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The finite-temperature Hartree-Fock-Bogoliubov cranking equation is solved for ' 'Sm. The phase di-

agram contains three shape transition lines. For certain rotational frequencies, there is oblate noncollec-
tive rotation at low temperatures, prolate and triaxial collective rotation at intermediate temperatures,
and oblate noncollective rotation at higher temperatures. A new oblate region at low T and co is caused
by the pairing interaction.

PACS number(s): 21.60.Jz, 27.60.+j

I. INTRODUCTION

The shape of a nucleus is strongly dependent on its
temperature. Increasing the temperature causes shape
transitions. In mean-field theories shape transitions
occur suddenly at critical temperatures. However, when
statistical fluctuations in the shape are included, these
shape transitions then occur gradually, or they may be
obscured. Extensive experiments on the giant dipole res-
onance provide evidence for thermal shape transitions
and fluctuations [1,2].

Shape transitions in hot rotating nuclei have been de-
scribed by two mean-field theories: the microscopic
finite-temperature Hartree-Fock-Bogoliubov cranking
(FTHFBC) theory [3] and the macroscopic Landau
theory of phase transitions [4,5]. Previous investigations
using these two theories predict phase diagrams which
contain only one shape transition line in the temperature
versus rotational frequency plane. This transition line is
defined by the frequency-dependent critical temperature
T, (co). For temperatures below T, the shape is prolate or
triaxial and the rotation is collective. For temperatures
above T, the shape is oblate and the rotation is noncol-
lective. The giant dipole resonance experiments furnish
evidence for this shape transition.

The question addressed in this article is whether the
phase diagram for a hot rotating nucleus can have more
than one shape transition line. Previous FTHFB calcula-
tions for nonrotating ' Sm nuclei suggest that this nu-
:leus may have more than one shape transition line [6].

At spin zero ' Sm has two shape transitions. The equi-
librium shape is spherical for temperatures below
T

&

=0.40 MeV. When the temperature rises above T, &,

the equilibrium shape suddenly becomes prolate. At a
second critical temperature, T,2=0.91 MeV, the equilib-
rium shape suddenly returns to spherical.

The first shape transition at T„ is caused by a delicate
balance between the pairing interaction (which favors
spherical shapes) and the quadrupole interaction (which
favors deformed shapes). For temperatures below T„ the
pairing interaction is more inAuential than the quadru-
pole interaction, so that the equilibrium shape is spheri-
cal. The critical temperature for the elimination of pair-
ing correlations is normally less than the critical tempera-

ture for the elimination of deformation. When the tem-
perature increases to T, &, the pairing interaction becomes
less influential than the quadrupole interaction, and the
shape becomes deformed.

The second shape transition at T,2 is the conventional
transition which occurs in other nuclei. The deformed
shape for T(T,2 is caused by shell effects. At T,2 the
thermal particle-hole excitations eliminate this shell
effect, and the shape becomes spherical.

This previous ' Sm FTHFB calculation was restricted
to spin zero. The purpose of this article is to extend this
calculation to finite spins. Do the critical temperatures
T„and T,2 at co=0 provide the end points of two dis-
tinct shape transition lines T„(co) and T,2(co), or do T, i

and T,2 at co=0 give the two end points of one shape
transition line T, (co)? For either possibility, the phase di-

agram for ' Sm is probably topologically different from
the phase diagrams previously encountered for other hot
rotating nuclei.

II. FINITE- TEMPERATURE
HFB CRANKING CALCULATIONS

For each combination of temperature and spin, the
equilibrium shape is determined by the self-consistent
solution of the FTHFBC equation [7,8]

The Hartree-Pock Hamiltonian % includes the cranking
term —coJ„, where co is the angular velocity. The pair
potential is b, . The eigenvectors (U;, V~) define the
quasiparticle operators, and the eigenvalues E; are the
quasiparticle energies. The quasiparticle occupation
probability is

where T is the temperature. The mean fields & and b, are
calculated self-consistently with the pairing plus quadru-
pole interaction of Kumar and Baranger [9].

The quadrupole deformation parameters P and y are
shown in Figs. 1 and 2. The spin dependence of the
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FIG. 1. The quadrupole deformation P versus the tempera-
ture T for ' Sm. The spin is I.

FIG. 3. Phase diagram for '" Sm. The critical temperature
T, versus the rotational frequency cu.

shape transitions is more complex than that observed in
previous calculations. For spin I=O the shape is spheri-
cal for temperatures below T„=0.40 MeV and above
T&2

=0.9 1 MeV. For temperaf U res between T
&

and T&2
the shape is prolate. These shape transitions were dis-
cussed in Sec. I and in Ref. [6]. For I =10 the shape is
nearly prolate and the rotation is collective for tempera-
tures up to T, =0.92 MeV; at higher temperatures an ob-
late shape rotates noncollectively (y = —60'). For I =20
there is oblate noncollective rotation for temperatures
below T,&=0. 18 MeV and above T,2=0.90 MeV; for
temperatures between T, &

and T,2 the shape is triaxial.
For I=30 there is oblate noncollective rotation at T, &

=0
and T) T,2=0.80 MeV; for T, &

& T & T,2 the shape is
triaxial. For I =40 the shape is triaxial for T & T, =0.56
MeV; for T& T, there is oblate noncollective rotation.
For I =50 and 60 there is oblate noncollective rotation at
all temperatures. Figures 1 and 2 demonstrate that for

Sm the temperature dependence of the shape is com-
pletely different at each spin. Different spins display
different thermally induced shape transitions.

The phase diagram for the ' Sm shape is given in Fig.
3. The shape transition line which begins at
(co, T)= (0,0.91 MeV) separates a prolate and triaxial col-
lective phase from an oblate noncollective phase. This is
the conventional shape transition line predicted for other
nuclei by the FTHFBC [3] and Landau [4,5] mean-field

l=0

148S

theories. The phase diagram contains two additional
shape transition lines at low temperatures and low spins.
These two new transition lines were not seen in previous
FTHFBC or Landau calculations. They demarcate two
new regions for the oblate noncollective phase.

One of the new oblate regions occurs at T &0.25 MeV
and 0.25 MeV & co & 0.45 MeV. This region is caused by
crossings of prolate and oblate bands along the yrast line.
This oblate phase is eliminated by a very small thermal
excitation. This oblate region is bounded by a second-
order phase transition line.

What causes the new shape transition line which begins
at (co, T)=(0,0.40 MeV)? Why is there a new oblate re-
gion adjacent to this transition line? First consider the
vertical axis of the phase diagram (co=0). There is a criti-
cal temperature T„=0.40 MeV. The shape is spherical
for T & T„because of the strong pair correlations, and
the shape is prolate for T & T, j. For a spherical shape,
any rotation axis is a symmetry axis, so the rotation must
be noncollective rather than collective. Then the oblate
shape is energetically favored over the prolate shape.
Consequently, if a rotation is applied to the spherical
shape at co =0 and T & 0.40 MeV, then the result is oblate
noncollective rotation. It should be emphasized that this
new region for the oblate phase exists because of the
strong pairing correlations. If the temperature and rota-
tional frequency are increased suKciently, then the pair
correlations weaken, and there is a shape transition from
the oblate phase to the prolate and triaxial phase.

Is this phase transition erst order or second order?
Phases 1 and 2 have an nth-order phase transition at con-
stant T and co if
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FIG. 2. The quadrupole deformation y versus the tempera-
ture T for ' 'Sm. The spin is I.

Bco 7"

where I" is the free energy in the rotating frame

F'=E —TS —coJ,
and the energy E, spin I, and entropy S are

(4)
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(8)

Substituting the thermodynamic relations

BF'
aT

BF'
867

(10)

into Eqs. (3) and (4), it follows that a first-order transition
at constant T and co occurs if

F) =F2

S(ASq,

J,WJ2 .

A second-order transition occurs if

(12)

(13)

F' =F'

Si =S2,
J) =J2,

(14)

(15)

and the first derivatives of S and J with respect to T and
co are discontinuous at the transition.

These conditions are checked by graphing F'(co) at
constant T and F'( T) at constant co. For example, Fig. 4
is the isothermal function F'(co) for T=0.3 MeV. It has
the loop which characterizes a first-order phase transi-
tion. For spins I &0.75, there are stable states with ob-
late noncollective rotation. For 0.75 &I & 1.00, there are
metastable states with oblate noncollective rotation. For
1.00 &I & 1.25, the states are unstable. For
1.25 &I &2.00, there are metastable states with prolate
collective rotation. For I &2.00, there are stable states
with prolate collective rotation. Stable states correspond
to absolute minima in a free energy surface, whereas
metastable states correspond to relative minima. At the
crossing point in the loop there are two states, which by

construction have the same values for T, co, and F'. The
two states correspond to degenerate minima in a free en-
ergy surface. The value of co at the crossing point is the
crossing or critical frequency co, =0.143 MeV. Equation
(10) states that the slope of F'(co) gives the spin. There-
fore, the two states at the crossing point have different
spins, I& =0.75 and I2=2.00. So conditions (1) and (13)
for a first-order phase transition are satisfied. Condition
(12) is met by the loop in F'(T) at constant co. The con-
clusion is that this phase transition is first order.

This exercise was repeated for other temperatures
below 0.4 MeV to determine how the critical frequency
co, varies with T. The function co, (T) is the shape transi-
tion line in Fig. 3 which begins at (co, T)=(0,0.4 MeV).
This transition line is first order, except for the point at
(co, T) =(0,0.4 MeV), which marks a second-order transi-
tion. To the left of this solid line are stable oblate states,
and to the right are stable prolate and triaxial states. The
two dashed lines in Fig. 3 mark the limits of the metasta-
ble states. The metastable prolate and triaxial states lie
between the inner dashed line and the solid line. The
metastable oblate states are between the solid line and the
outer dashed line. This metastable oblate region overlaps
with the stable oblate region at T &0.25 MeV and 0.25
MeV & ~ &0.45 MeV. In this overlap region metastable
and stable oblate states coexist at the same (co, T). How-
ever, they are physically distinct states which have
dift'erent spins, where I (stable) ~18 and I(metastable)
~ 12.

The phase diagram of Fig. 3 is expressed in the
temperature-rotational frequency plane. This phase dia-
gram can also be given in the temperature-angular
momentum plane, as in Fig. 5. The primary difference is
that the new oblate region at low T and co is significantly
smaller. This difference can be explained by considering
the moment of inertia

X=[I(I+1)]'i Ice .

If co is small and T=O and the pairing plus quadrupole
interaction is used, then the HFB moment of inertia is
given by the Belyaev cranking formula [10]

2=2 g (uk uk, —uk, uk ), (18)
kk'&0 k k'
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FIG. 4. The free energy in a rotating frame F' versus the ro-
tational frequency co. The temperature is 0.3 MeV. The cross-
ing frequency is co, . The spin is I.

FICx. 5. Phase diagram for ' Sm. The critical temperature
T, versus the spin I. The 0 denotes oblate.
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where ~k ) are the Hartree-Fock single particle orbitals.
For the oblate noncollective phase, the x axis is a symme-
try axis, so that

2.0

1.6 148

where m denotes m . Therefore, the matrix elements of
J in Eq. (18) equal zero if krak'. If k =k', then the uu

factor in Eq. (18) equals zero. Consequently, every term
in the sum (18) vanishes. Therefore J=O for a small ro-
tational frequency about a symmetry axis at zero temper-
ature T. hen Eq. (17) gives I =0 at T=O, even though
niAO. At finite temperature and small oi, 2 is small but
not zero, so that a small spin occurs. This explains why
the new oblate region at low T and co is smaller in the
(I, T) plane than in the (oi, T) plane.

The FTHFBC equation determines how the pair gap 5
varies with temperature and spin. For example, Fig. 6
shows how the proton and neutron pair gaps vary with
spin for T=0. 1 MeV. The proton gap vanishes at I=40,
and the neutron gap vanishes at I = 16. The shape transi-
tions affect the pair gaps. For most nuclei the slope
d b, IdI is zero at I =0. However, Fig. 6 has d b, IdI nega-
tive at small I because of the shape transition from oblate
to triaxial at I=0.3. The proton gap increases at I =18
because of the transition from triaxial to oblate. Figure 7
shows how the proton gap depends on the temperature
for I=24. The proton gap disappears at the critical tem-
perature T, =0.69 MeV.
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FIG. 7. The proton pair gap h~ versus the temperature T for
' 'Sm. The spin is 24.

The shape fluctuations sometimes obscure the shape tran-
sitions predicted by mean-field theories.

This section considers the effect of shape fluctuations
on electric quadrupole moments. The intrinsic quadru-
pole moments with respect to the rotation axis are [11]

QIi=, ZeR P sin(y —30'),3
(5~)'"

3

(10~)'"ZeR Pcos(y —30') .

(22)

(23)

For an asymmetric rotor with large angular momentum,
the static electric quadrupole moment is

III. STATISTICAL SHAPE FLUCTUATIONS

The FTHFBC equation determines the equilibrium
shape for each combination of temperature and angular
momentum. This is the shape which minimizes the free
energy

Q=Qo

and the B (E2) value is [12]

B (E2,I~I+2)= (Q2)
5

16~

(24)

(25)

F(P, y;I, T)=E—TS .

Since a nucleus is a small system, there are significant sta-
tistical fluctuations of the shape around the equilibrium
value. These fluctuations generate the shape probability
distribution

For oblate noncollective rotation y = —60' and the
B (E2) value is zero. Equations (24) and (25) are general-
ly not valid at small spins. Nevertheless QIi and (Q2)
remain useful as measures of the intrinsic shape even at
low spins. For given temperature and spin, the FTHFBC
equilibrium shape (P, y) defines the HFB values of Q and

P(P, y;I, T) o-exp[ F(P,y;I, T)/T—] . (21)
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FIG. 6. The proton pair gap 4~ and the neutron pair gap 6„
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FIG. 8. The intrinsic quadrupole moment with respect to the
rotation axis Qo versus the temperature T for ' Sm. The spin is
0.
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FIG. 11. The static electric quadrupole moment Q versus the
temperature T for ' Sm. The spin is 24.

B(E2) via Eqs. (22) —(25). When the shape fluctuations
are included, then the static electric quadrupole moment
acquires the average value

fQ(P, y)P(P, y;I, T)dr
Q(I, T)=(Q)=, (26)fp(p, y;I, T)dr

where the metric

dr=P ~sin3y~dPdy .

There is a similar equation for the average B (E2) value.
Figures 8 and 9 give Qo and (Q2) versus the tempera-

ture for spin zero. The FTHFB equilibrium shape is
spherical (p=O) for temperatures below T„=0.40 MeV
and above T,2=0.91 MeV, and it is prolate (y=O') for
the intermediate temperatures T„&T & T„. Conse-
quently the HFB values for Q Ii and ( Q 2 ) are nonzero
only for T„&T & T,2. In contrast, when shape fluctua-
tions are included, the averages (Qo) and ((Qz) ) are
nonzero for all positive temperatures. So the shape tran-
sitions at T„and T,2 predicted by the mean-field theory
are obscured by the fluctuations. However, there are still
residual signs of the transitions in the equilibrium shape
at T„and T,2. Observe that (Qo ) has larger values in

the temperature interval T„&T & T„ than at other tem-
peratures. Similarly ((Qz) ) increases more rapidly at
Tc 1 '

Figure 10 gives the B (E2) value versus the tempera-
ture for spin 24. The FTHFB equilibrium state is oblate
noncollective rotation (y = —60') for temperatures below
T„=0.20 MeV and above T,z=0.87 MeV, and it is tri-
axial collective rotation for intermediate temperatures
T

&
& T & T 2. In contrast, when shape fluctuations are

included, the average B (E2) value is nonzero for all posi-
tive temperatures. This makes it more difBcult to see the
shape transitions at T„and T,2 predicted by the mean-
field theory. Nevertheless, the average B (E2) value has a
more rapid increase in the interval T, 1 & T & T,2, which is
a residual signal of the transitions in the equilibrium
shape at T„and T,2.

Figure 11 gives the static quadrupole moment Q versus
the temperature for spin 24. The HFB value of Q does
not provide direct evidence for the shape transitions at
T„and T,2. This is primarily because oblate noncollec-
tive rotation and prolate collective rotation both yield
negative static quadrupole moments. When shape fluc-
tuations are included, one obtains an average static mo-
ment which is not substantially different from the HFB
static moment.

IV. CONCLUSIONS
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FIG. 10. The B(E2) value versus the temperature T for
Sm. The spin is 24.

Previous FTHFBC and Landau mean-field calculations
predicted that hot rotating nuclei have phase diagrams
which contain only one shape transition line in the
temperature-spin plane. The question addressed in this
article is whether some nuclei have more than one shape
transition line. This FTHFBC calculation for ' Sm
gives a phase diagram with three shape transition lines.
The oblate noncollective phase occurs in a new region at
low temperatures and low rotational frequencies. This
oblate phase occurs because the pairing interaction dom-
inates over the quadrupole interaction at low T and co.

Raising T or co weakens the effectiveness of the pairing
interaction more than it weakens the quadrupole interac-
tion. This causes a transition from the oblate noncollec-
tive phase to the prolate and triaxial collective phase.
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The effect of statistical shape fluctuations on static
quadrupole moments and 8 (E2) values was calculated.
These fluctuations smooth out the new shape transitions
and make it difficult to detect their presence.
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