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Nucleon polarization in three-body models of polarized Li
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Just as He can be approximately characterized as a polarized neutron target, polarized LiD has
been advocated as a good isoscolar nuclear target for the extraction of the polarized gluon content
of the nucleon. The original argument rests upon a presumed "alpha + deuteron" picture of Li,
with the polarization of the nucleus carried by the polarization of the deuteron. We have calculated
the polarization of the constituents of Li as a three-body bound state of o. + n+ p interacting with
local potentials fitted to the scattering data. It is necessary to include partial waves up to j =—
(75 channels, or, when including the T = 1 state, 150 channels) in the Faddeev equations before
the energy eigenvalue converges. The longitudinal form factors are then described well by the wave
function. Various combinations of o.N and NN strong and Coulomb potentials yield a straight line
in the charge radius vs. energy plane which, unlike those of previous calculations, passes through
the experimental datum. We 6nd for all cases a polarization of the valence neutron in excess of
90%. This may make polarized LiD an attractive target for many nuclear physics purposes, since
its neutrons are effectively 45% polarized.

PACS number(s): 21.45.+v, 24.70.+s, 11.80.Jy, 24.85.+p

I. INTRODUCTION

Targets of polarized nuclei are rather rare, so the re-
cently acquired ability to produce a large solid target
of polarized LiD [1] has aroused much interest in the
medium-energy and high-energy communities. In partic-
ular, this target has been suggested for measurements of
direct photon production at Fermilab [2], and at the UNK
proton accelerator under construction at Serpukhov. The
cross section for direct photon production is dominated
by the "Compton-like" subprocess "quark + gluon —+
gamma + quark. " When both beam and target nucleons
are longitudinally polarized, asymmetries in this process
can be used to determine the polarized gluon distribution
in a nucleon. Knowledge of this spin-dependent (polar-
ized) gluon distribution is needed to extract the true spin-
dependent quark and antiquark distributions from the
deep-inelastic lepton-scattering data [3,4], and establish
the relationship of the polarization of a nucleon to that
of its quark and gluon constituents. For that particular
high-energy experiment, the most sensitive experimen-
tal method would be to use a polarized isoscalar nucleon
target, e.g. , one made up of equal numbers of polarized
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protons and neutrons [5]. Polarized LiD has been ad-
vocated as a good isoscalar nucleon target since "To the
extent that Li can be viewed as He + D, as much as one-
half of the nucleons are polarized in such a material" [2].
(This is important from an experimental viewpoint be-
cause, by contrast, conventional polarized-proton-target
materials contain less than 20% free hydrogen by weight. )
One can ask the question "To what extent, indeed, is this
true'?" One of the goals of this paper is to provide a the-
oretical analysis and prediction of the polarization of the
constituents of Li in a dynamical three-body model of
Li. In this picture Li is a bound system of an alpha

particle, a neutron, and a proton interacting with poten-
tials which parametrize the free-space forces between the
three "elementary" particles. We And that the optimistic
polarization estimates of the high-energy physicists are
fully justified in this more sophisticated (and realistic)
model. We note, however, that the interest in the po-
larization of constituents of Li is not limited to this one
investigation in high-energy physics, but indeed opens up
possibilities of a variety of experimental and theoretical
investigations of the spin structure of Li. Some of these
will be discussed in the closing section of this paper.

But is the three-body model of Li truly reahstic? The
accumulating evidence &om the confrontation of calcula-
tions with experiment answers this question with an em-
phatic yes. Many properties of the trio of A = 6 nuclei at
low excitation energies (& 15 MeV) can be understood
within the context of exact three-body theory and good
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phenomenological representations of the low energy (be-
low 23 MeV) behavior of the basic interactions [6,7]. The
quality of the predictions is better than that of effective
two-cluster models or the standard shell model which re-
duces in its effect to two-body dynamics. As two recent
examples of this claim, we cite predictions of the proton-
knockout reaction Li(e, e'p) and of the quadrupole mo-
ment Q. The former reaction is well described below n
breakup by a three-body model and cannot be described
by a (small space) shell-model calculation [8]. Accord-
ing to Mertelmeier and Hofmann [9], the latter small
negative value of Q cannot be reproduced in a cluster
model by a pure (nD) wave function. Instead a modern
resonating-group model needs a three-body (nnp) wave
function with s and d partial waves between the clusters
and within the "deuteron" to match experiment. This
result corroborates the earlier conclusions of the Surrey
group and others [10]. These predictive aspects of the
three-body model are even more interesting once one re-
alizes that, in contrast to the effective two-body models,
once the parameters of the model are determined at the
o.N and NN level, no further parametrization is allowed
and all the results obtained thereafter are direct predic-
tions of the model.

In this paper we present solutions of the Faddeev equa-
tions for a number of three-body models of Li which
differ by various combinations of o.N and NN poten-
tials. For each model, we calculate the longitudinal
charge form factors /~0 and F~2 and associated lowest
moments (charge radius and quadrupole moment) to as-
sess the static properties of the wave function. From the
wave function we calculate the polarization of the neu-
tron and the proton outside the o.. We find for all cases a
polarization of the neutron in excess of 90% of the polar-
ization of the Li nucleus, implying an effective neutron
polarization in excess of 30%%uo. This degree of polarization
is not as high as the predicted 87% polarization of the
neutron in a fully polarized He target [11].However, for
some nuclear physics purposes, a dense ( LiD is a solid),
isoscalar (T = 0) polarized target with an effective neu-
tron polarization of 45%%uo (the polarization of the neutron
in D is over 95%) may be an attractive alternative to ob-

taining polarized neutrons &om a gaseous, T = 2, He
target.

We note already the first use of a polarized Li tar-
get for nuclear research to obtain the angular distribu-

+ 6tion of the vector analyzing power iT~~ for sr+- Li elastic
and inelastic scattering [12]. We will discuss the inter-
pretation of this experiment in a later section, but note
for the moment that polarization predictions of mod-
els of Li should be tested by knockout reactions [8,13],
scattering by polarized proton beams [14], and other ex-
perimental probes. That is, a program for Li similar
to the program which tests the He wave function by
knockout reactions [15], scattering by polarized proton
beams [16], etc. , would, in our opinion, be helpful to test
our predictions. This is, first, because the prediction is
couched as the answer to the question "If we pick a nu-
cleon from the fully polarized nucleus without disturb-
ing its spin, w'hat is the degree of polarization of that

spin?" This question is a theorist's question and may
or may not be answerable in a given experiment. For
example, any spin-dependent final-state interactions or
spin-dependent meson-exchange currents can alter the
"plucked. " nucleon's spin. Second, the answer is based
on calculated wave-function probabilities (or, in the gen-
eral case with isospin breaking, off-diagonal matrix ele-
ments) which are unambiguously obtained from the inter-
action operators. These quantities are not experimental
observables, however, because of the problems of defin-
ing uniquely the relativistic corrections to the interaction
operators [17,18]. Hence, experimental tests of our pre-
dictions are required. We hope that our predictions could
be used to motivate such experiments.

This paper is organized as follows: Sec. II brieHy
sketches our solution to the Faddeev equations. We
derive expressions for constituent polarization based on
wave-function probabilities in Sec. III. After a brief de-
scription of the potentials which differentiate the mod-
els in Sec. IV, we discuss the different sources of un-
certainty within the three-body model (by looking at
binding energies, charge radii, quadrupole moments) in
Sec. V. A comparison of observables with experiment
and other theoretical calculations to establish the qual-
ity of the three-body model itself is given in Sec. VI. Our
predictions for polarization of the valence nucleons and
other aspects of wave-function probabilities are discussed
in Sec. VII. We give a summary and outlook in Sec. VIII.

II. FORMALISM

We will be modeling Li as a three-body cluster model,
assuming the o. particle to be structureless. The three-
body problem will be solved by applying the spline
method to the configuration-space Faddeev equations.
The form of the Faddeev equations is well known and will
simply be sketched here. We will, however, give some def-
initions which are essential to the understanding of the
rest of this paper.

The Schrodinger equation for three particles interact-
ing via two-body forces

(Hp + Vj + V2 + Vs —E)4 = 0,

where V, is the interaction between particles j and A:,

and Ho is the kinetic energy operator, is equivalent to
the Faddeev equations

(E —IIp —Vi. )@i = Vi(@2+ @s),
(E —Hp —V2)@2 ——Vz(@s + Qg),
(E —IIp —Vs)gs = Vs(gy + @2), (2)

from which the total wave function can be constructed
by addition of the Faddeev amplitudes @,:

+ =0i+A+A
Another, sometimes useful, form of the Faddeev equa-
tions is
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which follows immediately &om Eq. (3).
By expanding the Faddeev amplitudes on a basis of

angular-momentum eigenfunctions (also known as chan-
nels), the Faddeev equations can be rewritten as an in-
finite set of coupled two-dimensional partial (integro-)
differential equations. This set can be approximated by
a finite subset, which can be solved numerically. For this
purpose we use the spline method [19].

The o. particle will be labeled as particle one, the nu-
cleons as particles two and three. We will ignore the
isospin-symmetry breaking in most cases, and assume a
pure T = 0 state for the Li nucleus. We will perform
one calculation which includes explicit isospin breaking,
to check if this simplification is justified. The breaking
is generated by including the Coulomb force, and con-
sidering the nucleons to have difFerent masses. (We will
consider particle two to be the neutron, and particle three
to be the proton. )

For further discussion of the Faddeev equations in the
notation above, and the numerical method used to solve
them we refer to Ref. [19].A more up-to-date description
of our methods will be published at a later time. Now
we will discuss the angular-momentum basis functions
used in our calculations in some detail, since it is both
enlightening and instructive.

The three Faddeev equations are numbered using the
labels of the noninteracting, or spectator particles, i.e. ,
Faddeev equation i has particle i as the spectator parti-
cle. The orbital momentum of the two interacting par-
ticles relative to each other in the Faddeev equation i is
denoted by l, , and the orbital momentum of the pair
with respect to the spectator particle by /„, . (Note that
for every Faddeev equation there is a natural Jacobi co-
ordinate system. The corresponding Faddeev amplitude
will be expressed in this particular coordinate system. )

For the pure isosinglet case two of the three Fad-
deev equations are dependent, so that we only have
to solve two independent equations. Consider equa-
tion one, i.e., the equation in which the o. particle is
the spectator. Antisymmetry of the wave function de-
mands that l, + s2s + t2s be odd (note that tzs ——T),
parity demands that l, + l» be even. For the sec-

I

ond Faddeev equation there is only the parity require-
ment. We will use jj coupling, i.e., the coupling scheme
[(l,s~y)j, (l„,s;)j„,]JMg. The Faddeev equations are
solved including all channels which have j
where j is varied to check the convergence. For the
largest calculation we have used j = 8.5, correspond-
ing to 75 channels. For the case including isotriplet ad-
mixture we have to solve all three Faddeev equations.
Also, the antisymmetry requirement is no longer present
since we consider the two nucleons to be distinguishable,
so that the number of channels doubles when compared
to the corresponding isosinglet case.

Note that our calculations are complete in the sense
that only states with very high two-body angular mo-
menta are left out. This is a notable difference from
most calculations in the literature which employ far fewer
channels. The dependence of our results upon the num-
ber of channels and comparison with other calculations
will be deferred until Sec. V.

To investigate the quality of the wave function, we
study the longitudinal form factors and the associated
moments as an example of the static properties of the
wave function. The charge radius and quadrupole mo-
ment are given by

They are related to the low-energy limit of the Coulomb
form factors

where Z = 3 and J = 1 for Li. The low-energy limit of
E~o (for point particles) is

The low-energy limit of E~2 is

The inclusion of the Pauli principle will be discussed
in Sec. IV. In the next section we will concentrate on the
polarization of constituents.

III. POLARIZATION OF CONSTITUENTS

The question we want to ask is the following: if we
pick a nucleon from the fully polarized nucleus (Jz = J)

2

(9)

I

without disturbing its spin, what are the odds for finding
its spin "up." A similar description of polarization was
first used in Ref. [11] for the case of sHe.

We will follow a similar line of reasoning here; first for
the case of the deuteron to establish notation and then
for Li. The quantity
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where

p+ 1 —ws(1) 1+os(1) 1 —7's(2) 1+oq(2)
2 2

+
2 2

= P„(1)P+(1)+ P„(2)P+(2)

&11IP+(i)lll) = Pg ((01)ill p+(i)l(01)11)
+PI ((11)11IP+(i)l(11)11)
+P~ ((10)11

I

P+ (x) I (10)11)
+P~ ((21)11

I

P+ (i) I
(21)11) .

and
I
JJ) = I4'(Jz = J)& is the probability for the neu-

tron to have its spin aligned "up." Due to the fact that
the deuteron is in a pure J = 1, T = 0 state, as is Li in
models without isospin-symmetry breaking, the two nu-
cleons have to be in the isosinglet state. This means that
there is only one isospin function in the wave function,
which can be factored out. This simplifies the calcula-
tions significantly, as we find

P.+ = (& = olp-(1)l& = o)&J Jlp+(1)IJ J&

+&T = olp„(2) lr = o&&J Jlp (2) I

= —.'&J Jlp+(1)l J J&+ -'(J Jlp+(2)l J J&. (12)

The remaining matrix elements can be calculated by sep-
arating the spin and orbital parts using a simple case
analysis. First we consider the deuteron which has the or-
bital momentum states (S,D) coupled to the spin triplet
state. Since spin projection operators leave orbital angu-
lar momenta invariant and there is exactly one spin state
per orbital momentum state, there is no coupling between
spin states, so that we find for the deuteron the diagonal
terms:

&» IP+(i)
I
») = Ps ((01)» I

p+(~) l(01)»)
+P~ ((21)11

I

P+ (x) I (21)11),

((Is)JJ IP+(~) I (Is)JJ)

= ) (I.M sM'lr, s J J)'(sM'IP+(')lsM').
MM~

Evaluating these matrix elements yields the simple and
well-known result

P„+ = Pg + 4PD. (14)

Now we turn to the polarization of the two "valence"
nucleons of Li since in our model the o. particle is an el-
ementary particle, and its constituents are therefore out-
side our grasp. If at erst we neglect the isotriplet com-
ponent of the wave function, the isospin function can be
factored out and the possible orbital momentum states of
the three-body system are (S,P, P', D l, where a prime
is used in an unconventional way: to denote a state with
odd l, . The S, P, and D states are coupled to the spin
triplet state, the P' is coupled to the spin singlet state.
(Just as for the isospin sum, the absence of spin structure
in the n particle simplifies matters enormously. ) Again
there is no coupling between spin states and we find

where Pg and P~ are the probabilities (Ps + PD = 1)
of the orbital angular momentum states I(LS)JJ) of the
deuteron. The remaining matrix elements of (13) are of
angular momentum functions only. They can be evalu-
ated using

The final result is very simple, and in contrast to the
analog formula for He, it is exact:

P+ = Ps+ 43pp+ 21pp'+ 4PD

If, for some reason, only the total P state probability
P~, , is known, we still have the following bound:

Ps + Pp, , -+ PD (—P„+ ( Ps + 4Pp, , + Pg) . -(17)

We remark that from the corresponding analysis for the
proton it follows that P+ = P+ in this model of T = 0
sLi (and in the deuteron).

The Coulomb interaction does not conserve isospin so
that a Li model with the Coulomb force is not a pure
T = 0 state but has a small admixture of T = 1. Because
there is more than one isospin state there can be more
than one spin state per angular momentum state. This
means that the diagonal probabilities cannot be used in
all cases. The analysis outlined above is unchanged for
the S and D states, however, because the spin triplet
state cannot couple to the spin singlet (since there is no
spin singlet component in these states). Hence the S-
and D-state contributions to P+ can still be written in
terms of probabilities. For the P and P' states the T = 1
admixture allows more than one spin state per orbital
momentum state and the best one can do is derive the
following bound in terms of the total P-state probability:

Pg + 4Pp, , + 4PD ( P„+ & Pg + Pp, , + 4' . (18)

We note that this bound is not as tight as the (unnec-
essary) bound derived above for the isospin-symmetric
model. Finally, although the bounds are the same for the
polarization of the neutron and the proton,

p+gp+

in this most realistic three-body model of Li. In prac-
tice, the difference is small because PI, , 3%.

It is important to emphasize that the formulas derived
above for the polarization of the constituents of Li are
intended to develop an intuition for our numerical results.
The values of P+ presented in the tables for the various
Hamiltonians did not come from these formulas but were
calculated exactly in the codes.

IV. aN AND XX POTENTIALS

We will neglect the microscopic structure of the a par-
ticle. Its structure is partially represented by the nN
interaction and by its charge form factor. The o.N poten-
tials we will use are of a phenomenological nature: they
more or less fit the o.N low-energy phase shifts. However,
most potentials support a deeply bound o.N state, which
contradicts experimental observation. The

justification
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H' = PHP, (2o)

where P is an operator that projects out the forbidden
states:

P = (1 —IA)(AI)(1 —l&s)(4sl) (21)

where Iv), ) is the forbidden two-body bound state of par-
ticles j and k. Another possibility is to suppress not the
Pauli-forbidden state itself, but some harmonic-oscillator
state close to it.

The relative merits of the two different methods have
been studied phenomenologically for some time now. The
experimental properties of the three-body system appear
not to distinguish between these choices [20,21]. Super-
symmetric quantum mechanics provides a new tool for
studying the application of the Pauli principle to scat-
tering of a projectile &om a composite system. That is,
it is always possible to generate kom a given local deep
(shallow) potential a corresponding shallow (deep) po-
tential which produces the same phase shifts [22]. The
scalar Hamiltonians Ho and H2 associated with these
"phase equivalent" potentials can be represented as com-
ponents of a supersymmetric Hamiltonian which act in
subspaces of an overall supersymmetric space [23]. These
subspaces are analogous to the bosonic and fermionic sec-
tors in supersymmetric formulations of field theory [24].
Given Hp (H2) we can derive H2 (Hp) by means of a

I

for this seeming discrepancy is thought to be the Pauli
principle which excludes this bound state.

The Pauli principle can be taken into account in sev-
eral essentially different ways. First, one can use a poten-
tial that is repulsive in the 8 state, so that no forbidden
bound state is supported. Second, one can suppress the
forbidden bound state, by replacing the Hamiltonian H
by

supersymmetric transformation. This has been done for
an nn interaction [22] and for the o.N interaction [25].
The phase equivalent shallow potential has a repulsive
r singularity for small r in agreement with the notion
that Pauli effects for composite systems are repulsive in
the range of wave-function overlap. Although the super-
symmetric transformation provides a unique local poten-
tial that gives the scattering and has no Pauli-forbidden
bound state, to our knowledge, there are no few-body
calculations which probe the off-shell properties of the
supersymmetric partners. This subject and the differ-
ent methods for handling the problem of unphysical 8-
wave bound states generated by Q.N potentials will be
discussed in detail in a subsequent publication.

The method we have used. in our calculations is a vari-
ation of the second approach. We replace the Q.N poten-
tials V, by

&' = & + I'I&'&(@*I (22)

and let the (positive) constant I' go to infinity. We will
show that this limit can be taken analytically, and that
in the limit this method is exactly equivalent to solving
the three-body equation in the restricted space.

The resolvent for the two-body Schrodinger operator

H' = H, + v+rI@f&(V/f1 (23)

can be written as

G (@) G(@) 14f) (&x I

(& —&f)(1 — r ')
where G(E) is the resolvent when I' = 0, 1@f) a Pauli-
forbidden state, and Ef its bound-state energy. Using
this expression in Faddeev equation i by embedding it in
three-body space, we find

(24)

where q is the spectator momentum. When I' is large, we can approximate this by

14") =
I

G' — d'c' ' ' ' *'. [j-+I' '(E —&*f —~,')+0(l' ')111&+I' d'&', I~;'&*f&(&;'&'fl
I (l&~)+l&~))

(25)

where we have written P;f to denote

d'~'
I ~*&'f)(~*&'f I

.

(Note that P,f ——P,y and that [P;y, G,] = [P;f, H, ] = 0.)
Using the fact that

I@'& = G'(1 —P'x) & (I&'& + l@~)) —P*~(l&~) + l&~&)

+o(r-') . (28)

( I 'P)f( E- H)l~) =-P'f1+) = 0 (29)

To prove that this equation gives the correct solution in
the limit I' -+ oo, we must show that (in this limit)

( ) Multiplying Eq. (28) by P;y, we find

we finally arrive at P,f (I@,) + ly, ) + ly, )) = P;, le) = 0. (30)
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This proves the first condition, provided that Eq. (3) de-
Gnes the correct Schrodinger wave function. Now we mul-
tiply Eq. (28) with (E —H;):

TABLE I. Parameters of the nucleon-nucleon and al-
pha-nucleon potentials used. Parameters are in appropriate
powers of MeV and fm.

(E —II')I@') = (1 —I'*x)v'(IW~) + IO~))
—(E —II')I'x(l@~) + l@~))

= v'(I&') + l&~))
I'*~—(E —IIo)(l@~) + 14~)) .

Now use Eq. (4) to eliminate I qj ) aild
I @A,.) froiil the rlgllt-

hand side:

(E —II') I@') = V (I&') + l@~)) —&'f (&~ + v~) I@) (32)

which, when added to the two remaining Faddeev equa-
tions gives

SBB
SBB2

SBB3

SAT

S, P
D
S
P
D

Central
l 8

Potential Component
MT Singlet

Triplet

Vj
—513.968
—626.885
—47.32
—47.32
—23.00
+50.00
—47.32
—23.00
—43.0
+40.0

px
1.550
1.550
2.30
2.30
2.30
2.30
2.30
2.30
2.00
1.50

V2

1438.720
1438.720
5.8555
5.8555

P2
3.110
3.110
2.30
2.30

0.70
0.35

5.8555 2.30

(33)

We now multiply with (1 —I;f) to complete our proof:

(1 —&'f ) (E —~o) I @)

= (1 —I' f)(E —IIo)(1 —&'x) I+) = o (34)

showing that the second condition we needed is satis-
fied, and that I@) is indeed a solution of the Schrodinger
equation in the restricted space, as we claimed earlier.

We will now discuss the potentials actually used by us
in this paper. The nucleon-nucleon potentials used are
the Reid soft core potential (RSC) [26], the super soft
core potential (SSC) [27], and the (s-wave) Malfliet-Tjon
I-III potential (MT) [28]. The RSC and SSC potentials
are realistic nucleon-nucleon interactions, and have a ten-
sor force. The MT potential is a simple model without
a tensor force, but it is very popular in the literature.
The alpha-nucleon potentials used are the simple Sack-
Biedenharn-Breit potential (SBB) [29] of which we use
three versions, a potential with the Wood-Saxon form of
Satchler et aL (SAT) [30], and one of the potentials ob-
tained on a grid from an inversion of proton-alpha scat-
tering data by Cooper and Mackintosh (CM) [31].

There is considerable confusion over the parameters of
simple model potentials. The exact parameters of the
potentials we use are given in Table I. The algebraic
forms are

e—P1T e—P2T

&Mv = &i. + &2

for the Satchler o.N potential. The optical model poten-
tial of Satchler et al. [30] has traditionally been xnodified
for three-body calculations by neglecting the energy de-
pendence of pi [32,33] and refitting the parameters. We
make the same approximation and use the parameters of
Refs. [32,33].

Both potentials SBB and SAT have the same radial
form for odd- and even-parity potentials, in contrast to
effective local potentials which are deemed equivalent to
the nonlocal interaction obtained from resonating-group
model (RGM) calculations (see, for example, Fig. 26 of
[34]). The source of the parity dependence in RGM calcu-
lations is exchange processes. To examine this odd-even
feature of o.N potentials, we also use the CM potential
which is strongly parity dependent; having short-range
even-parity potentials and long-range odd-parity poten-
tials. The energy dependence of the CM potential, ob-
tained by an inversion procedure, is rather less than that
of SAT which arises from a direct optical model fit of the
data. We make the usual energy-independent approxi-
mation (which should be better for the CM potential) by
choosing the 12 Me V version as shown in Fig. 4 of Ref.
[31].

The RSC and SSC potentials are as defined in [26,27],
respectively. We used the exact physical masses for all
constituents. For systems without isospin breaking, we
used the average mass of the proton and the neutron
as the nucleon mass. %'e used two different Coulomb
potentials. The first, taken &om [35], is

for the Malfliet-Tjon NN potential [28],

V. = V,e-~"&"l'+ (i .)V,.—

for the Sack-Biedenharn-Breit nN potential [29], and

1 d
Vs~~ = V, + (l s) ——Vi, ,

p (&

2R (3 —(r/R)')
V=&

2e

r&R,

2e
erf(r/a),

where R = 1.25 x 4 ~ fm. The second, taken from [32],
1s

Vg

1+ e~"—»~/'» ' where a = x 1.64 fm.
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V. SOUR.CES OF UNCERTAINTY

In this section we will discuss the results obtained with
our method for various models and the various sources of
uncertainty. These can be separated into numerical un-
certainties, which will be discussed first, and the uncer-
tainties due to uncertainties of the input: the interactions
between the constituents. The validity of the three-body
model will be not be discussed here, but we will comment
on it in the next section.

A. Nuxnerical approwixnations

There are three types of numerical approximations in
our calculations, one of which can (and will be) avoided,
and two which are unavoidable. The approximations are
(i) the forbidden state is not projected out but suppressed
using a separable term as in Eq. (22); (ii) the spline ap-
proximation, the accuracy of which is determined by the
number of intervals in which the domain of the partial
differential equation is subdivided; and (iii) the partial-
wave series is approximated by a finite number of partial
waves. (Note that for potentials defined on a finite num-
ber of partial waves, the results are exact if all these
partial waves are included in the calculation. ) The er-
rors associated with approximations (i) and (ii) reduce
systematically as the suppression parameter I' and the
number of intervals in the grid are increased. This is il-
lustrated by Tables II and III. The error associated with
approximation (iii) is not as easily expressed as a func-
tion of the relevant parameter (j ), so that only very
crude extrapolations can be made, and it is essential to
use a very high number of channels. This is shown in
Table IV. It appears that j = 6.5 is sufFicient to cal-
culate all the observables with a precision that is better
than or comparable to that of experiment.

For most models, it is possible to make I' extremely
large O(10 ), so that we actually reach "infinity" for all
practical purposes. Another possibility is to take the
limit analytically in the manner we have shown earlier.
This was done for almost all calculations. Table II shows
that all the observables converge nicely to the value for
I' = oo, and do so with leading I' behavior, as ex-
pected. (Note that I' is expressed in units of h /M, where
M is approximately one nucleon mass. The exact value
of 5 /M is 41.47 MeVfm2. )

As is well known [19], the error of a spline approxi-
mant is O(h ) (where h is the length of an interval in
the grid), provided Ii is sufliciently small. This fact can
be exploited, by taking suitable linear combinations of
results obtained for difI'erent grid sizes, which electively
means extrapolating to an infinitely fine grid. The ob-
served deviations from fourth-order convergence are used
to estimate the error.

We would like at this moment to stress a very interest-
ing point, which is often neglected and has led to confu-
sion. It is illustrated by Table IV: the Faddeev eigenvalue
Ep and the expectation value of the Hamiltonian (H)
differ substantially. This difFerence decreases when the
number of channels increases. The explanation for this
phenomenon is the following: Solving the Faddeev equa-
tions for a certain set of partial waves is exactly equiva-
lent to solving the Faddeev equations for all partial waves
if the two-body potentials V; are restricted to operate in
these partial waves only. Therefore, if we evaluate (H*)
where H* is the Hamiltonian in which the potentials are
restricted to operate in the set of partial waves for which
we solved the Faddeev equations, we will find it to be
equal to E~.

However, the expectation value of the full Hamiltonian
H will be different Rom (H*). This can be understood
as follows: the total (Schrodinger) wave function is the
sum of the three Faddeev amplitudes. These three am-
plitudes can be written using a finite number of channels,
provided the expansion is done in the natural (Jacobi-)
coordinate system of each amplitude. After adding the
amplitudes this is no longer possible, since a state that
has good quantum numbers l and l„ in one coordi-
nate system does in general not have corresponding good
quantum numbers in any other system. The total wave
function therefore contains ari infinite number of angular-
momentum components. The full Hamiltonian operates
in all channels, so that there will be a contribution to
(H) from these induced channels.

Usually, the potentials are attractive. This means that
(H) will be below (H*). In other words: it will be closer
to the exact (ground-state) energy. This is why a wave
function constructed from Faddeev amplitudes with a
certain number of channels is usually closer to the full
wave function than a wave function obtained from a di-
rect solution of the Schrodinger equation for the same
number of channels.

Extrapolation to an infinite number of channels is very

TABLE II. Influence of forbidden-state admixture for model a, 10 x 10 grid, j, „=2.5. The
number in parentheses is the estimated uncertainty in the last digit.

I'(5 /M)
10'
10
10
10
104
10
10
10

E~ (MeV)
—3.998062
—3.780032
—3.745151
—3.740991
—3.740564
—3.740521
—3.740517
—3.740516
—3.740516

(H) (MeV)
—4.8716(4)
—4.4108(4)
—4.3373(4)
—4.3281(4)
—4.3272(4)
—4.3271(4)
—4.3270(4)
—4.3270(4)
—4.3270(4)

pp
5.3750 x 10
8.3528 x 10
1.0866 x 10-'
1.0637 x 10
4.9040 x 10
4.9909 x 10
5.1056 x 10
5.1137 x 10
5 ~ 1153 x 10

(r') '~ (fni)
2.512(l)
2.565 (1)
2.576(l)
2.577(1)
2.577(1)
2.577(1)
2.577(1)
2.577(1)
2.577(1)

Q(efm )
0.5541(2)
0.5612(3)
0.5622(3)
0.5623(3)
0.5623(3)
0.5623(3)
0.5623(3)
0.5623(3)
0.5623(3)

P (%%uo)

93.1589(1)
93.3229(1)
93.3309(l)
93.3316(1)
93.3316(1)
93.3316(l)
93.3316(1)
93.3316(1)
93.3316(1)
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TABLE III. Convergence of the spline approximation for model a, j = 2.5.

Grid
10 x 10
14 x 14
20 x 20
28 x 28

Ez (MeV)
—3.7405(1)
—3.7840(1)
—3.7889(1)
—3.7910(l)
—3.7917(4)

(H) (MeV)
—4.3270(4)
—4.3375(2)
—4.3427(2)
—4.3433(2)
—4.3434(2)

Eco~& (MeV)
0.8998(2)
0.9006(2)
0.9011(2)
0.9013(2)
0.9014(2)

(r')'r' (fm)
2.577(l)
2.570(1)
2.570(1)
2.570(1)
2.570(1)

Q (e fm')
0.5623(3)
0.5482(3)
0.55171(7)
0.55299(5)
0.5534(2)

P„+ ('%%up)

93.3316(1)
93.3297(2)
93.3267(1)
93.3257(1)
93.3254(1)

diKcult, and we have used it very conservatively. We are
confident that the errors listed (the number in parenthe-
ses is the uncertainty in the last quoted digit) are not too
small. (A confirmation of this can be found in Table IV,
by comparing the extrapolated values of Ez and (II): the
difference between the two is well within the error bars. )
The rest of the results presented in this paper are the
result of extrapolation to infinite grid size and an infinite
number of channels, i.e. , they are absolute predictions of
Li observables in the three-body model.

SBB, the d-wave strength is attenuated, and, of course,
the 8-wave potential is repulsive. Models e and f retain
the RSC potential as the KN interaction but enlarge
the range of alpha-nucleon interactions studied. Finally
models g and h return to the SBB alpha-nucleon po-
tential but vary instead the nucleon-nucleon interaction.
Parameters of the potentials we use are given in Table
I and in Refs. [26,27] for the RSC and SSC nucleon-
nucleon potentials. Note that the values in Table I may
differ slightly from the original references.

B. Models C. Madel dependence

We have performed full calculations for eight different
interaction models. The models used are (a) RSC+SBB,
(b) RSC+SBB with isospin breaking, (c) RSC+SBB2,
(d) RSC+SBBs, (e) RSC+SAT, (f) RSC+CM, (g)
SSC+SBB, and (h) MT+SBB. Note that only model b
has isospin breaking. We will also display partial re-
sults for some of these models where the strong inter-
action is augmented by the Percy-Percy Coulomb force
(but ignoring its isospin breaking). These results are la-
beled (a*) RSC+SBB, (e*) RSC+SAT, (f") RSC+CM,
(g*) SSC+SBB, and (h*) MT+SBB.

Models a, a*, and b are used as reference models, since
they describe the lithium observables very well (provided
the Coulomb force is included, either directly as in a* and
b, or by perturbation theory). Note that we assume the
SBB potential to interact in all partial waves, since we
feel that a realistic interaction cannot have interaction in
the lowest partial waves only. Model c contains the SBB
potential in a somewhat modified form (SBB2), as sug-
gested by Bang et al. [36]. The modifications are twofold:
(i) the d-wave interaction is attenuated to better fit the
phase shifts, (ii) the potential only works in s, p, and
d waves. Model d contains a third version of the SBB
potential [37], which replaces the attractive Gaussian s-
wave potential of SBB2 by a repulsive one and there-
fore does not support a forbidden state. In this SBB3
the p-wave and l a parameters are those of the original

We will now discuss the effect of variations of difFer-
ent parameters in our model. These are (i) the manner
in which the Pauli principle is taken into account in the
alpha-nucleon interaction, (ii) the presence or absence
of isospin-symmetry breaking, (iii) different forms of the
crN interactions, and (iv) difFerent forms of the NN in-
teractions.

Looking at Table V and comparing models c and d we
see that there is little difference between the two models.
In the case of Li it hardly matters whether potentials
supporting Pauli-forbidden states in the s wave (e.g. , c)
or repulsive potentials (e.g. , d) are used. The only difFer-
ence seems to be that the attractive potential binds Li
marginally less strong. This appears to be a con6rmation
of the results of Lehman [20,21] obtained with separable
o.N potentials.

Comparing models a, a*, and b we see that although
there is (probably because Li is so lightly bound) sub-
stantial isospin-symmetry breaking (the effect on the
binding energy is about 0.15 MeV), it appears that only
the binding energy and the charge radius are substan-
tially affected. The other observables are hardly changed
at all. It therefore seems justified to ignore the T = 1
components, provided that one bears in mind that a no-
ticeable energy effect is to be expected.

The inhuence of the form of the o.% interaction is
rather large, as Table V shows. This is to be expected

)max
KUK

2.5
4.5
6.5
8.5

Ep. (MeV)
—3.4983(l)
—3.7889(1)
—4.2079(1)
—4.3655(1)
—4.4212(1)
—4.45(2)

(H)(MeV)
—4.1098(2)
—4.3427(2)
—4.4336(2)
—4.4481(2)
—4.4509(2)
—4.4518(6)

Ecoui (MeV)
0.8688(2)
0.9011(2)
0.9304(2)
0.9390(2)
0.9411(2)
0.9418(5)

TABLE IV. Convergence of the partial-wave

Q(efm )
0.2232(1)
0.55171(7)
0.59616(5)
0.58570(4)
0.57658(4)
0.573(5)

series for model a, 20 x 20 grid.

(r )'r (fm)
2.663(1)
2.570(l)
2.4848(8)
2.4595(6)
2.4523(6)
2.450(2)

P (%%uo)

94.2981(1)
93.3267(1)
92.8454(1)
92.7861(1)
92.7876 (1)
92.788(l)
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Model

h
a*
e'
f

h*

TABLE

(H)(MeV)
—4.452(1)
—3.365(6)
—3.629(1)
—3.662(1)
—4.081(1)
—3.344(l)
—4.2S1(1)
—4.389(1)
—3.516(2)
—3.162(1)
—2.444(1)
—3.352(1)
—3.440(1)

Ecoui (MeV)
0.942(1)
0.932(2)
0.892(1)
o.s69(1)
0.923(1)
0.927(1)
0.934(l)
0.952(1)
0.910(1)
0.883(1)
0.841(2)
0.900(1)
0.919(l)

P o (Fo)
67.47(2)
68.89(4)
70.15(1)
71.12(1)
67.34(4)
71.17(3)
66.88(3)
62.42(2)
69.05(4)
69.46(5)
75.64(8)
68.62(3)
63.9S(2)

Q(efm )
O.573(5)
0.585(5)
0.520(1)
0.547(1)
o.so5(4)
0.420(2)
0.582(3)
0.256(1)
0.578 (5)
0.598 (4)
0.405 (8)
0.589(3)
o.25s(')

V. Overview of results for 13 diferent systems.

(r )'~ (fm)
2.450(2)
2.617(4)
2.616(1)
2.625(l)
2.509(6)
2.564(9)
2.474(4)
2.444(2)
2.542(4)
2.646(3)
3.040(8)
2.585(2)
2.544(2)

&„+ (Fo)
92.788(1)
92.796(3)
93.626(1)
93.310(l)
92.254(2)
94.111(3)
93.73O(1)
98.123(2)
92.953(2)
92.559(2)
94.275(4)
93.896(1)
98.277(l)

since there is not nearly as much consensus on this inter-
action as there is on the NN interaction. This is due to
the composite structure of the alpha particle, the amount
of experimental data available, and finally the number
and quality of o;N model interactions available. The use
of high-precision inversion techniques is a rather recent
development. The structure of the alpha particle and the
amount of data available make the inversion rather difIi-
cult, since there is a large amount of nonlocality (which
can be expressed as energy dependence or dependence on
the angular momentum) and uncertainty in the interac-
tion.

It is somewhat disappointing to see that the rather
crude potentials SBB and SAT reproduce the Li bind-
ing energy much better than the more sophisticated CM
potential, especially since this potential yields an attrac-
tively low value for the quadrupole moment Q (we will
discuss the sign of the quadrupole moment later on). It
is known that the ground-state energy of Li in a three-
body model is not sensitive to phase shifts at higher en-
ergy of the nN interaction and that low-energy phase
shift properties of the potential are the most important
for this purpose [38j. We checked the s-wave phase shifts
of the three potentials and found that the SBB and SAT
reproduced the threshold behavior [39I much better than
did the CM potential. It is possible that a slight refit of
the CM potential which emphasizes threshold behavior
could yield a much better Li model.

We found the two o.p Coulomb models to be hardly
distinguishable: the Coulomb energy for the Percy-Percy
model was systematically about 8 keV larger than that
for the error-function model. This is a negligible dif-
ference when compared to the uncertainties encountered
earlier.

Often, the Coulomb potential is treated as a perturba-
tion. Looking at Table V, we see that the difference of
the ground-state energy plus Coulomb energy of a sys-
tem and the ground-state energy of this system in which
the Coulomb potential is taken into account exactly is
about 5 keV (except for the very lightly bound system
f, there the difFerence is about 27 keV), indicating that

first-order perturbation theory for the Coulomb poten-
tial is a very good approximation of the T = 0 approx-
imation of sl.i (even though the Coulomb energy is rel-
atively large, when compared to other nuclear systems),
and therefore a fairly good approximation of the full sys-
tem, yielding errors of a few percent (caused mainly by
symmetry breaking, which is a, higher-order efFect).

Comparing models a, g, and h, which share the SBB
o.N interaction and vary the NN interaction, we see that
the influence of the NN interaction on most observables
is very small. However, model h has a substantially lower
value for Q. This is due to the absence of a tensor force
in this model (which implies much lower P and D-stat-e
probabilities). Note also, that as a consequence of this,
the predicted polarization of the valence nucleons is sig-
ni6cantly larger than for the other Inodels.

D. Summary

Summarizing, we think that within the three-body
model (i) the numerical uncertainties in this work are
negligible, (ii) ignoring the Coulomb potential in the
Hamiltonian does not invalidate the general predictions
that can be made, and (iii) by far the greatest source of
uncertainty is the o.N potential. (However, general prop-
erties are described rather well, provided the potentials
fit the low-energy scattering data. )

VI. QUALITY OF THE THREE-BODY MODEL

Having established the main source and the magnitude
of uncertainty within our model, we continue with a dis-
cussion on the quality of the three-body model itself by
comparing with experiment and with other calculations
found in the literature.

A. Comparison with experiment

In Fig. 1 we have plotted the charge radius as a func-
tion of the binding energy, and find that the points scat-
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FIG. 1. The charge radius of Li vs the binding energy B
for breakup into n+n+p. The converged results of the models
with difFerent local potentials are labeled as in the text. Open
circles are models without the Coulomb interaction and the
solid. symbols include the Coulomb interaction. The solid cir-
cles labeled "a*" include Coulomb but assume a pure T = 0
state. Our one complete calculation which included isospin
breaking of the Coulomb force is the solid triangle. Also
shown is the convergence of results of a single model (model
a) with the number of channels. The straight line through our
points is to guide the eye; it is the result of a least squares fit
to all the local potentials considered. The results plotted as
x's are from Ref. [43] which displays converged results from
separable potentials fitted to the same parametrization of nN
phase shifts. For this reason, they cluster more tightly around
their least squares fit.

ter around a line, which goes through the experimental
datum. We find this very encouraging, since it appears
that three-body models can accurately describe the gen-
eral features of the Li nucleus. As Fig. 1 shows, it is
only possible to draw such a conclusion about a fit to
the experimental datum if a suKciently large number of
channels is used. If the number of channels is too small,
the charge radius will be automatically too large. This
effect can be substantial even when the energy appears
to have converged, since an error of magnitude c in the
wave function will result in an error of O(e ) in the bind-
ing energy and an error of O(e) in the other observables.
This is more or less in agreement with the suggestion by
Bang and Gignoux [33] who claim their binding energy
has converged although they use a small number of chan-
nels. We remind the reader that the results presented in
Fig. 1 and the latter tables are the result of extrapolation
to infinite grid size and an infinite number of channels,
i.e. , they are absolute predictions of Li observables in
the three-body model.

Comparing the results in Table V for models a and
b, we find that the Coulomb force does not play a very
important role in Li, apart &om lowering the binding
energy by approximately 0.9 MeV, and increasing the
charge radius accordingly. In Fig. 2 we show the longi-
tudinal form factors up to a four-momentum transfer of
5 fm for models a and b. We used the impulse ap-
proximation of Eqs. (7)—(9) modified by folding in the
nucleon [40] and alpha-particle [41] electromagnetic form
factors. Our calculation predicts the experimental data

I
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FIG. 2. The charge form factors of Li vs momentum trans-
fer. Model a does not have the Coulomb force and model b
contains the Coulomb force including isospin breaking. The
contribution of the quadrupole form factor C2 is also shown
for these two models.

[42] rather well up to about q = 2.5 fm i. The good
agreement with experiment reHects the accuracy of our
charge radius for these models and the fact that the dom-
inant monopole term swamps the effect of the quadrupole
term in this region. However, since the zero in the C2
contribution [i.e. , I'cq, cf. Eq. (7)] occurs at somewhat
higher q than that of the CO, we expect the agreement
to be less good in the region of the diffraction minimum
at about 3.0 fm

Our quadrupole form factor is close to that obtained
by Eskandrian et aL [43], and rather different &om that
obtained by Kukulin et al. [44]. We find that the form
factors for models a and b are very close to each other,
again confirming that the Coulomb potential is not very
important to the charge form factor. Our result does not
support the suggestion by Kukulin et al. [44] that the dis-
regard of the Coulomb force by Bang and Gignoux and
by Lehman and co-workers is the cause of their overesti-
mate of the theoretical CO form factor in the region up to
the first minimum. A recent preprint from Kukulin et al.
[45] demonstrates that much of the disagreement of [44]
with Bang and Gignoux, with Lehman and co-workers,
and with us, on CO and C2 (and many other predictions
of their wave function) was caused by a severe trunca-
tion in partial waves of their variational wave function.
Their truncation difIiculties will be discussed further on
in this section, but here we note that the new [45] C2
form factor from that group is consistent with Fig. 2.

Figure 2 shows the absolute prediction of the longitu-
dinal form factor of Li for our interaction models a and b
which are described by a neutron, a proton, an o. particle,
and their interaction operators. We have not attempted
to calculate meson-exchange contributions (MEC's) to
this "impulse approximation" in order to be consistent
with our other predictions of observables and with our
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predictions of constituent polarizations. These latter pre-
dictions also drop corrections of relativistic order. This
is because there are interaction-dependent ambiguities
which arise &om separating a completely relativistic re-
sult (which we do not have) into a nonrelativistic part
plus corrections. For us the most analogous nucleus to
Li is the isoscalar-vector deuteron where these ambigu-

ities in calculating the MEC to the q ~ 0 charge ra-
dius and quadrupole moment are not large [46] and the
corrections themselves are small. At higher momentum
transfer, the MEC become larger and the interaction-
dependent ambiguities also become of greater concern.
One particular prescription which ties much but not all
of the MEC to the interaction operator indicates that
the pion seagull contribution is largest and of opposite
sign to the dominant impulse approximation for EL, of
the deuteron [47]. That is, the diffraction minimum is
shifted to slightly lower q and the second maximum is
enhanced by MEC. If one could confidently apply these
(model-dependent) deuteron results to the case of Li,
one would conclude that our result of an impulse approx-
imation form factor slightly above the data for higher q
is further confirmation of the essential correctness of our
models a and b. For this paper, we simply state that
our calculated EL, is a direct prediction of the interaction
model and that it agrees with the data at low momentum
transfer.

To conclude the discussion of Table V, we briefly look
at the o.-D clustering probability, and the Coulomb en-
ergy. Although these are not observables, they do provide
a crude consistency test: one expects scaling between
the charge radius and the Coulomb energy and (since
the binding energy as well as the clustering probability
mainly depend on the strength of the o.D interaction)
scaling between the binding energy and the clustering
probability. Table V confirms these expectations. The
results are also in reasonable agreement with those found
in the literature.

We will now turn to the magnetic moment, which is
the q ~ 0 limit of the transversal form factor. We will
use the observation of Lehman et Ol. [48] and others that
the magnetic moment for the ground state of Li can be
written in terms of probabilities:

V = »+u-+ (-,' —~~ —V-)[2I'~+&~ + -', &~] (35)

This simple formula has been criticized by Danilin et al.
[37] as arising from a shell model which does not make
allowance for the motion of the o. particle, but they also
show that the o. orbital motion gives a contribution of
0.1% to the magnetic moment. Meson-exchange current
contributions to the magnetic moment are isoscalar and
therefore of order v /c [49]. Such relativistic corrections
should be consistently neglected in calculations such as
ours. In any event, we calculate the magnetic moments
of our models with (35) and display the results in Table
VII and Fig. 3. The straight-line relationship between p
and P+ is inherent in the formulas and introduces no new
results. However, it is a test of self-consistency. (Note
that model b is slightly off the dashed line. This is caused
by the fact that the neutron polarization in model b can-
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FIG. 3. Theoretical magnetic moments vs theoretical po-
larizations of the neutron in polarized Li. The experimental
moment p = 0.82205 nuclear magnetons is indicated as the
horizontal line.

not be expressed as wave-function probabilities, due to
isospin breaking. If we were to plot the average polar-
ization of the neutron and the proton for this model, it
would again be exactly on the line. ) It is gratifying to see
that models a and b which have binding energies, longi-
tudinal form factors, and charge radii in excellent agree-
ment with experiment also predict a magnetic moment
within 1% of the experimental value of 0.82205 nuclear
magnetons.

The quads upole moment

So far, the results are very encouraging. Let us now
turn to a well-known problem in three-body models of
Li: the sign of the quadrupole moment. As far as we

know no dynamical three-body model has ever produced
a negative value for Q, as is demanded by experiment.
Could the experimental value be somehow wrong, or does
this discrepancy point out a serious deficiency of the dy-
namical three-body model?

The experimental value of the quadrupole moment of
Li has changed since many of the phenomenological [10],

resonating-group [9], and dynamical three-body model
results were published. The new value is still very small
and negative (indicating a slightly oblate nucleus with a
primarily equatorial distribution of charge) but is now
known to be about 30% more negative than the early
value of —0.064 efm still found in compilations and
review articles. Quadrupole moments of nuclei are de-
duced from the experimental quadrupole coupling ob-
tained &om molecular resonance spectroscopy. From
such experiments the quadrupole moment can only be
extracted if a reliable theoretical value of the electric
field gradient at the nucleus in the molecule is avail-
able. The experimental quadrupole coupling from the
molecule Li H can only be obtained with error bars of
over 10%. Therefore one uses the ratio Q( Li)/Q( Li)
of +0.0205(20) from experiments on LiF to deduce the
value of Q(sLi) from the by now well-determined value
of Q( Li) [50]. A recent analysis of both molecular spec-
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troscopy and Coulomb-scattering experiments reviews
the last 20 years of efI'ort and arrives at the consistent
value of Q( Li)= —4.00 6 0.06 e fm [51]. Applying the
ratio, one arrives at a value of Q(sLi)= —0.082 e fm to
compare with theoretical results.

This value is rather small when compared with Q(D) =
+0.2860 + 0.0015 e fm [52] and explanations have been
attempted in terms of o.B cluster models. For an ori-
entation to our results, we repeat the arguments of
Ref. [9] which begin by mentioning that a two-cluster
(nD) wave function with zero relative angular momen-
tum would have no electric quadrupole moment and an
additional d wave on the relative motion would give
Q( Li) —1 e fm . A three-cluster wave function, how-
ever, consisting of an alpha particle, a proton, and a neu-
tron with 8 and d waves between them would have a
positive Q because of the positive Q of the deuteron. An
interplay between the 8 and d waves (l„) between the clus-
ters and within the deuteron (l ) was found to account
for the experimental Q( Li) in a resonating-group calcu-
lation. (This is the same argument as those of Refs. [10],
except that a deuteron with S and D waves is counted
as a single cluster in those references. )

Turning now to our calculations (Table V), we find
that none of the models has a negative value for the
quadrupole moment, implying that all our models ren-
der a slightly prolate Li. Since there are no adjustable
parameters we must accept this. The present calcula-
tions seem to contradict the suggestion (made by Bang
and Gignoux [33], as well as Kukulin et al. [44]) that the
correct sign for Q can be obtained, just by taking a suf-
ficient number of channels. The feeling that small wave-
function components play a decisive role in the value of Q
is justified (cf. Table IV), since Q oc (3z ) —(r ) is a "dif-
ference" operator: its value is the result of a subtraction
of two, almost equal, numbers. For a (nearly) spherical
wave function we have that (z ) is nearly 1/3 times (r ),ot" t Q/( ) =(3(1/3)( + ))/( ) —1= /( ) «1.
This makes Q extremely sensitive to small details in the
wave function. As it turns out, however, the small wave
components tend to make Q more positive and further
away from experiment. Danilin et al. [37] suggest that
the experimental value of Q for Li may be evidence for
an intrinsic polarization of the o, particle in the field of
a valence proton and would correspond to a quadrupole
charge deformation parameter Po of the order of 10%.
This refinement is outside of the scope of our model.

However, there is still room for improvement inside the
three-body model. It must be noted that most o.N model
potentials fit low-energy data moderately well, and high-
energy data not at all. One may argue that this is not
very significant since it appears that the low-energy be-
havior is dominant in the ground state of Li [38]. How-
ever, since Q is very sensitive to small details, we cannot
ignore this shortcoming.

We have also found that the value of Q is sensitive to
the angular-momentum structure of the o.N interaction
and the strength of the tensor force in the NN interac-
tion. For example, the MalfIiet-Tjon I-III NN potential
with no tensor force predicts Q( Li~H) = +0.26 e fm,
even though the "deuteron" in the wave function has no

D wave. Evidently, the interplay between the 8 and d
waves (l„) between the clusters and within the deuteron
(t ) demanded by potentials which fit the phase shifts is
different from that which produces a negative value of Q.
Another interesting case is model f. It is the only model
that has a Majorana component in the o.N interaction
and it has a quadrupole moment which is significantly
smaller than the other models (forgetting about models
c, d, and h, which must be considered unrealistic). Un-
fortunately, model f fails to bind Li sufFiciently. This
seems to be correlated to a rather poor fit to low-energy
scattering data of this potential. In our opinion there is
an urgent need for a truly energy-independent o.N po-
tential, which fits the scattering data over a large energy
range. (Such a potential would have to be l dependent. )

The quadrupole moment may be a feature of Li which
is sensitive to an often neglected feature of dynamical
three-body models and the defect may be cured by an-
tisymmetrizing the wave function. Note that the three-
body model is not fully antisymmetric, since exchange
of nucleons inside the o, particle with the valence nucle-
ons has only approximately been treated. For example,
an analysis of the charge form factor by Unkelbach and
Hofmann [53] finds that both CO and C2 contributions
are very sensitive to the efIects of antisyrnmetrization
for their three-cluster wave functions. These authors use
the resonating group method [54] and their wave func-
tions are therefore fully antisymmetric with respect to
an exchange of any two of the six nucleons. Upon full
antisymmetrization C2 takes on the correct sign at low

q and displays the unusual feature that the second max-
imum is larger than the first; both efI'ects presumably
due to cancellations of direct and exchange contributions
generated. by antisymmetrization.

It would appear, however, from another resonating-
group calculation which included more angular-
momentum channels [55], that the negative value of Q
obtained in [9] might be a truncation artifact; this more
recent RGM calculation finds Q( Li) = +0.25 e fm, but
Q becomes negative when they truncate to (almost) the
model of Ref. [9]. A recent preprint by Kukulin et aL [56]
with variational wave functions in a greatly expanded
space displays a CO unchanged by antisymmetrization
and the minimum of C2 moved to slightly smaller q.

On the other hand, Hofmann finds that reducing the
RGM model space does not change the sign of Q, but a
separate calculation with a fully antisymmetrized wave
function does give the correct sign [57]. We suggest
that further work is needed to resolve this discrepancy
and mention that the formalism needed to fully antisym-
metrize the (converged) Faddeev wave functions of the
dynamical three-body model is being developed [58].

Summar y

To summarize the results of this subsection, we believe
that the three-body model gives a quantitative descrip-
tion of Li properties, except for the quadrupole moment.
We therefore believe that it is justified to use this model
as a starting point for the determination of polarization
of the constituents.
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B. Comparison with other results

In this subsection we ignore experiment and compare
with other calculations within the same model. A the-
orist's concern is then (i) do the results accurately re-
flect the input potentials (issues of convergence, etc.),
and (ii) how do the results depend on the input poten-
tials. These questions were addressed in the previous
section with regard to our calculations. In this subsec-
tion, we will concentrate on the results found in the lit-
erature in relation to our results. The data presented in
Fig. 4, Table V, and Table VI will now be discussed with
these questions in mind. Table VI presents a selection
of the results found in the literature with difFerent calcu-
lational methods (coordinate-space variational [32,45,59],
coordinate-space direct solution of the Faddeev equations
[33], hyperspherical expansion [37], and Faddeev integral
equations in momentum space [38,48]) applied to a vari-
ety of input potentials.

Because the Li radii of the variational calculations
have already been noticed to be somewhat at odds with
expectations from the binding energies [43], and because
the wave functions of Ref. [60] have been used to ana-
lyze pion scattering &om Li [12], we attempted to re-
produce the results Ref. [32]. As can be seen in Table VI
(and in Fig. 4), a Faddeev calculation for model b with
a RSC NN potential and SBB nN potential with (ap-
proximately) the same partial waves as those of [32,59],
and finite suppression parameter I gives a binding en-
ergy about 2% smaller than our converged result and the
full radius is 6% larger than the converged result. (This
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FIG. 4. The charge radius of Li vs the binding energy B
for breakup into n+n+p: comparison with other calculations.
Variational results labeled "Ki", i = 1, 2, 3, 6, are taken from
[32] ("K4" and "K5" have a binding energy less than 3 MeV),
the Faddeev equation results of Bang and Gignoux labeled
BG are taken from [33], the integral equation results labeled
I are taken from [43], and the result from the hyperspherical
expansion labeled D is from [37]. The Hamiltonian of "K6"
(which corresponds to Kukulin-84 in Table VI) is the same as
our model "aK„&" of Table VI [plotted here as "a' (bare)" ]
and the approximate coincidence of the results implies that
the radii of [32] plotted here are not charge radii but bare
radii; see text for details. Note that K3 lies exactly on the
experimental datum. Our results of Fig. 1 are not replotted
here, but the straight line through our points is retained.

model is denoted by aK„k because the truncation of par-
tial waves only allows T = 0 and therefore it has no
isospin breaking. ) It is somewhat surprising, then that
the result of Ref. [32], listed as Kukulin-84, has a full
charge radius which is 10% smaller than our converged
result with this model. The explanation of this discrep-
ancy may lie (as already noted in Ref. [43]) in the fact
that the true wave function has, of course, the correct
exponential fallofF at large distances, and the Gaussian
wave functions they utilize do not. However, the close
agreement between aK„k and Kukulin-84 for both the en-
ergy and the (bare) radius, we think it is more likely that
the radii listed in Table 1 of Ref. [32] are bare, although
Kukulin claims to list full radii [61].

Continuing the comparison of Kukulin-84 and our
model b truncated to aK„&, we 6.nd that both models give
a value of Q —+0.2. However, we find a much larger P
state probability for this model than the authors of [32]
do. This probability, while not observable, does play a
role in constituent polarizations, magnetic moments, and
pion scattering as will be discussed shortly. Based on
these comparisons, and the earlier discussion of longitu-
dinal form factors and the charge radii, we believe that
the wave functions from this early variational approach
do not accurately reflect the input potentials. The same
can be said for the results denoted by Kukulin-86 in Table
VI, where both the P- and D-state probabilities appear
to be too small. The variational results from a greatly
expanded number of angular-momentum channels [45],
labeled Kukulin-92 in Table VI, are another story. They
are in reasonable agreement with our results for the same
model b.

The other examples of calculations in Table VI are
those of Bang and Gignoux [33], Danilin et al. [37], and
Lehman et al. [43,48]. None of the inputs exactly match
our models a—h, so the comparisons can only be qualita-
tive. As mentioned in the discussion of our results, the
convergence of the binding energy with the small number
of channels used by Bang and Gignoux is not so bad and
their wave-function results are in qualitative agreement
with those of models e and g, the closest to their choice
of potentials. The hyperspherical-expansion results [37]
with yet another smooth NN potential (Gogny-Pires-
de Toureil [62]) and the Sack potential are admitted to
not have fully converged. But various methods are used
to extrapolate to their asymptotic results in Table VI
which are in qualitative agreement with those of Table
V. The integral equations of [43,48] have to account only
for mesh sizes and not a truncation of partial waves.
This appears to be well under control as discussed in
their papers and as shown by the nice straight-line fit in
the radius-energy plane (cf. Fig. 4). As mentioned ear-
lier, this is not as much as the case for the results &om
[32]. Especially the point (B,r) = (3.393, 2.35), corre-
sponding to Kukulin-84 and our model aK„» strikes us
as odd. Most recently, their "Anal" result for this model
(obtained with the RSC in all NN channels and a greatly
expanded model space) is (B,r) = (3.33, 2.44). Note also
that one of the results of [32] lies above the nD breakup
threshold, and therefore should not have a well-defined
radius.
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TABLE VI. Comparisons with other calculations.

Model
aKuk

Kukulin-84 [32]
Kukuhn-86 [59]
Kukulin-92 [45]

b
Bang [33]

Danilin [37]
Proj. (4'%%uo) [43,48]
Rep. (4%) [43,48]

(H)(MeV)
—3.29
—3.39
—3.85
—3.33
—3.37
—3.20
~ —3.4
—3.90
—4.06

(r')'~' (fm)
2.39
2.35

2.52
2.62
2.44
2.48
2.43
2.40

Q (efm )
+0.21
+0.24

+0.40
+0.59
pos.

+0.40

Ps (%)
91.43
91.54
95.54
90.16
89.48
92.8
93.04
91.47
91.78

Pp (%)
0
0
0

0.15
0.22
0.7
0.24
0.48
0.50

Pp ('%%uo)

2.35
0.27
1.08
2.12
2.65
5.3
3.34
4.65
4.01

PD (%)
6.22
8.19
3.38
?.55
7.65
1.2
3.38
3.40
3.71

This is the bare radius, i.e., without taking into account the electromagnetic size of the constituents.
, We believe that it is this radius which should be compared to that labeled Kukulin-84. The full

radius (i.e., the radius one gets if the electromagnetic size of the constituents is taken into account)
is 2.79 fm. Note that some authors give matter radii instead on charge radii. These two quantities
are identical if the T = 1 component of the wave function is ignored, and the constituent charge
radii are taken to be equal to the constituent matter radii.

After checking on the reliability of the results a theo-
rist turns to the question of how the output depends on
the input. The most systematic attempt to answer this
second question is found in the program of Lehman and
collaborators who fit five different separable potentials to
the same low-energy NN and o.N data. Each set of po-
tentials addresses a specific question such as the strength
of the tensor force in the NN interaction (labeled by 0'%%uo

or 4% D state in the deuteron as shown in Table VI) or
whether the 8-wave o.N interaction does support a state
forbidden by the Pauli potential that must be projected
out ("proj.") or does not ("rep."). In our opinion, the
drawback of these potentials is t;hat they do not contain
a short-range repulsion, they do not includ. e the negative-
parity terms of the NN interaction, and they are separa-
ble and the nonlocality is hard to relate to an underlying
meson-exchange picture. Finally, the Coulomb force can-
not be included in the model. Thus we feel that there is
room for further studies such as ours.

One aspect of the dependence of the three-body model
results upon the input which has entered into the folk-
lore has to do with the wave-function probability P~ . It
is stated in its purest form in a recent publication [55]:
"It is plausible and has been corroborated by test cal-
culations that the weight of this contribution depends
crucially and almost solely on the singlet odd Pi term
of the nucleon-nucleon force [. . .]." This assertion per-
haps stems from the statement in [32] that the value of
Pp~ = P (( 1% was due to the repulsive NN interaction

in the P wave: "If the NN interaction in the P wave
is excluded, the value of P will rise. " However, a better
numerical treatment of the RSC potential soon raised
Ppj &om 0.27% in [32] to the 1.08'%%uo quoted in [59] and
Table VI and eventually a large expansion of the angular-
momentum channels lead to the 2. 12%%uo of the "final" so-
lution Kukulin-92 [45] displayed in Table VI. The results
in Kukulin-92 are in reasonable agreement with our re-
sults for the same model but P-state probabilities are
still somewhat smaller than the other calculations. Now
we return to the relation between P~ and the NN inter-
action in the Pi channel. It is well known that the Pi
phase shifts of the RSC potential are about half the size
of experiment, because Reid fitted his potential to phase
shift solutions &om data which have since been discarded
[63,64]. Perhaps we should be concerned because we used
a bad NN potential for models a—f. Perhaps, but not for
this reason. Notice that in Table VII the probability
P~I in Li varies by a factor of 6 for the same RSC NN
potential and difFerent o.N pot;entials, whereas it hardly
changes when RSC (model a) is replaced by SSC (model
g) which has better Pi phase shifts. That is, our results
do not support this bit of Li folklore.

VII. NUCLEON POLARIZATION IN Li

The predictions of the polarization of the neutron, ex-

pressed as a percentage of the fully polarized Li, have

Model

c
d
e*
f
g
h*

Ps (%%uo)

89.290(2)
89.590(1)
89.478 (2)
90.626(l)
90.163(1)
88.712(2)
92.119(5)
90.881(1)
96.573(1)

Pp (%)
2.808(4)
2.166(4)
2.647(3)
2.861(1)
2.341(l)
3.218(1)
0.536(l)
2.463(3)
2.995(1)

Pp ('%%uo)

O.232(2)
0.647(1)
0.223(4)
0.216(l)
0.206(1)
0.441(1)
0.105(l)
0.237(l)
0.197(1)

TABLE VII. Probabilities in eight diferent systems.

Po ('%%uo) P„+[/Pp+] (%)
7.667(2) 92.?88(1)
7.596(2) 93.057(1)
7.650(3) 92.796(3)/92.982(2)
6.519(l) 93.626(l)
7.291(1) 93.310(1)
7.63o(3) 92.559(2)
7.239(3) 94.275(4)
6.418(1) 93.896(1)
0.236(1) 98.277(1)

v(v~)
0.82502(3)
0.82708(3)
0.82575 (3)
O.83139(2)
0.82899(2)
0.82328(2)
0.83633(2)
0.83344(2)
0.86671(2)
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already been displayed in Table V. In this table, the
calculated polarizations are greater than 90%%up for the va-
lence nucleons in the three-body model of I i, close to
an estimate of 97%%up obtained from the two-body model
of Li with the aid of (14). However, the overlap of the
three-body wave function on the "n+D" structure gives a
probability of 60—70 % for most models so the naive guess
from the two-body model of Li must be scaled down to
about 58—68%. It is remarkable that the "uncorrelated"
valence nucleons of the part of the wave function which
is not "n+D" in the exact calculation boost this back up
to P+ & 90%. In Table VII we give the probabilities of
the wave-function components and the calculated value
of P+ for our models. Note that the proton polarizabil-
ity is marginally larger than the neutron polarizability
for model b, the only model which has a T = 1 compo-
nent. For the other models there is just one polarizabil-
ity, since the proton and neutron are considered identical.
It is clear from (16) that P+ & Pg and that the exact
value of the neutron polarization depends on the smaller
probabilities of the P and D states. Since these are well
defined within a model but are not observables [17,18],
polarization predictions of models of Li should be tested
by knockout reactions [8,13], scattering by polarized pro-
ton beams [14], and other experimental probes. That is,
a program for Li similar to the program which tests the

He wave function by knockout reactions [15], scatter-
ing by polarized proton beams [16], etc. , would, in our
opinion, be helpful to test our predictions.

In the absence of such a program, we can use the fact
that the magnetic moment for the ground state of Li
can also be written in terms of these probabilities, as
discussed in the previous section, to help calibrate our
polarization estimates. Observing as we did earlier that
models a and b which have binding energies, longitudinal
form factors, and charge radii in excellent agreement with
experiment also predict a magnetic moment within 1% of
the experimental value of 0.822 05 nuclear magnetons, we
feel there is strong support to the polarization prediction
of 93% from these models.

The magnetic moment is the zero momentum transfer
limit of the transverse form factor. This form factor has
been invoked in attempt to understand the angular dis-

tribution of the vector analyzing power iTii for a+- Li
elastic and inelastic scattering. The argument goes as
follows. "The transversal form factor E~ is expected to
be very close to (the pion-nuclear spin form factor) E,& (q)
because the convection current contribution almost van-
ishes in e- Li scattering, if L = 0 is really the dominating
configuration in the sLi ground-state wave function" [12].
This statement can be quantified at the q ~ 0 limit by
the explicit formula for the orbital contribution pg to the
magnetic moment [48]

pi, = 2[2Pp + Pp + 2P~].

Typical values from Table VII suggest that the orbital
motion contributes 0.05 to the total moment of 0.83.
In the existing treatments of pion-nucleus scattering, the
details of the pion-nucleon interaction are subsumed into
this spin form factor Es&(q) whose shape is determined

by the underlying nuclear wave function. The analy-
sis of [12] finds that a shell-model wave function de-
scribes the data marginally better than one of the earliest
variational three-body wave functions of Kukulin et al.
[60]. Our probabilities of the P an-d D-state components
from Table VII (typically Pp = 2—3%, Pp —0.2—0.6%%uo,

P~ 6.5—6.7%) are quite difFerent from those of the
wave function [60] (Pp & 0.5%, Pp = 0.0, Pz& = 0.0)
used in [12]. The spin form factor from any of the wave
functions of our models is quite likely to be difFerent from
the three-body model already used. At present we can
only speculate on the changes which might occur if one
of our wave functions (or indeed one &om Ref. [45]) were
used to analyze the pion scattering data. A new calcu-
lation of the angular distribution of the vector analyz-

ing power iT~i for 7t+- Li elastic and inelastic scattering
would seem to be in order before one could conclude fi-

nally that the three-body model of Li cannot explain
this data as well.

VIII. SUMMARY AND OUTLOOK

We have solved the configuration-space Faddeev equa-
tions of the dynamical three-body model which charac-
terizes Li as a bound system of an alpha particle, a neu-
tron, and a proton interacting with local potentials which
parametrize the free-space forces between the three par-
ticles. We have made an exhaustive study of the conver-
gence of our solutions both in the spline approximation
and in the number of partial waves (channels) kept in
the angular-momentum expansion of the Faddeev ampli-
tudes. Our observables (and wave-function expectation
values) are the result of extrapolation to infinite grid size
and an infinite number of channels, i.e. , they are absolute
predictions of the model. For this reason, we were able
to compare with earlier solutions, which did not include
so many channels, to draw conclusions about the quality
of the concomitant wave functions.

Most of our models used the Reid soft core NN po-
tential with a variety of a.N potentials which more or
less fit the low-energy nN phase shifts. We could esti-
mate the efFect of the Coulomb potential perturbatively
or could include it in the full Hamiltonian and found
that perturbation theory works very well. Futhermore,
the Coulomb potential has a tiny eKect on all expecta-
tion values except the binding energy and the charge ra-
dius. All the models assumed a pure T = 0 state for Li
except one (labeled b) which checked this simplification
by including explicit isospin breaking generated by the
Coulomb potential and the neutron-proton mass diKer-
ence. Isospin breaking increased the binding energy by
about 4%%up. Most nK potentials support s-wave states in
the five-nucleon system which are forbidden by the Pauli
principle. These Pauli-forbidden states are projected out
exactly using a new equation for the Faddeev amplitude
which we have shown to be the limit of the traditional
pseudopotential approach used to deal with forbidden-
state potentials [20,32].

Comparison of observables of our converged calcula-
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tions with the experimental properties of the ground
state of Li was quite satisfying. For 13 models a plot of
charge radius vs binding energy (Fig. 1) displays points
which scatter around a straight line which passes through
the experimental datum. Our most sophisticated models
a* and b (RSC NN potential, a Gaussian potential by
Sack et al. which fits s- and p-wave phase shifts of the o.N
interaction, and the Coulomb interaction without and
with isospin breaking) are within 10% of the experimen-
tal binding energy and within the error bars of the charge
radius. The experimental longitudinal form factor is de-
scribed well up to momentum transfer q = 2.5 fm . The
magnetic moment is described well by most of the mod-
els and extremely well by the models which are near the
radius-binding energy datum. The very small quadrupole
moment is not described well by our calculations, nor by
any calculation in the dynamical three-body model of Li.
The explanation of this discrepancy may well lie outside
this model.

Our motivation for undertaking these calculations was
to examine, within a well-defined and controlled model,
the extent that the nucleons in Li are themselves spin
aligned and could therefore be considered polarized tar-
gets for measurements of the spin structure function of
the neutron and proton. It is, of course, the polarized
neutron which is the desired target because it can only
be utilized when bound in a nucleus. Li has been sug-
gested as a target for the study of direct photon pro-
duction with polarized proton beams and polarized nu-
cleon targets which could determine the spin-dependent
gluon distribution in the nucleon [2]. This information
on the uncharged constituents of the nucleon is needed to
complement the knowledge of the spin-dependent quark
and antiquark distributions obtained from deep-inelastic
scattering of longitudinally polarized leptons from longi-
tudinally polarized nuclei. The first results from lepton
scattering on the spin-dependent structure function gi(x)
of the deuteron have been published [65], and those from

He have been announced [66]. To infer from this data
the first moment of the spin-dependent neutron structure
function (for a comparison with sum rules), one needs to
know the polarization of the nucleons within the polar-
ized nucleus. Our Eq. (14) for the deuteron and similar
formulas for He [ll] provide this information theoreti-
cally. In this paper we have developed the formulas and
done the calculation for the polarization of the valence
nucleons of the three-body model of Li. We find a po-
larization of the neutrons in excess of 30% of the Li.
This theoretical result implies that LiD should provide
a very good target of polarized neutrons (45%) for the

hadronic experiments to determine the polarized gluon
distribution of the nucleon.

Our result is couched as the answer to the question "If
we pick a nucleon from the fully polarized nucleus with-
out disturbing its spin, what is the degree of polarization
of that spin?" This question is a theorist's question and
may or may not be answerable i:n a given experiment.
Indeed, we have not seen a discussion of this point in the
few published results of polarized lepton scattering and
wish to reiterate the necessity of testing such predictions
before extracting neutron spin-dependent structure func-
tions from measurements on nuclei. For example, the
HERMES experiment will measure the spin-dependent
structure functions of hydrogen, deuterium, and He in
one series of measurements [4]. In addition, there is a vig-
orous experimental program to support the deep-inelastic
scattering measurements which tests the He wave func-
tion by knockout reactions [15), scattering by polarized
proton beams [16],etc. In our opinion, no less a commit-
ment should be made to the interpretation of the pro-
posed direct photon production experiments at Fermilab
[2]. That is, our polarization predictions of models of sLi
should be tested by knockout reactions [8,13], scattering
by polarized proton beams [14], and other experimental
probes.
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