large
changes in the real part of the phase shifts as shown in
Figs. 7 and 8 are not particularly relevant because of the
strong absorption, as is evident &om the plots of gr. , also
given in those figures. This strong absorption also im-
plies strong surface effects as well as weak interior con-
tributions and causes the higher partial waves to play
an exaggerated role in elastic nucleon-nucleus scattering.
The medium contributions have a significant effect on
the absorption, especially as the energy decreases, as is

illustrated in Figs. ? and 8. We see a uniform decrease in
the absorptive character of the potential for all angular
momenta, L, which is re8ected in the shifted diffraction
pattern of the observables described earlier.

B. Neutron-nucleus scattering results
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FIG. 8. The same as Fig. 7, except the laboratory energy
is 100 MeV.

In this section comparisons are made between theoret-
ical predictions and measurements of the total cross sec-
tion for neutron-nucleus scattering. For the case where
the impulse approximation is used and no medium con-
tributions are included, the theoretical calculations did
not provide a very good pred. iction of the data as can
be seen in Fig. 9. The results which come from the use
of t; '(E) with no medium contribution are given by the
circles. The medium inclusion &om the DH potential and
the HFB potential are represented by the squares and tri-
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FIG. 9. The l
tt '

g f Ca
total neutron-nucleus total cross sec ions fort' f

sca ering rom Ca are shown as a function of the inci-
dent neutron kinetic energy. Th l'd l'e so i ine represents the

e error ars are too small todata taken from Refs. [29 30] the b
isplay. The circles correspond to the free lt, h*'e ree resu t, w' i'e the

squares and triangles include th d'e me ium contributions us-
ing the DH and HFB mean field potentials, respectively. The
open symbols indicate use of the full B NNonn t matrix [24],
while the shaded symbols are for the hi h
th B

e or e ig energy extension of
e Bonn potential [25].

angles, respectively. The open symbols correspond to use
of the full Bonn potential [24], while the filled s

old [25]. The data are given by the solid line the error)

ars have been omttted since they are very small [29, 30].
For energies between 100 and 200 MeV th fre e ee case over-
estimates the data and for energies above 400 MeV the
&ee case underestimates the data.

The m d'he medium contribution causes the theoretical pre-
o ese energy regions.ictions to improve in both of th

or incident neutron kinetic energies between 100 and
00 MeV the medium decreases the total cross section

towards the data, while at 500 and 613 MeV the medium
increases the theoretical result toward th d t . The a a. eef-
ec o t e medium contribution is to provi e significantD

improvement of the predictions and generally results in

tions of the total cross section due to the medium contri-
ution is not a general overall reduction or increase, but

comes about throu h a dg a reduction in one energy region
~ ~

and an increase in another.
Since the systematic increase in one energy ran e and

decrease ine in another also corresponds to the two model
range an

representations of the NN potential, it was verified
at lower energies that the qualitative features of these
medium effects are dependent th
and not dependent on the %N potential model used.

Neutron-nucleus elastic scattering difFerential cross
section and spin observable data should become available
in t e near futuret future. In many cases physical effects of inter-
est cause a large fI.uctuation at large angles, where it ma

er o discern such effects using neutrons rather
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FIG. 1O. TT~e same as Fig. 1, except this is for elastic
neutron-nucleus scattering at 200 M V l be a oratory energy.
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FIG. 11. TheThe same as Fig. 1, except this is for elastic
neutron-nucleus scattering at 80 M V l be a oratory energy.

than protons. In Figs. 10 and 11 results are shown for
neutron projectile kinetic energies of 200 and 80 MeV, re-

can be seen in Figs. 1 and 4. In Fig. 10 the medium
causes the A tos e „o~ave deeper and broader minima. In
Fig. 11 at T„=80 MeV the medium contribution causes
arger changes, especially in the spin rotation. There is

a so an overall shift to larger scattering angles as is seen
in igs. 1—6.
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C. The parametric propagator energy E,

In Eqs. (10) and (18) it was remarked that in the pre-
scribed formalism, the energy argument for the &ee prop-
agator, e, differs &om the projectile energy, E, by the
target nucleon single-particle energy, s, . In Eq. (18) the
quantity go(e) —Go(E) is represented as

=e —E+ U; —c, . (28)

In step 7 nuclear matrix elements of Eqs. (17) or (20) are
taken to give eventually the optical potential. Since the
formalism leading up to Eqs. (18) and (19) is designed to
isolate the functional degrees of &eedom describing parti-
cles o and i, while treating the remaining A —1 particles
in an average manner, it should be reasonable to take
the average mean field values of the A —1 pieces of the
Hamiltonian in Eq. (28), i.e., letting s; = —s' = —(K'),
in spite of the fact that direct matrix elements of (K')
are not taken in the described formalism.

With these arguments the value of E, might be taken
to be e = E; = E + s, = E —Is';I, where we would
like to take e, to be the average single-particle energy
( —25 MeV for Ca, although this number is model
dependent). If each target nucleon single-particle state,
e;, were to be treated individually, it is known that in the
case of nucleon-nucleus scattering the more important
scattering events involve the less bound target nucleons,
so that the effective average e; would most likely lead to
a smaller value of Is;I.

In the case of the &ee impulse approximation, exclud-
ing the medium contributions, the ideal choice of e would
be to force the quantity, go(e) —Go(E) to be zero,
thus providing the physically best possible representation
of the medium correcting term within this context. From
the first line of Eq. (28) this would involve setting

e —6, —E+H~ ——0

property and has a small energy dependence, therefore
the sensitivity of the nucleon-nucleus predictions to the
energy shift of e should be small. This expectation has
been confirmed by the rough calculation of Ref. [4].

In Figs. 12—14 results are shown for T„=200 MeV. For
the free case calculations are shown with e = 188, 200,
212, and 224 MeV and for the DH and HFB cases, cal-
culations with e = 176, 188, and 200 MeV are displayed.
For the total neutron cross sections (07 ) in Fig. 12, the
increasing e causes oT to increase for the circles, and the
decreasing e in the medium modified results decreases
oT. Although the shift seen where the DH potential is
used is larger, the overall effect is small. When compared
to the medium effects as seen in Fig. 9, the energy shift
can be seen to be unimportant.

For proton elastic scattering at T„=200 MeV, Fig. 13
shows the effects of shifting e for the &ee case, while
Fig. 14 shows the shifts when the HFB mean field po-
tential is used to represent the medium contributions.
When e is decreased it can be seen that the minima
are shifted to slightly larger scattering angles, and are
slightly deeper. The increase of e in Fig. 13 moves the
predictions away from the data, but provides only a neg-
ligible effect. The decrease of e in Fig. 14 causes bet-
ter alignment of the minima, but the overall effect is
very small. Similar effects are seen at other energies,
although at smaller projectile energies the changes are
even smaller.

The effect of the shift in e for the &ee case is in general
to worsen the predictions when compared to the data.
Also, this shift does not represent in any fashion the
medium contribution effect and actually moves the pre-
dictions in the opposite direction. It can be safely said
that although the energy dependence required of the NN

0
or

e = @+ (I *) = E+ l(~*) I.

0.95—

0
0

Therefore the ideal choice for e in this circumstance is
to shift e by the average kinetic energy of the target nu-
cleon, (h;). This can be seen intuitively in that e repre-
sents the sum of the kinetic energies of particles o and i
in the two-body case and so this corresponds to equating
the two-body kinetic energies. This procedure in an av-
erage sense would purport to represent the effect of the
medium via an energy shift. Investigations of such be-
havior follow. In summary for the free case the energy e
should be greater than the projectile kinetic energy E by
the average kinetic energy of the target nucleons, while
for the cases where medium contributions are included,
the energy e should be less than E by the average single-
particle energy.

The shifts of the energy, e, have been shown in the case
of pion-nucleus scattering to produce a significant effect
on the predictions [31], where the A resonance causes
the pion-nucleon interaction to have a large energy de-
pendence. The &ee NN interaction does not have this

0.90
E

0.80— QFree N-N, Full Bonn
QDH with Full Bonn
QHFB with Full Bonn

I )

-20.0 0.0 20.0
AE (Energy shift for t-matrix) [MeV]

FIG. 12. The total neutron-nucleus cross section for scat-
tering from Ca at projectile kinetic energy, E, of 200 MeV
is shown as a function of the difference between the paramet-
ric energy, e, and E, used to calculate the free NN t matrix.
The circles correspond to the free result, while the squares
and triangles include the medium contributions using the DH
and HFB mean 6eld potentials, respectively. The gray band
corresponds to the datum and its estimated uncertainty.
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FIG. 13. The angular distribution of the differential cross
section (zz), analyzing power (A„), and spin rotation func-
tion (Q) for elastic proton scattering from Ca at 200 MeV
laboratory energy. The results are shown for the free case with
no medium corrections included. The parametric energy, e,
used for the free NN t matrix calculation is set to be equal
to 200, 188, 212, and 224 MeV for the solid, short-dashed,
long-dashed, and dot-dashed curves, respectively.

FIG. 14. The angular distribution of the differential cross
section (~&), analyzing power (A„), and spin rotation func-
tion (q) for elastic proton scattering from Ca at 200 MeV
laboratory energy. The results are shown where the medium
contributions are included using the HFB mean field poten-
tial. The parametric energy, e, used for the free NN t matrix
is set to be equal to 200, 188, and 176 MeV for the solid,
short-dashed, and long-dashed curves, respectively.

effective t matrix favors including the medium contribu-
tions, this dependence can be neglected.

IV. SUMMARY AND CONCLUSION

Although the impulse approximation to the optical po-
tential, which uses the free NN t matrix to represent
the interaction between the projectile and the target nu-
cleon, has been highly successful, the efFects associated
with the interaction between the target nucleon and the
residual nucleus have not been clearly delineated. The
spectator expansion of multiple scattering theory requires
an effective NN interaction, which differs &om the free
NN interaction in that the implied many-body propa-
gator corresponds to the free propagation of the projec-
tile through the nuclear medium. A systematic formal-
ism is developed in this paper, consistent with multiple
scattering theory and the spectator expansion, where a
mean field potential, representing the action of the resid-
ual nucleus upon the target nucleon, is used to model
the medium contributions, which correspond to the dif-
ference between the effective and the free NN interac-
tion. This formalism is straightforward, thus providing
a much clearer and precise interpretation of the effects
of the medium than had existed in the past, and like-
wise providing an unambiguous basis for later inclusion
of higher-order effects.

Calculations have been performed with two mean field
potentials, taken from realistic and proven microscopic
nuclear structure models to represent the medium con-

tribution. The full spin structure of the mean field poten-
tial and the free NN t matrix is included along with the
oR'-shell and nonlocal efFects. Results demonstrate that
the medium contributions consistently provide a signif-
icant, non-negligible improvement in the predictions of
the data in the case of elastic nucleon-nucleus scattering
from Ca at projectile kinetic energies between 48 and
200 MeV. Above 200 MeV the medium effect is insignif-
icant at scattering angles less than 40 .
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