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Ground-state energy of a hard-sphere Fermi fluid. II. Spin and isospin

L. P. Benofy, J. L. Gammel, and R. M. Delaney
Physics Department, St. Louis Uniuersity, St. Louis, Missouri 63103

George A. Baker, Jr.
Theoretical Diuision, Los Alamos National Laboratory, Uniuersity of California, Los Alamos, New Mexico 87545

(Received 8 July 1993)

We evaluate the fourth-order Hugenholtz diagrams from the Rayleigh-Schrodinger many-body per-
turbation series for a repulsive, square-well potential. We consider a system containing four di6'erent

equal-mass identically interacting particle species, similar to nuclear matter when only the repulsive core
is considered. We use the results of these calculations to extend the L expansion of the ground-state en-

ergy of a Fermi Quid by one more term. From this extension, we are able to provide accurate values of
the ground-state energy over a density range which includes that for infinite nuclear matter.

PACS number(s): 21.65.+f, 05.30.Fk, 67.40.Db, 67.57.—z

I. INTRODUCTION AND SUMMARY

A fundamental question that has long interested physi-
cists is the direct computation of the ground-state energy
of an interacting many-fermion system. In the case of the
ground state of infinite nuclear matter, the problem is
complicated by uncertainty concerning the internucleon
interaction potential or even the appropriateness of this
description of the problem. Leaving these uncertainties
aside, there is the simpler problem of the computation of
the ground-state energy of a many-body system with a
specified interparticle interaction. For potentials that are
approximately correct for nuclear matter and helium
three, there has been extensive study made [1—19] using
the method of quantum thermodynamic perturbation
theory. Reference [11]is hereinafter referred to as I. Sa-
tisfactory results are in hand for the case of neutron
matter [14],but for the case of nuclear matter [18] the sit-
uation still needs improvement. It has become increas-
ingly clear throughout the above-mentioned studies that

in order to obtain adequate accuracy in the quantum
thermodynamic perturbation, more input on the behavior
of the ground-state energy of the simple repulsive-core
problem is necessary. A beginning was made in this
direction through the introduction of the L expansion
[11] and it has been carried forward to a reasonable ex-
tent. The results were good for the case of two-particle
species (such as neutron matter or He ), but owing to
fewer results in the case of four-particle species (such as
nuclear matter) the results were less good.

It is the purpose of this paper to compute the series
coefficients necessary to add one more term to the L-
expansion of the ground-state energy of the hard-sphere,
quantum, fermion Quid for the case of four-particle
species. The necessary coefficients are the fourth-order
Hugenholtz diagrams from the Rayleigh-Schrodinger
perturbation series for the repulsive, square-well poten-
tial. A further purpose is to exploit these results to esti-
mate the ground-state energy, through the use of the de-
rived I. expansion, for the hard-sphere Fermi Quid.

TABLE I ~ Arguments of the potentials and the denominators for the diagrams of classes I and I A.

Diagram

I.6

IA. 1

IA.2

IA.3

X2'

In —m —qI

In —m-qI

I.n —m —q I

X3

I qi —ml

I qz —qa —qI

q,

q,

Iq, -mI

X5

In —m —q2 I

In —m —qzI

In —m —q, I

In —m —q, I

Iq, -m-qI

Iqz —qa + qI

q, '+ q, (m- n}

q, '+ q, (m —n)

q, '+ q, (m —n)

q~ —q, ~+ (q —q, ) (m —n)

q'+q(q, —n)

2q'+ q(m+ q, -n-q, )

q'+ q.(m —q, )

D3

q, '+ q, (m —n)

qi'-qP+(qi-q2)(m n)

q —q~ +(q —q~).(m —n)

q —q~ +(q —q~).(m —n)

q'+ q.(q, —n)

q'+ q (m —q, )

q'+ q (q*- qi)
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m+q,

ffl+ Q

m+q

IAB
FIG. 2. Class IA, fourth-order perturbation theory dia-

grams.

I.6
FIG. 1. Class I, fourth-order perturbation theory diagrams.

Of the problems of interest in the case of two-particle
species, the dense cases such as He are not yet adequate-
ly treated by this method. They have an estimated error
of the order of 10%. For the more dilute cases, such as
neutron matter, the error is a much more satisfactory es-
timated 1%. This feature has encouraged us to extend
the results for four-particle species, since nuclear matter
is a relatively dilute system, compared to close-packing

density.
The basic idea of quantum thermodynamic perturba-

tion theory is similar to thermodynamic perturbation
theory and seemingly goes back to Van der Waals. It was
he who suggested that the description of Quids could be
best started by dividing the pair interactions into a repul-
sive and an attractive part. The second step is to develop
an accurate description of the Quid of particles with
repulsive cores. The final step is to add the attraction by
means of perturbation theory. This clever idea has re-
cently been vindicated when both classical and quantum-
mechanical computer simulations showed that the hard-
sphere pair distribution functions are qualitatively similar
[20] to those of a liquid whose particles interact via a
I.ennard-Jones potential. It has also been observed [21]

TABLE II. Arguments of the potentials and the denominators for the diagrams of classes II and II A.

Diagram x I X2 X3 X4 X5 X6 D2

q, '+ q, .(m —n)

D3

ql + ql (ill —ql)

ln —m —q, l

In —m —q, l

II.4

q'+q (q,-n)+q, '+q, .{m-q,-q)

q'+q (q,-n)+q, '+q, (m-q, -q)

q, (q, —q —m)

q' —q, '+ (q+ q, ) (m —n)

q(q, +q, —n)

q'+ q (m —n) —q, (q, —n)

q'+q (q, +m-n)+q, '+q, (q, -n)

q +q.(q, +m —n)+q, +q, (q2—n)

q, {q,+q —n}

q, '+ q, .(m —n}

q'+q(q, —n)

II.5

ln-m-ql ln-q-qlllq2 'ql

I q+ qll

II.6

lq2 —q ™IIn —q~l~ll q +q'(m —n+ql)+ql +ql (ql —n)II.7

I ql + ql —ml q2+ q (m —n) + q, (ql —n)Iq+q, l In —m —q+q, lII.9

In —m —ql Iq2+ ql nl q2+ q (m —n) e q, (ql —m)lq2-q-ml
I
q- ql I

lql-ql-ml q, '+ q, (m —q, )

+ ql (q2 "}

q'+q(m —n+ q, )

q,II.11 q

I
n —q —ql —ql I I

n —m —q —ql I I
n —qlln-m-ql

q

ln-m-ql

/n-I-q/

IIA. 1

IIA.2

ln-m-q+qll ln-q-qll q2+q(m —n)+q, (q2 —n)IIA.3

ln-q2-qll Iq*-q-ml q'-ql'+(q-ql)(m-n) q'+q(m-ql —q2)+ql(q2-m)

IIA.5 lql-ql lq2-m-ql

Iql —ql ln —q+ ql —qll ln —m —ql lql- ql -m
I q,

q + q (m —n —q, ) —q, {m —n) q +q (mW 2&2)+q2 (q2™)

q +q(m —n —ql) —q, (m —n) (q-ql)'+(q-ql)(q2 n)
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TABLE III. Arguments of the potentials and the denominators for the diagrams of class III.

Diagram

III.2

III.7+8

III.9+10

X2

q,

ln-q~l

lq+m —q, l

X3

lq~-qt-q-ml

In —q, l

Im-qt-q~l

lm+ q —
qual

q + q.(m —n) + q, + q, (q + m —q~)

q + q.(m —n)+ n —n.(qt+ q2}+q, -q~

2
qi -qt(m-qi)

(q+ m)'-(q+ m)(q, + q,)+q, .q,

II .3

.2

II.4
II Q

that the pair distribution of an amorphous solid (such as
Ni-P metallic alloy glass) is remarkably similar to that
[22] of a classical random close-packing arrangement. By
way of contrast, the pair distribution function of the ideal
gas is quite different. Our efforts in this paper are
relevant to the second step described above.

The L-expansion method, which we use to estimate the
ground-state energy of hard-sphere Fermi Auids, differs
from the well-known K-matrix expansion [23] in the fol-
lowing way. In the K-matrix expansion, the Rayleigh-
Schrodinger perturbation series is rearranged. Infinite
sums of diagrams replace the interaction vertices, and the
class of diagrams to be considered is correspondingly re-
duced. In the I expansion, instead, the E-matrix energy
itself is expanded in powers of the interaction potential
and so too is the complete ground-state energy [1l]. The
K-matrix energy or "ladder approximation" series is re-

II .5 n

II .6
m+q

IIA. 1 -IIA.2
-II .8

rn+ q o-q

II .10
IIA.3 -IIA.4

-IIA.5 -IIA.6
-II .11 -II .12

FIG. 3. Class II, fourth-order perturbation theory diagrams.
FIG. 4. Class IIA, fourth-order perturbation theory dia-

grams.
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verted to give an expansion of the interaction strength in
terms of the ladder energy. This series is then substituted
back into the series for the complete energy, and there
then results an expansion for the complete, Fermi-fluid,
ground-state energy in terms of the ladder energy. This
procedure has several advantages. First of all the ladder
energy remains finite in the limit of an infinite (finite-
ranged) repulsive core. Second, the ladder energy can be
computed [24] reasonably well by the solution of an in-
tegral equation. Third, the ladder energy is exact in the
low density limit. The kinetic energy in this limit is of
the order of (kzc), the ladder energy is of the order of
(kzc), and the deviation of the complete energy is of the
order of (kzc), where kz is the Fermi momentum and c
is the hard-care radius. The addition of further terms in
the L expansion beyond the first reduces the order of the
error in the low density limit or, expressed otherwise, in-
creases the range of density over which this method gives
good, accurate results.

In the second section, we detail the necessary fourth-
order Hugenholtz diagrams. We tell how the corre-
sponding integrals were obtained, which give the values
of the diagrams, and how we coded them for a computer.
We give, in tabular form, the results that we have ob-
tained. Finally, we describe the checks that we have
made to ensure their accuracy. In the course of perform-
ing these checks, we have discovered a single error in
some previous work. We point out which previous re-
sults need to be replaced and, indeed, do so, except for
the R-matrix computations.

In the third section we extend the L expansion and an-
alyze some of the consequences. We find that the addi-
tional term has, in fact, improved the estimate of accura-

cy of this expansion, and we now feel that we have ob-
tained good accuracy for the ground-state energy of a
four-particle species, hard-sphere, Fermi fluid from low
densities up through a range of densities, which includes
that of nuclear matter.

4m [sin(qk~c) —
q (k~c) cos(qk~c) ]

P(q)=
g

which is the Fourier transform of the central repulsive
factor

(2.1)

1, O~r~c
@(r)= '() (

in the pair potential V (r) for hard spheres, where,

(2.2)

V(r) = uN(r) with u~~ .
Mc

(2.3)

The diagrams belonging to class I (illustrated in Fig. 1)
correspond to contributions of the form

II. FOURTH-ORDER HUGENHOLTZ DIAGRAMS

As in I, v will be used to denote the number of particle
species in the Fermi fluid under discussion: v=4 Fermi
fluid means a Fermi fluid involving four-particle species
(as in nuclear matter).

It is not dificult to generalize the expressions for the
fourth-order Hugenholtz diagrams presented for the v= 2
case in Sec. II of Ref. [25]. (We shall follow the notation
established by those authors. ) In the diagrams below
"particle lines" carry leftward arrows, while "hole lines"
carry rightward ones. The expressions for the fourth-
order diagrams for arbitrary v are presented below. They
all involve the function

3v P(q)P(x2)P(x3)[(t(x4) ( 1 /v)P(x5)]
8q dqi dqp dni dn2' m-' (k c) [q +q (m —n)]D2D3

(2.4)

while class I A diagrams (shown in Fig. 2) stand for

3V dq dq& dq2 dm dn
2' m' (k~c) [q +q (m —n)]D2D,

X P(q) —P(x ) P(q—) —P(x )—1 1

V V

X P(q) —P(x4) P(q)———P(x5) +1 1 1

l
V V

P(x2)P(x3)P(x4)P(x5) . . (2.5)

The x's and D's belonging to these two classes are listed in Table I. The integrals for all diagrams range over all the mo-
menta allowed by the Pauli exclusion principle. Our momenta are normalized to the Fermi momentum kz, and so
hole-line momenta (such as ~m ~

in all diagrams) are restricted to be less than one, while particle-line momenta (such as
~q+m~ in all diagrams) are greater than 1. As in the v=2 case, diagrams I.2 and I.5 give rise to identical contributions.

Except for an occasional minus sign, the diagrams of class II (shown in Fig. 3) and class II A (shown in Fig. 4) corre-
spond to contributions of the form

dq dq& dq2 dm dn
T(x),

2 1T' (k c) [q +q (m —n)]D2D3

where for class II

(2.6)
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T(x)=P(x, ) ~ $(x2) ——P(xs ) P(x4) ——P(xs )
1 1

P(x4 ) ——P(x 6 ) — —— P(x s )P(x s )P(x 6 ) .1 1 1
(2.7)

and for class II A

T(x)=P (x, )[P (xs)+P(x4)P(x6)]+/(xz)P (x3)$(xs)

——[4(xs)[4"(xi)+0'«z)4«s)]l 4'(x4)+4«6) l+0'«i)[4'(xs)+0'(x4)4(x6))l 4(xz)+4(xs) l]

+ [P(xt)$(x3)[P(x2)+0(xs)][0(x4)+0(x6)]+4(x2)0(x4)0(xs)4(x6)]
1

V2
(2.8)

The x's and D's are supplied in Table II. The contribution of II.2 is identical with that of II.1, II.3 with II.4, II.7 with
II.12, II.S with II.11, and II A.4 with II A.2. It is very important to remark that equation (2.6) is off by the factor (

—1)
for diagrams II.7, II.8, II.11, II.12, II A.2, II A.4, II A.5, and II A.6.

For the diagrams of class III (see Fig. 5) one needs to write

dq dql dq2 dm dn 1
n m q x2 x2 x32' ~' (k~c) [q +q (m —n)] D3

(2.9)

—3~ dq dql dq2 dm dn
---

2 3 q q
—— n —m —q

1

2' m' (k~c) [ + (m —n)] V

x [4(lq+ql+ml) —4(lq, +ml)+4(lql+n —
ql &

—p(lql+nl &]

with the appropriate x's and Ds's given in Table III. The above expression needs to be corrected by a factor of ( —1)
for diagrams III.7, III.8, III.9, and III.10. Note that diagrams III.3, III.4, III.5, III.6, III.11, and III.12 give zero con-
trlbutlons because the/ each involve a paltlcle ancl hole line with the same momentum.

It seems least inconvenient to list the distinct contributions from class IV (Fig. 6) diagrams individually:
(IV.1)

(IV.2, IV.3)

x [P( q+q2+ml &
—P(lq&+ml)+P(lq2+n —ql) —p(lq2+nl)], (2.10)

dqdq& dq2dmdn
2'"m' (kFc) [q +q.(m —n)] [q, +q, ~ (m —n)]

x p(q, ) —p( I ql+ m —nl ) [0( I q+ q~+ ml ) —4( I qz+ ml ) ]
1

L

(IV.4, IV.5)

+ 3~2 dq dq, dq2 dm dn

2"m"(k~c)' I [q'+q (m —n)] [q +q (m —ql)]

(2.11)

X p(q) —p(lq+m —n—l) p(q) ——p( ql
—nl)

1 1

X p(q) ——p( Iq+m —q, I )
1 1 1

P( lq+m —nl )P( I qi —nl )4( Iq+m —
qual )

(IV.6, IV.7)

x [p( lq+m+q21) —p( lm+q2I )+0( In+ q, —ql )
—0( In+

qual

) ], (2.12)

dq dql dq2 dm dna(q)P( lq q&l )

2' m (kFc)6 I [q'+q (m —n)]'[q' —ql+(q —ql) (m —n)]

p(ql ) ——p( lql+m —nl) [0( lq+m+q21 )
—4(lm+q21)] .1 (2.13)
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meq+q m+q
fTl+ 4

m+q

III.3

FIG. 5. Class III, fourth-order perturbation theory diagrams.

All of the preceding integrals were evaluated using
Monte Carlo methods. The uncertainties in the values of
the integral were successfully limited through a judicious
choice of the momenta for which their integrands were
sampled.

(i) The cube of the magnitude of hole-line momenta
used here was uniformly distributed between 0 and 1.

(ii) The particle-line momentum magnitudes were
chosen through the rule r, where the r's were random
numbers uniformly distributed between 0 and 1, and E
was set so that the integrand approached a finite value as
r —+0.

(iii) The azimuthal angles and the cosines of polar an-
gles associated with the momenta were assumed uniform-
ly distributed between 0 and 2' and between —1 and + 1,
respectively.

The number of samplings ranged from 10 to 4X 10
for the different diagrams. The calculations of the
different diagrams converged differently, making it neces-
sary to use different numbers of samplings. All the
fourth-order Hugenholtz diagrams were evaluated for
v=4 at eight different densities (k~c), and the results are
presented in Table IV.

Before embarking on these computations, as a check
on our work, the above expressions were evaluated for
v=2 and k~c = 1.50 for each of the diagrams, and the re-
sulting numbers were compared with Table III of Ref.
[26]. Through this check an error was discovered in con-
nection with diagram II A. 5 as described in Ref. [27]. In
Table III of Ref. [27] an appropriate set of permutations
for the listed momentum transfers is (13)(12)(23) instead
of the set (13)(12)(13)given there. It was also found that

the values for I.3+4 in Ref. [26] are incorrect for some
densities even though there is no error in the expression
(25) on which the original calculations were based.
Presumably the (2—3) X 10 Monte Carlo repetitions used
for the original evaluation were inadequate. The correct-
ed values for II A.5 and I.3+4 (v=2) are presented in
Table V.

These changes necessitate other corrections also in pre-
vious work. In Table III of paper I both X4, the sum of
the contributions from all fourth-order diagrams, and A4,
which is X4 less the contribution from diagram I.1, must
be corrected by referring to our Table V. Of course, the
errors just mentioned infect the p4 coefticients of the L
expansion (Table V of paper I) as well as the results for
Q(LH ) (Table VII of paper I) for the v=2 Fermi Iluid.
Corrections to these results also appear in Table V.
These corrections also take into account the correction to
the erroneously listed value of qo for k~c =1.25. The
correct value is 1.50216. Relative to the quoted errors,
the changes in Q(L~) (3.3) are not large and do not
change the conclusions of paper I. Note is made that the
quoted error in Q(LH ) for kzc = 1.25 may be unrealisti-
cally small, as p4 is changing sign in that vicinity.

=L +p3L +p4L + (3.1)

III. EXTENSION OF THE ANALYSIS
FOR v=4 HARD-SPHERE FERMI FLUIDS

In paper I the L expansion for the ground-state energy
of a Fermi Quid is given as [Eq. (5.1)]
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q1

m+q

qp

Hugenholtz diagrams less the ith-order ladder diagram,
and with B

&
and B2 representing the only first- and

second-order diagrams. The results of Sec. II make possi-
ble the tabulation of the p4's for the v=4 Fermi fIuid,
and these are presented in Table VI. With these p4's in
combination with the p3 s of paper I, it is possible to cal-
culate the energy of this Fermi Quid more accurately.

We have summed the available terms in the L expan-
sion using the method of Pade approximants and estimat-
ed the errors, which we consider to be a combination of
the statistical errors of Table IV and apparent errors of
approximation. These latter errors are estimated by the
method of Hunter and Baker [28]. Following paper I, we
have studied the behavior of

.3
q2 g(L)=

LN(k c) R

LH EEMc

=q 1 — L — L+0(L )',—q (3.3)

.5
qp

FIG. 6. Class IV, fourth-order perturbation theory diagrams.

where

3 g4 53B2
p = d p = 3

1 1 1

(3.2)

with the hi representing the sum of all ith-order

which, as pointed out in paper I, should approach zero
linearly as a function of kF near some quantum, random,
close-packing density [11]. LH is the value of L corre-
sponding to a hard-core potential of radius c. Our results
for Q(LH) are given in Table VI. The addition of the
term p4 has not only given us more information about the
values, but has allowed us to give more realistic estimates
of the errors than was possible in paper I. Our current
results fall roughly midway between the two alternate
data summaries (based on the low-density expansion)
given in paper I. The errors are such that our current re-
sults are consistent with either summary over the range
we can check, and we conclude that this spread
represents well the uncertainty in current knowledge.

The addition to the perturbation series that we have
made clearly extends the density range over which our
knowledge of the hard-core, ground-state energy is reli-
able to higher densities than was previously possible. In
addition, we now have good information for the Fermion
Quid energy resulting from weak to moderately strong
repulsive square-well interactions over quite a wide range
of densities.
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