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We study the four meson masses and coupling constants used in quantum hadrodynamics by com-
paring the relativistic Hartree-Fock calculation with nuclear ground-state properties. Six parameters
are determined by least-squares fit to experimental ground-state properties of five spherical nuclei
160, 40Ca, *8Ca, °°Zr, and 2°8Pb; these properties are total binding energies, charge radii, and sur-
face thicknesses. This work is compared with an earlier relativistic Hartree least-squares fit. We find
that by including exchange terms, the best-fit meson masses are within 3% of their physical values,
which is not the case if only direct terms are used. Both calculations reproduce binding energies and
radii with an average error around 1%. Hartree-Fock values for the nuclear surface thickness are a
substantial improvement (around 15%); however, both calculations consistently produce too small a

value.
PACS number(s): 21.10.—k, 24.10.Jv, 21.60.Jz

I. INTRODUCTION

During the last decade as the energy of nuclear physics
experiments has been increasing, and with new experi-
ments proposed for future facilities such as CEBAF and
the Brookhaven Relativistic Heavy Ion Collider (RHIC),
there has been an increasing interest in relativistic ef-
fects in nuclear physics. Whether we look at the success
of Dirac phenomenology in the nucleon-nucleus scatter-
ing process or the results of relativistic field theories in
the structure problem, both suggest the importance of
relativistic effects in nuclear physics. Quantum hardro-
dynamics (QHD), a relativistic theory of nucleons with
explicit mesonic degrees of freedom, has been successfully
applied to a wide range of nuclear phenomena such as nu-
clear matter, neutron stars, finite nuclei, and hypernuclei,
as well as dynamic processes such as nucleon-nucleus and
electron-nucleus scattering. For a comprehensive review
of this subject, the reader is referred to a review article by
Serot and Walecka [1], which also contains an extensive
citation of earlier references.

In the nuclear structure problem, both relativistic
Hartree (H) [2-8] and Hartree-Fock (HF) [9-12] calcu-
lations have been performed and have satisfactorily re-
produced many ground-state properties, such as total
binding energies, rms radii, radial charge distributions,
quadrupole moments, magnetic moments, single-particle
energy levels, etc. Applications include both spherical
and deformed nuclei, and cover a broad mass spectrum
throughout the periodic table.

When compared to the conventional nonrelativistic HF
calculations, whether with the zero-range Skyrme force
or a Gogny force, these relativistic calculations display
two obvious advantages: First, they possess explicitly
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the mesonic degrees of freedom, which render the inves-
tigation of phenomena such as meson-exchange current
contributions and meson retardation effects more acces-
sible; second, in the relativistic framework, the nuclear
spin-orbit forces emerge naturally out of the interplay be-
tween scalar and vector meson interactions, and have the
right magnitude without introducing any extra parame-
ters.

In relativistic QHD the nucleon, which is described as
a Dirac particle, is coupled to several exchange mesons
through an effective Lagrangian. The quantum num-
bers selected for the mesons are motivated by one-boson-
exchange models [13] for nucleon-nucleon interactions;
they correspond to the physical mesons w, p, m, and
unphysical meson o. Since we view this as an effective
Lagrangian, the parameters in the model, which are the
masses and coupling constants of the mesons, need to be
determined by the effectiveness of the model in reproduc-
ing nuclear properties.

One way [4, 10] is to fit the coupling constants to the
infinite nuclear matter saturation values for energy and
density, while holding meson masses to their physical val-
ues. However, the scalar (o) meson has no “physical”
value and only the ratio of mass to coupling constant
can be determined without resorting to some data from
finite nuclei.

Moreover, in relativistic HF calculations, when param-
eters fitted to nuclear matter saturation data are used,
one finds that the binding energy of finite nuclei are too
small by about 20-30%, and that deformation is not al-
ways correctly predicted in deformed nuclear calculations
[12]. In temperature-dependent HF calculations the ther-
mal response found is large compared to nonrelativistic
calculations [14].

An alternative approach is to fit all these parameters
directly to experimentally observable bulk properties of
the nuclear ground states. In the latter approach, since
there are a great deal more data to fit, one can explore
the limit and the range of the application of the model,
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since the fitted parameters can be used to predict many
other physical observable quantities of nuclei. In nonrel-
ativistic HF calculations, there have been considerable
efforts to improve on the parameters of the Skyrme force
by using this approach [15]. In relativistic calculations,
however, this type of work has been limited so far to
Hartree calculations [16].

In Ref. [16] the ability of a relativistic mean-field the-
ory to reproduce nuclear ground-state properties was in-
vestigated by an extensive fit to experimental data. Both
a linear and a nonlinear model (which introduces self-
interactions of the scalar meson) were investigated. The
nonlinear model (eight parameters) is capable of repro-
ducing the ground-state properties as well as the conven-
tional Skyrme force HF calculations; however, the linear
model (six parameters) is a poorer fit, and the authors of
Ref. [16] conclude that an effective Lagrangian with lin-
ear coupling is not able to reproduce ground-state prop-
erties over a wide range of nuclei.

In the present paper we extend the fitting procedure
to a relativistic Hartree-Fock model. The need for the
extension is clear. Since we do not expect exchange con-
tributions to be small in the case of the strong inter-
actions found in a nucleus, there is considerable danger
in limiting oneself to the Hartree approximation. More-
over, one would like to investigate the physical proper-
ties where the isovector mesons play a crucial role, such
as meson-exchange currents or neutron-rich or neutron-
deficient nuclei. To do so one has to include the exchange
terms, since for these systems they may dominate. In the
relativistic HF calculation, an important ingredient is the
pion [12,17]; by contrast the pion contribution vanishes
in the Hartree calculation for spherical nuclei.

There are other unsatisfactory aspects of the least-
squares fit obtained in the Hartree approximation. First,
in the linear Hartree procedure, an unusually large x? is
obtained; the fitting also pushes the w meson mass far
above its physical value [16]. The nonlinear model re-
produces the experimental data very  well; however, in
the self-coupling the parameter of the quartic term turns
out to be negative, and for such a Lagrangian the en-
ergy spectrum is unbound from below [18]. At best, one
can say that a local minimum has been found by the fit-
ting procedure, and one hopes that the unstable regions
cannot compromise the mean-field approximations.

In this work, however, we will concentrate on a linear
model. It is important to see whether a relativistic HF
calculation can bring the x2 down to a value comparable
to the nonrelativistic result. We would also be gratified
to see the meson masses, in particular the vector meson
masses, emerge from the fitting procedure close to their
physical values. This could establish the connection of
the current model to physical one-boson-exchange mod-
els; small changes of the effective meson masses can be
attributed to medium effects. Finally, the parameters
obtained by the fitting procedure can be employed in
other relativistic HF calculations, thus testing its predic-
tive powers, for example, in the deformed nuclei and tem-
perature dependent HF calculations. To make our result
comparable to Ref. [16], we follow their fitting proce-
dure; i.e., we fit the calculations for various nuclei from
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160 to 208Pb to the following properties of nuclear ground
state: total binding energy, diffraction radius, and sur-
face thickness.

There are two different ways to solve the HF equations:
One is to search directly for the numerical solutions of
the differential equations (the nonspectral method). The
other method is to expand the solutions in terms of a
complete basis set and then, after truncating to a finite
basis, perform a diagonalization. There are particular
problems associated with the first method in dealing with
the nonlocal nature of the exchange terms in the HF cal-
culation; however, the second approach is, in principle,
no more difficult for the HF than for the Hartree calcu-
lation [12]. We have adopted the second method. Also,
from the viewpoint of computation time, the diagonal-
ization method is much faster compared to solving the
differential equations, once the basis states have been ob-
tained and subjected to convergence tests to determine
the truncation point. Since in the fitting procedure the
diagonalization will have to be performed repeatedly and
we need only obtain the basis states once, this method
provides us with a computer code which is very efficient
relative to the nonspectral approach.

The arrangement of this paper is as follows. In Sec.
II we briefly review the relativistic meson-field theory
and HF formalism, and in Sec. III discuss the fitting
procedure. In Sec. IV we present our results for the
parameters and compare them with the values from other
relevant works; then we show results of more extensive
calculations obtained using these parameters. Finally in
Sec. V we summarize our conclusions and our outlook
for further improvement of the current work.

II. MESON-FIELD THEORY AND
HARTREE-FOCK APPROACH

Motivated by the relativistic one-boson-exchange de-
scription of the NN interaction [13] and Walecka model
[19], we start from an effective local Lagrangian density
which couples a nucleon () to four mesons with the fol-
lowing spin-parity and isospin quantum numbers (J™,T):

a(0%,0), w(17,0), w(07,1), p(17,1).

We also include electromagnetic interactions (A*). The
Lagrangian density is written as the sum of free and in-
teracting parts:

L=CLp+CLr, (1)
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where

Fuu = 8;1.“’1/ - auw;uGuv = OupPy, — aup# 5

Hy, = 8,A, — 8,A,. (4)

There are two coupling schemes for the pion, pseu-
dovector (PV), and pseudoscalar (PS), but there are
many reasons for rejecting PS coupling. In a relativis-
tic Hartree-Fock nuclear matter calculation Horowitz and
Serot [20] found that when PS coupling is used the baryon
self-energies are extremely large (about 40 times larger
then their PV counterpart) at normal nuclear density,
which has a drastic effect on the single-particle spectrum.
The authors of Ref.[20] conclude that the HF approxi-
mation to the PS theory is inadequate for description of
normal nuclear matter; they also pointed out the pos-
sibility of some sort of cancellations provided by higher
order nonlinear effects; however, to include these contri-
butions one must go beyond the Hartree-Fock approach.
Before their work, Miller [9] was unable to solve the
Dirac-Hartree-Fock equations for a finite nucleus when
PS coupling was used. In a relativistic Hartree calcula-
tion for an odd-A deformed nucleus, where contributions
from the pion are small (but not zero as is the case for
spherical nuclei), we [21] also found that stable solutions
can be obtained only when the PV coupling is adopted.
In this work we use PV coupling for the pion.

We recognize that the PV coupling of the pion makes
the Lagrangian nonrenormalizable; however, we take the
view that this is an effective Lagrangian, in the sense
that we use it to generate one-particle-exchange terms
only. Moreover, a strict treatment of a relativistic quan-
tum field theory would also require us to include vac-
uum polarization terms which are very complicated for
finite nuclei and can be hardly included to all orders.
The parameters in the Lagrangian will be adjusted to
fit the empirical data using lowest order diagrams only,
so that corrections such as vacuum polarization have al-
ready been taken into account in so far as it is possible
within the framework of an effective Lagrangian. It is

H=)Y)" / FL(e)(—iv - V + M) fo(r)d3rb] b
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in this spirit that we exclude the contribution from the
Dirac sea and other higher order effects.

From the Lagrangian (1), the Euler-Lagrange equation
leads to the following equations of motion for the mesons:

(8u3# + mi)a = ga’lz"pa
(80" + m2)w = T{L—” (P T), (5)

iy
O"F,, + miw, = g V7.9,
MGy +mip, = g bTV .

In this work we employ the mean-field approximation
for meson fields. In that approximation the meson-field
operators are replaced by their vacuum expectation val-
ues, and so these fields just behave like classical fields;
in other words the quantum fluctuations are entirely ne-
glected. Since we are interested in static solutions, the
meson fields are time independent, and the nucleon-field
operator can be expanded in a complete set of stationary
states:

P(x) =D [falr)e Pty + go(r)ePatdl),

Pi(z) =Y [fi(x)eP=*bl, + gl (r)e ™ Fatd,). (6)

a

Here f, and g, together form a complete set of Dirac
spinors, b, and b}, represent annihilation and creation
operators for the nucleon state o, and d, and df, are
annihilation and creation operators for the correspond-
ing antinucleon state; they satisfy the anticommutation
relations for fermions. Since we do not consider the con-
tribution from the Dirac sea, the antinucleon part in the
expansion will be omitted hereafter. Now the Hamilto-
nian can be obtained from the Lagrangian (1) by the
standard procedure and, by using the Green functions
for mesons, the meson fields can be eliminated from the
Hamiltonian. We obtain the following second-quantized
Hamiltonian in terms of nucleon creation and annihila-
tion operators:
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Note that in this equation we have neglected retardation
in the meson fields. Because of the short range nature of
the nuclear force and the fact that energy transfers in-
volved are small compared to the masses of the exchanged
mesons, our HF calculation of spherical nuclei shows that
even for 208Pb retardation can change the total binding
energy by less than 5%, while it has a still smaller effect
on the single-particle spectrum [17]. Therefore we do not
expect the inclusion of the retardation can have an im-
portant consequences for fitting purposes. In a spectral
approach, such as the one we use in this work, the pres-
ence of the retardation in the exchange terms makes the
matrix elements in the Hartree-Fock equation dependent
on the single-particle spectrum which itself is redeter-
mined at each iteration. So instead of calculating these
matrix elements once and for all (as when retardation
is neglected), one has to recalculate them repeatedly at
each iteration until a stable solution is reached. This is
prohibitively time consuming for the fitting procedure,
and so in this paper the retardation is neglected.

In a HF calculation, we assume that the ground state
of the nucleus with A nucleons is

A
~ ] stl0). (8)

a=1
Now we are in the position to calculate the ground-state
energy of an A-nucleon system. In this work we deal
with spherical nuclei only, and so a single-particle state
labeled a has a characteristic 7 (angular momentum),
m (third component of j), m (parity), t3 (third compo-
nent of isospin), and principal quantum number. Since
we adopt the spectral method to solve the HF equation,
each single-particle state of the system is expanded in a
complete basis set; the expansion takes the form

iGT ()

fa(r) =Zcf|i> =) cg (—F" (1')¢ ) 9)
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In a practical calculation, the expansion basis in (9) must
be truncated after a fixed number of basis states N. Any
reliable results should be independent of N, and so the
number must be large enough to ensure that a satisfac-
tory convergent solution has been reached. The conver-
gence test we apply is detailed in Refs. [8,12]; the reader
is referred there for further information. Once the con-

t3('y) 1/2 Z an*

+ 31(i2| Ve i135)CF
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In principle we can choose any complete orthogonal
set for the basis functions, for example, spherical har-
monic oscillator wave functions. However, in this work
we would like to choose a basis which is the set of so-
lutions of the Dirac equation with a potential as close
as possible to that of the nucleus in question; we use as
our expansion basis the set of self-consistent Hartree so-
lutions for the same nucleus. This basis is easily obtained
using the nonspectral method. In this way, we decrease
the number of states in the expansion basis necessary to
produce reasonable convergence. The size of the basis
varies with the nucleus; for example, for 2°8Pb we use
ten major shells. Another merit of our basis is that our
final solutions have a more realistic asymptotic behavior
than those obtained using an oscillator basis; this may
be crucial when our results are compared with surface
features of the nucleus. One of the disadvantages is that
such a basis has a partly discrete and partly continuous
spectrum, and one of our earlier studies [8] showed that
it is important to include continuum basis states. We
therefore adopt a method of artificially discretizing the
states in the continuum by confining the entire system in
a large sphere (R=7-12 fm depending on the nucleus),
and imposing the linear boundary condition of the MIT
bag model [8,17]. It turns out that this boundary has
negligible effect on the bound states; however, it gives
us a convenient way to deal with states formerly in the
continuum. Of course, the completeness of the basis also
requires us to include basis states from both positive and
negative energy sectors.

Now inserting the expansion (9) into the Hamiltonian
(7), we can calculate the ground-state energy of an A-
nucleon system. Then the HF equation for a single-
particle state can be obtained by performing a variation
of the ground-state energy with respect to the expansion
coefficient C; with the constraint that the wave function
remain normalized. The resulting (HF) equations are

)t (=12 (335 |V, |d) 12>C’°‘

a= 1121,2
= Oty(a)ta(v) Z D g (iia| Vi |igih ) CF
a=1 i3z}
+ 3] Z DOt lta(@) + 3)(iia| Veliniy) CF
a=11i3:}

e Cy. (10)

vergence test is performed, we can solve the HF equation
(10) by the iteration method. Given an initial set of val-
ues for C;, Eq. (10) is iterated until a stable solution
is obtained. The criterion for a stable solution is that
the energy difference between all single-particle energies
during several successive iterations should be less than
10 keV. A stable solution usually can be reached after
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about 15-50 iterations depending on the nucleus. The
grid size for all of these calculations is 0.05 fm.

The total binding energy of a nucleus of A nucleons of
mass M is

E=Fyr+ E.;m. — AM, (11)

where Eyp is the total binding of the HF calculation
and E. ., is a correction for the spurious center-of-mass
energy; we adopt the correction from Ref. [16], Ec . =
—3 (41 MeV) A71/3, to ensure that our total binding is
defined the same as in that reference.

In order to treat the non-closed-shell nuclei, a
schematic pairing model with a constant energy gap is
employed in Ref.[16]. The pairing term is assumed to
have no contribution for a closed-shell nucleus. Our phi-
losophy is that all nuclear forces should be already in-
cluded in a meson-exchange mechanism. Of course, at
the mean-field approximation level, no specific pairing-
type force is present; however, we still prefer to do the cal-
culations without introducing any arbitrary terms in the
Hamiltonian. One would have to look beyond the mean-
field approximation to investigate the effects of pairing
contributions. At the nuclear matter level such an inves-
tigation has been done [22]; in this paper our intention is
to seek for the parametrization of QHD in the mean-field
approximation.

III. LEAST-SQUARES FIT

One way to test the adequacy of a physical model is to
evaluate the variable x2:

2 Ozxpt _ Ogheory 2

cr(EmEy
Here O°S*Pt is a set of chosen observables, and Otheery
are the corresponding predicted values. In experimental
data analysis, the weight AO is the statistical error in the
data. In Ref. [16] weights are determined by the expec-
tation of the ability of the model to describe the observ-
ables in question; in this way the relative weights of their
contributions are regulated. Under these circumstances
the value of x2? is somewhat arbitrary, and one should
be careful when two values are compared. To make our
result comparable to that of Ref. [16], we follow their
fitting procedure as far as possible: We choose the same
set of physical observables and weights. The observables
are the nuclear binding energy E, charge diffraction ra-
dius R, and the charge surface thickness 0. To obtain
R and o, we use the Coulomb form factor F(g) in the
form [16]

FC(Q) = [FPr(Q)]‘-Pr(Q) + FNe(q)]:Ne(q)]
x exp[(rq)?/A%?], r=0.51fm,

oo z
Fp.(q) = 477/0 drrzjo(qr) Z flfa s (13)

a=1

co N
Frela)=4n [ drrjo(ar) 3 s
a=1

4

a; ¢

F, = — >t t=Pr ort=Ne.
t(q) o 1 + bi,tqz,

TABLE I. Expansion coefficients for proton and neutron
form factors.
1=1 1=2 1=3 i=4
a; pr 0.312 1.312 -0.709 0.085
bi,pr [fm] 0.16667 0.06658 0.02269 0.006485
a;i,Ne 1 -1
bi,Ne [fm] 0.04833 0.05833

Here Fp, and Fp. are the distributions of protons and
neutrons, respectively, and Fp, and Fy. are the proton
and neutron form factors; the coefficients a;; and b;,
are given in the Table I. The remaining factor in F¢
is a correction for spurious center-of-mass motion which
comes from harmonic oscillator parametrization. Now
the diffraction radius R is given by the first zero of the
form factor:

R =4.493/¢Y |, Fo(¢M) =o0. (14)

The surface thickness o is determined from the suppres-
sion of the second maximum compared to the form factor
of a hard sphere:

o=|—-In| ————~+—"— s
qz, gmRFc(gm)

Fc(gm) is second maximum. (15)

We select 160, 4°Ca, 48Ca, %9Zr, and 2°®Pb for our HF
fitting as established closed-shell spherical nuclei; these
nuclei represent a wide range in mass number A, and
we have included one pair of isotopes to represent the
isotopic trend. The physical observables for these five
nuclei are shown in the Table II. In Ref.[16] 56Ni, 116Sn
and 124Sn are also included, but these do not fit our cri-
teria. Moreover, HF calculations are more complicated
than Hartree calculations (the computational time of our
HF codes is about 10 times longer than our Hartree cal-
culations), and since, in the process of searching for the
minimum, the HF codes will be called frequently, we need
to keep the number of fitted nuclei as low as possible.

Because of these differences, the direct comparison be-
tween x? of our result and that in Ref. [16] is not relevant;
a more meaningful quantity perhaps is x? per nucleon.
The values of x? from these two calculations are not as
important as their predictive powers, as revealed when
the best-fit parameters are used to calculate a broad spec-
trum of nuclei.

TABLE II. Experimental values for observables included
in the fit: binding energy E g, diffraction radius R, and surface
thickness o.

E/A (MeV) R (fm) o (fm)

160 -127.6 2.777 0.839

10Ca -342.1 3.845 0.978
48Ca -416.0 3.964 0.881
07y -783.9 5.040 0.957

208py, -1636.4 6.806 0.900
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In the Hartree calculation there are in principle six
parameters, the masses and coupling constants for o, w,
and p mesons; in the HF calculation we have two more
for the m meson. Since the physical values of the pion
coupling constant and mass are well established, in this
work we keep these values (f2 = 0.9771, m, = 138 MeV)
[12] unchanged in the fitting procedure; thus we have the
same number of parameters to vary as in the Hartree
calculation.

We are able to get a well-defined minimum for x? which
we examine as a function of the scalar meson mass. To
achieve this, we choose a o mass and vary the other five
parameters of the model to find a minimum. Then we
repeat the process with a new choice until the behavior
of x? versus the scalar mass is mapped out.

IV. RESULTS AND DISCUSSIONS

In this work we use two sets of data to determine the
best fit parameters for the QHD model. In the first
set the ground-state properties of 6O, 4°Ca, 48Ca and
907r are included; the second set also includes 2°%Pb.
We try two sets of data because we would like to check
whether the inclusion of heavy nuclei (represented by
208phb) changes the parameters substantially. We will see
from these two case studies that we can get some insight
about these parameters and even single out the contri-
butions from individual mesons. In some applications
it may be more suitable to use the parameters obtained
from the first set of data, for example, when one deals
with small to medium sized nuclei.

We are able to obtain a well-defined minimum of x?
versus the scalar mass for both sets of data. They are
shown in Figs. 1 and 2. The best-fit meson parameters
are shown in Table III, along with the uncorrelated error.
The uncorrelated error is the allowed variation of one
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FIG. 1. The x? as function of m, of the first set of data;
the best-fit parameters which produce the minimum in the
curve are given under set 1 in Table III.
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FIG. 2. The x*? as function of m, of the second set of

data; the best-fit parameters which produce the minimum in
the curve are given under set 2 in Table III.

parameter which will keep x? within one unit of its value
at the minimum, while all the other parameters are held
fixed.

From the first set of data we find that the x? minimum
occurs at around 80; the minimum from the second set
of data is about 230. This is compared to a minimum
x? of more than 2000 from Hartree fitting [16]. The x2
per nucleon in the three cases are about 20, 46, and 250,
respectively. We stress again that the more important
test is to look at the predictive power of the fitted pa-
rameters, and we will use these parameters to calculate
ground-state properties for a broad variety of nuclei.

Note first that the meson mass parameters from the
second set of data are within 3% of their physical val-
ues, which is remarkable considering that no specifically
mesonic properties are included in the data we are fitting.
Also the coupling constants are close to their correspond-
ing values in the one-boson-exchange potential (OBEP)
[13]. Compared to the values obtained by Hartree fit-
ting, we are gratified to see that including Fock terms
does bring the properties of these mesons back to their
physical values. The best-fit value for the vector meson
mass (w) in the Hartree fitting procedure is more than
1000 MeV [16], while the physical value is 783 MeV. Also
in the Hartree fitting procedure, the p meson mass is not
well determined by the fit, and so the authors of Ref. [16]
fixed this value at 763 MeV. In the HF calculation, the
p meson is important, because it makes large contribu-
tions in the exchange terms, while its contribution in the
direct term is certainly small. Our HF fitting procedure
selects a very reasonable value for the p meson mass.

Second, observe that the fitted parameters from the
two data sets are close except for the parameters of the
p meson. Since p is an isovector meson, it will play an
important role in a nucleus which has a large difference
in the number of protons and neutrons. The inclusion
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TABLE III. Relativistic HF best-fit parameters with uncorrelated uncertainties.
g2 92 gf, ms (MeV) m, (MeV) m, (MeV)
Set 1
Parameters 105.85 153.18 13.738 511.50 750.55 623.20
Uncorr. uncert. +0.00058 +0.0013 +0.0012 +0.021 +0.037 +0.45
Set 2
Parameters 108.63 148.05 13.350 525.00 760.69 752.32
Uncorr. uncert. +0.00025 +0.0015 +0.0011 +0.029 +0.018 +0.32

of the 2°8Pb constraints in the fitting procedure gives
rise to a much more precise value for p meson, as is to
be expected. Since 2°8Pb has N — Z = 44, this gives
a very strong constraint on the isovector meson p. For
the first data set, although x2? per nucleon indicates a
better fit, this is at the expense of a poorly determined p
mass. Nevertheless, this set of parameters may give more
satisfactory results when applied to small and medium
sized nuclei.

We use the second set of parameters to calculate the
ground-state properties of about 60 nuclei throughout the
periodic table, and compare with the Hartree calculation
of Ref. [16]. In Fig. 3 we show the binding energies
from these two calculations relative to the experimental
values. Basically we observe the same quality of fit to
the total binding energy of the nucleus; the HF calcula-
tion exhibits an average precision about 1%. Compared
to the Hartree result, the HF calculation shows slightly
less binding; this may be due to the fact that we do not
add a schematic pairing interaction in our calculation as
is done in Ref.[16]. If we include this term, we can re-
move the tendency to underestimate binding, but at the
expense of introducing an extra term in the Hamiltonian.
We do not include 3Ni and ''%Sn as constraints in our
HF fitting procedure, although these were included in the
comparable Hartree fit; even so, the HF predicted values
are better than those obtained in the Hartree approxima-
tion. Generally, for non-closed-shell nuclei, a relativistic
deformed nucleus calculation should be performed.

The relativistic HF and Hartree values for the charge
diffraction radius compared with experimental data for
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FIG. 3. The error in binding energy from relativistic HF

and H calculations. Both have been calculated for a broad
variety of nuclei and shown versus mass number A.

these same nuclei are shown in Fig. 4. Here relativistic
HF calculations are able to achieve an average precision
within 1%, better than those of the Hartree calculation.
The nuclei which are chosen in these calculations are be-
lieved more or less to be spherical nuclei; however, there
is an evident region of deviation around mass 150 which
is possible caused by deformations.

The last quantity we calculate is the nuclear surface
thickness as defined by Eq. (15). We consider that this
quantity is not as well defined as the binding energy or
charge radius, but it is useful in that it attempts to de-
scribe another nearly universal feature of nuclei, namely,
the range over which the density falls off at the sur-
face. The results are shown in Fig. 5. In this feature
we would expect that relativistic HF should show a sig-
nificant improvement over the Hartree calculation, and it
does. Even so, the HF results are not satisfactory in com-
parison with what this model can achieve for the binding
energy and charge radius, since the average prediction is
over 10% smaller than measured. The deviation around
mass 150 is even more marked in this case, again call-
ing in question the assumption that these are spherical
nuclei.

Much of the improvement of the HF over the Hartree
calculation can be attributed to the contribution of the
pion, which vanishes in the Hartree approximation. The
presence of the pion introduces a large repulsive force,
and so the scalar field o and vector field w need to read-
just themselves to provide the proper repulsive force in
the inner range and attractive force in the intermediate
range of nuclear forces. Thus the masses of the ¢ and w
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FIG. 4. The error in charge radius of relativistic HF and

H calculations. The calculated nuclei are the same as those
in Fig. 3.
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FIG. 5. The error in surface thickness of relativistic HF
and H calculations. The calculated nuclei are the same as
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will change when exchange forces are included in the fit;
this also leads to a different surface thickness.

Both relativistic HF and linear Hartree calculations of
the surface thickness (Fig. 5) are systematically too small
compared to the experimental values; i.e., both predict
the nuclear surface to fall off too rapidly. We believe
this suggests that in relativistic mean-field calculations
as currently performed some important physics may be
missing. In an earlier paper [17], we included the retarda-
tion effect of massive meson exchange in the relativistic
mean-field calculation and we found that retardation pro-
vides a correction for the surface thickness in the right
direction; however its contribution alone cannot account
for the discrepancy. Another ingredient neglected so far
in calculating the charge density is the charged meson-
exchange contribution. It is possible that this contribu-
tion can have the effect of smearing the nuclear surface,
and thus lead to a better description of the nuclear charge
density. The need to improve the description of surface
properties will remain an interesting topic for further in-
vestigation in relativistic mean-field calculations or ex-
tensions thereof.

It is instructive to look at the entire charge density dis-
tribution and at the single-particle spectrum for a rep-
resentative nucleus; these are shown in Fig. 6 and Fig.
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FIG. 6. The relativistic HF charge density of 2°°Pb com-

pared with the experimental density [23].
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FIG.7. Relativistic HF and H proton single-particle spec-

tra for ?°*Pb compared with the experimental values [24].

7 for 2°8Pb. In the charge density, we do see too sharp
a surface as compared to the experimental data. Also,
there are more shell-related fluctuations in the interior
than the experimental data suggest. This problem also
exists in traditional nonrelativistic HF calculations us-
ing Skyrme forces [15, 16]. For proton single-particle en-
ergy levels, we do not see much difference between HF
and linear Hartree results. As compared to experiment,
it is obvious that the experimental spectrum of 2°8Pb is
more dense than the calculated spectrum. We notice that
the nonrelativistic Skyrme HF calculations [16] have the
same problem. The relativistic nonlinear Hartree calcu-
lation (which has two more parameters), although it is
more successful for several of the properties we have ex-
amined so far, has a calculated single-particle spectrum
of 2°8PDb which is worse than our result [16].

V. CONCLUSIONS

We have studied the QHD parametrization by using
a relativistic HF calculation and fitting to known nu-
clear properties. The nucleon, which is described by a
Dirac particle, is coupled to a scalar (o), a vector (w), an
isovector vector (p), an isovector pseudoscalar (7), and a
photon () through a local Lagrangian. We treat this La-
grangian as an effective model Lagrangian, with free pa-
rameters being the coupling constants and masses of the
exchanged mesons. We search for the best set of param-
eters by a least-squares fit to nuclear ground-state prop-
erties. Specifically, we fit the binding energies, charge
radii, and surface thicknesses of five spherical nuclei 160,
40Ca, 48Ca, 9°Zr, and 2°®Pb. We use these parameters to
calculate the same quantities for a wide variety of nuclei
to check the predictive value of the model.

This work follows an earlier study [16] in which a rel-
ativistic Hartree calculation was fitted to similar data.
In that study, both linear and nonlinear (with o field
self-coupling terms) models were explored, and while it
was found that the nonlinear relativistic Hartree model
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is comparable to the successful nonrelativistic HF calcu-
lations using the Skyrme force, the linear model proved
to be a poorer fit. Thus the authors of Ref. [16] conclude
that an effective Lagrangian with only linear couplings is
not able to reproduce the nuclear ground-state properties
over a wide range of nuclei.

Since the real counterpart of the Skyrme HF calcu-
lation would be a relativistic HF calculation, we had
hoped to show that the nonlinear terms, which are also
present in the Skyrme Hamiltonian in the form of density-
dependent interactions, would no longer be necessary.
Whereas in the linear model the vector meson (w) mass is
far away from the physical mass, we find that by includ-
ing the exchange terms but still using the linear model,
we obtain a minimum with all meson masses close to
their physical masses. The best-fit mass parameters are
within 3% of their physical masses. Some small deviation
from free values is to be expected due to the medium ef-
fects in the nucleus. But this is still remarkable in the
sense that these relativistic models, although based on
the boson-exchange principle, do not introduce the prop-
erties of the mesons explicitly, but only in terms of the
quantum numbers to be carried. Yet, using only physical
data from finite nuclei, we find masses and coupling con-
stants which are close to those used in the OBEP [13].
This should strengthen the connection between the QHD
and the OBEP model of nucleon-nucleon interactions.

With the same number of parameters (we fix the pion
parameters), we find that the relativistic HF is superior
to the relativistic Hartree when we use the best-fit set
of parameters to study the binding energy, radius, and
skin thickness of a wide variety of nuclei. We conclude
that the relativistic linear HF model, by properly includ-
ing the exchange terms, is capable of reproducing those
nuclear ground-state properties quite satisfactorily.

While it is true that we fix the pion parameters in
the fitting procedure, we find no substantial improvement
from allowing them to vary after the fact. We have not
tried a full simultaneous eight-parameter fit for reasons
of economy, but exploratory calculations show that the
four masses and four coupling constants used could not be
significantly changed without destroying the agreement
with the basic properties of finite nuclei.

Some features of both relativistic HF and Hartree cal-
culations seem to indicate that some physics is missing in
the current model. The surface thickness is still too small
and there is too much structure in the interior charge

density. Retardation effects [17] can help reduce the dis-
crepancy, but these are not large enough. So far the
charged meson-field contributions have not been taken
into account in the total charge distribution; these will
be included later.

‘We may also compare the relativistic HF with the non-
linear Hartree calculation. The nonlinear model has cer-
tain advantages, especially in the match to values of the
surface thickness. However, one is aware of the fact that
there are two more free parameters; this brings the total
close to that of the Skryme parametrization in the non-
relativistic HF. Moreover, in the nonlinear model, the
best-fit parameters assign a negative value to the quartic
self-coupling constant. For such a Lagrangian the energy
spectrum is unbounded below [18]; i.e., there is no true
minimum energy.

It will be interesting to investigate a nonlinear HF
model, but we would be reluctant to sacrifice the feature
of our present model that the meson masses are close to
their physical masses. It is not clear that the elusive o
meson with its self-coupling should be taken seriously as
a body to be exchanged in the sense of HF calculations.
More likely it represents a set of terms which relieve us
of the need to calculate higher order contributions in the
real meson fields or possible gluon contributions. Never-
theless, one would like the quartic term to be positive.

To go beyond HF including possible two-particle two-
hole components is reasonable and seems to be indicated,
for example, by (e, e’p) studies which appear to find pro-
tons in states which would be unoccupied in the perfect
Fermi sea. One component of this type, namely, pairing
correlations, was included in the Hartree calculation [16]
by adding a pairing energy term to the Hamiltonian and
including a mandatory correlation in the wave function
in the form of a smeared Fermi surface defined by an
invariable gap parameter. This is a small effect but ap-
parently necessary for nuclei in the pf shell and beyond.
One would like to see the need for pairing to come more
naturally out of nuclear forces.
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