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Hypertriton calculation with meson-theoretical nucleon-nucleon and hyperon-nucleon interactions
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Faddeev equations for the coupled A1VX and XXX systems are solved precisely for meson-theoretica1
nucleon-nucleon and hyperon-nucleon interactions. In this force model the hypertriton is not bound.
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I. INTRODUCTION

The hypertriton (AH) is the bound nuclear system of
lowest mass including one hyperon Y (A or X). It is, ob-
viously, the first system in which to test YÃ forces includ-
ing the interesting A-X conversion. In a formalism keep-
ing only a A and nucleons, that conversion induces a
AXiV three-body force; in a formalism where both A and
X degrees of freedom are kept, one handles a coupled
channel problem between the AXN and XXX systems,
which incorporates that three-body force but also leads to
a modification of the YX force due to the presence of a
second nucleon, called the dispersive effect. We shall
treat the hypertriton in the coupled channel form.

The hypertriton has been studied by many authors
over the years, even including heavier systems to better
constrain the YN forces. Variational techniques [1,2] ex-
plored ranges and strengths for repulsive and attractive
pieces of local parametrizations of the YX forces, includ-
ing spin dependencies and even three-body force effects
[2]; separable forces have been handled in various Fad-
deev calculations with increasing complexities in their
dynamical assumptions: spin-dependent forces without
tensor forces [3—5]; inclusion of tensor forces in the NN
sector [6] as well as in the YN sector [7,8], and the al-
lowance for A-X conversion [5,7—9]. Some of those po-
tential parameterizations were chosen ad hoc, some oth-
ers were chosen to mimic properties of meson-theoretical
forces. Also, the Faddeev equations have been solved for
local forces [10], not using any separable approximation.
The resulting binding energy effects were quite
diversified, reAecting the many ad hoc assumptions about
the forces. Clearly, better and more experimental data on
the YX systems are needed to reduce the great spread in
the model force assumptions. Though the many binding
energy results cannot be considered to lead to definite
conclusions, general qualitative features of all these stud-
ies remain valuable.

On the other hand, the theoretical insights into
meson-induced forces have developed over the years
[11,12] and it now appears worthwhile to test the result-
ing YX interaction in the hypertriton. We shall use the
very recent Julich hyperon-nucleon interaction in a one
boson exchange (OBE) potential parametrization [13]
combined with various realistic XX interactions. To the
best of our knowledge, this is the first time that this

meson-theoretical interaction has been used in a hypertri-
ton calculation.

It will not be the aiIn of the present study to adjust
force parameters such that the hypertriton binding ener-

gy reproduces an experiment, but we shall take the YX
forces as they are predicted by theory [13] in conjunction
with the few YX data. The agreement or disagreement of
theoretical and experimental hypertriton binding energies
will then tell us whether the present day meson-
theoretical (energy independent) baryon-baryon forces
are adequate to describe that system or whether they pos-
sibly should be modified. In the second case, one has to,
of course, keep in mind that, on top of the AXN three-
body force combined with the dispersive effect, which is
induced by the A-X conversion and which we shall take
fully into account, one expects additional three-body
forces [14]. Thus, an adjustment of the YN forces to the
hypertriton might be a doubtful strategy. If, in the near
future, precise four- and five-baryon calculations includ-
ing one hyperon appear, then tests of meson-theoretical
YX forces and the question of additional three-body
forces will be better posed, since larger binding energies
will be involved and two- and three-body forces will be
probed under difFerent conditions.

The formalism of coupled A-X channels in the context
of the Faddeev equations will be displayed in Sec. II.
This is not new and at least some of the equations have
certainly appeared in the literature before (see for in-
stance [5,8]). Nevertheless, since we shall solve the Fad-
deev equations including A-X conversion and the full
complexities of baryon-baryon forces, not relying on se-
parable structures, we find it justified to display the short
derivation leading to the coupled set (2.22) —(2.25) below,
which, to the best of our knowledge, has not been solved
before in that generality. Previous studies, even on the
formal level, have used either the separable nature of the
forces at quite an early state, or, as in [10], did not in-
clude A-X conversion and therefore did not show that set
in this form which we use directly. The technicalities to
handle the set numerically are presented in Sec. II and
our results in Sec. IV. We conclude in Sec. V.

II. FORMALISM

We shall keep both states for the hyperons, A and X,
explicitly. Therefore, the wave function for the hypertri-
ton has two orthogonal parts
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I+ &
= INNA &ANNA+ INN~ &+NNX . (2.1)

After choosing a three-body Hamiltonian, the energy ei-
genvalue equation reads

(NNAIHINNA) e„,
+ (NNA IHINNX )O'NNx=Eq NNA,

(2.2)

q(ij) T X q(k1)1

kl&ij
(2.10)

Thereby the two-body T matrices obey the (matrix)
Lippmann-Schwinger equations

Inserting the decomposition again in the right-hand side
and summing up V; within the pair ij to infinite order
yields the matrix Faddeev equations

(NNXIHINNA) (liNNA

+ &NNrIHINNr &e„„,=Em
1—1J —JJ —7J E H —/JT,"= V;-+ V," T, , ij, kl =12, 13,23 (2.11)

More explicitly, assuming only two-body (transition) po-
tentials this set is in obvious notation

I HO(N)N2A + ~N)N2+ +N(A+ ~N2A1+N)N2A

+(+N(A, N)X+ ~N2AN2X), +N)N2X E+N)N2
(2.3)

p y(13) q(23) (2.12)

Therefore it suffices to regard only two coupled (matrix)
Faddeev equations:

We assume 4 to be antisymmetrized in the two nucleons
numbered by 1 and 2. Then it follows simply from (2.9)
that

0(N1 2~) N(N2+ ~N(X ~N2X)+N)N2X

+( ~N), X,N(A+ ~N2X, N2A)+N)N2A E+N(N2X

We denote the two nucleons as %1and %2. For the kinet-
ic energies HQ we use nonrelativistic forms, which will be
displayed below.

It is useful now to switch to a compact matrix notation

q(12) — T ( 1 p )q(13)1

E —H—0

q(13)— T (y(12) p y(13) )E —H—0

(2.13)

(2.14)

(E —H() )(I(= V%,

where

H()(NNA)

0

0

H0(NNX)

(2.4)

(2.5)

(2.15)

and the free propagator

Each of the two Faddeev amplitudes has two components

q(ij)
'

A
q(ij )—

q(ij)

VN) N~

0

0
+

VNl X,Nl A

VN~A, N~X

VN
1
A, N

1
X

E =HQ

E H()(NNA)—
1

E H0(NNX )—
GA 0

0 GX

+
VN~X, N~ A NzX (2.16)

and

= V12+ V13+ V23 (2.6) as well as T operators are 2X2 matrices. In case of the
two-nucleon T operator, the Lippmann-Schwinger equa-
tion decouples:

+Nl N~X
(2.7) T12

0

0 t12
X (2.17)

We number the two nucleons by 1 and 2 and the A or X
by 3.

The integral form of that energy eigenvalue problem
(2.4) provides the Faddeev decomposition

with

t 12 V12+ V12GQ t 12
A A A

12 V12+ V1260 12
X X X

(2.18)

(2.19)

with

y@—q(12) +y(13)+ y(23 )

E —H—0

(ij)— V qg
1

E H'1——0

In case of the hyperon-nucleon T operator

13 13

—13 t XA TXXT
13 13

(2.9)
one faces coupled Lippmann-Schwinger equations

(2.20)



2578 K. MIYAGAWA AND W. GLOCKLE

tAX.
13 13

XA XX
t13 t13

13 13

p GX tXA tXX
0 13 13

yAA y AX
13 13

yXA @XX
13 13

yAA yAX G A p13 13 0
+ yXA yXX

13 13

(2.21)

(m&+mr )k —m (k)3+k&)
q =

m +m&+m
(3.2)

where the k's denote the individual momenta. Then the
kinetic energy H0 in the center-of-mass system is

m&+m ~ m&+m +m
2 mtlm 2 m (m)3+m~)

Explicitly the Faddeev equations read

P" '=g t (1 P, —)f" ',
y(12)=gXtX (1 p )y(13)

y(13) g At AA
( q(12) p y(13) )

+gAt AX(q(12) p q(13))

q(13)—g Xt XA(y(12) p y(13) )

+ gXtXX(y(12) p y(13) )

(2.22)

(2.23)

(2.24)

(2.25)

+xtv A O'A"'+(—1 p)2) 4A

tvtvx=g'x '+(1—P ))2g' 'x' .

(2.26)

The two parts of the total wave function in (2.1) are final-
ly given as

+m +m&+m (3.3)

p3= —,
' «1—k2»

2m)vk3 —m„(k, +k2)
q3=

2mN +

(3.4)

(3.5)

P3
0

mN

3 2mN+ mr+ +2mN+m
2 2mNm„

(3.6)

and for a/3y =231

We have to keep the rest masses due to the A-X transi-
tions.

As above, particle 1 and 2 are nucleons and particle 3
is either A or X. Also, we use the convenient "odd man
out" notation. Thus, denoting the hyperon masses by mr
(r =A, X), we get for aPy =312

Obviously, by choosing g(x A) to be antisymmetric in 1 and
2, the total wave function is antisymmetric in the two nu-
cleons, as it should be.

III. TECHNICALITIES

mNk3 —m„k1
P2=

N+mr

(m)v+m„)k2 —m)v(k3+k, )

2mN+ mr

(3.7)

(3.&)

We work in momentum space and in a partial wave
representation. Jacobi momenta for arbitrary masses are

p2 mN+mr q2 2mN+mr2 2

H0= + +2mN +m„
2 m~Pl„2 Pl~( vl)v+ m„)

m kp —mpk
pa=

m +m&
(3.1)

It follows that the free propagators G0' are either

(3.9)

GA, X
0

1

P3E 2mN mA x
mN

q', 2mN+mA,

A, X

(3.10)

or

GA, X
0

E —2mN —mA x—

1

2
p2 mN™ Ax
2 mNmAx

q2 2mN+mA x
2

2 m)v(mA(+mA X)

(3.11)

~p3q3ar ):—)p3q3(ls)j (A, —,
' )I(jI)J(tt„)T) . (3.12)

Here (ls)j denote the orbital angular momentum, total

depending on the choice of Jacobi momenta. Clearly the
first choice is suitable for the Faddeev amplitude g(A'x'

and the second for g(A' x'.

We use now the technique described, for instance, in
[15,16]. If A or X is the "spectator" particle, the partial
wave projected states are

I

spin, and total angular momentum of the 2X subsystem,
while (A, —,

' )I are the orbital angular momentum, spin, and
total angular momentum of the third particle ("specta-
tor") which is either r =A or r =X. The total three-body
angular momentum J is coupled from j and I. Finally, t
and t, are the 2X isospin and the isospin of the hyperon,
respectively, which are coupled to total isospin T. The
brackets denote angular momentum coupling. All possi-
ble values of these quantum numbers coupled to J =

—,
'+



48 HYPERTRITON CALCULATION WITH MESON-THEORETICAL. . . 2579

Ipzqzl3r ):—Ip~qz(ls)j (A, —,
' )I(jI)JI (t„—,' )t—,

' ]T), (3.13)

where the two-body isospin t ( = —,
'

) results from the cou-
I

and T=O of the hypertriton have to be taken into ac-
count in order to have a complete basis. Those basis
states (3.12) are chosen to be antisymmetric under ex-
change of the two nucleons, which are guaranteed by
(
—1)'+'+'= —l. On the other hand, in the case that one

of the nucleons is the spectator, the basis states are

pling of the hyperon isospin tr and the nucleon isospin —,,
which is coupled with the other nucleon isospin —, to the
total isospin T. (t =

—,
' is excluded because of T =0). The

other definitions are obvious, as in (3.12). There is no
symmetry requirement for the two-body subsystem of
those basis states (3.13).

Now we are ready to write down the representation of
the set (2.22) —(2.25) with respect to the basis (3.12) and
(3.13):

1

P3 2mN +mr
2 2mNmr

E —2m —m-r

X &f

"dpi''3'

f "dq3q 3' & p3q3«l t"„
Ip3q 3 a" & & p', q', a"I(1 —I', ~ le", "&

ar 0

5(q3 —q3), 1 2m&+m„
(p3q3a lt",~ Ip3q3a' ') = 5~~.511.5„ ti'~(." p3,p3, E 2m—z™„——

q3q3 2 2mNm,

The two-nucleon t matrix t",2 is clearly diagonal in the spectator quantum numbers; thus

(3.14)

(3.15)

where tI'i&'" is determined by the Lippmann-Schwinger equations (2.18) and (2.19). The permutation operator P, z can be
applied to the left and yields a factor —1. Thus, we are left with the intermediate result

(p, q, arly'„"') = 2

P3E —2m —m-r
mN

2mN +mr
q32 2mNmr

2
' 1 2mN ™" 2 (13)Xg dp3p3 tg'" p3,p3, & —2m~ —m„——

q3 &p3q3a(I')r
I 0, (3.16)

Here a(l') denotes the set of discrete quantum numbers a except for l, which is l' and can change due to the action of
the tensor force. The Faddeev amplitudes P'„' ' are naturally represented by the second type of basis states (3.13), as is
obvious from Eqs. (2.34) and (2.25). This requires the recoupling

with

r 5(p3 n') 5(pz —m—)
(p3q3a'r lp~q~Pr &

= f «G" t3(q3qpx)—1
(3.17)

m' =Qq z +p3q 3 +2p3q~ q3x

7T Q q3 +p2q2 +2p2q2q3X2 2 2

where

(3.18)

(3.19)

m
P3= g ~ P2=

mN mr
(3.20)

The geometrical quantity G & is given in the Appendix. Its evaluation follows the same lines as in I16]. Thus, we end
up with

&p3q3arIN', "'&= 2

P3E —2m —m—N r
mN

1 2mN+m„
2 2mNmr

I

2mN +mr

Xy f "dq, q', f '
dx

I'

(rrq&Pr Ig'„' ')
XgG (t')p(q3qzx)

P
(3.21)
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for r =A and X.
The remaining two equations (2.24) and (2.25) are treated analogously:

& p2q2&r l
0',"'& = 1

p2 mz+m2

E 2m~ m
2 m~m„

q2 2m~+ m

2 mN(mN+m„)

q2 ™z+2

x g f dp2pz t(rt's" p2p2 E 2mN

X (p 2q2P(i')r'l p';"' I'i2&—',"'
& . (3.22)

Again one has P(l')=P except for I'. Now the hyperon-nucleon t matrix obeys the coupled set (2.21), which allows
transitions for A to X, I to l', and s to s', but conserves total angular momentum j and total isospin t. Again, on the
right-hand side recoupling coefficients are required. For the first term

r &(P2 —v') &(P3 —v)
(pzq2P'r lp3q3ar ) =f dxGi3 (q2q3x)—1

(3.23)

with

+q3+p2'q2+ p2q2q3x

v="& q2+p3q3+2p3q2q32 2 2

where p2 and p3 are given in (3.20). The quantity Gt3 is related to G"
t3 in (3.17) as

Gt3 (q2q3x) = G "p (q, q2x ) .

For the second term

&(P2 P ) O(P2 P)
(pzq2P'r lP, 2 p2q2 13r ) = f dx Gt3t3(q2q2'x)—1 P2 P2

with

p +q 2 +p2'q 2 +2p2'q 2 q 2 x

p +q2+p2q2 +2p2q2q2x

and 6&.& is given in the Appendix. Thus, we arrive at

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

1

p2 m&+m,2

E 2m~ mq
2 m~m„

2m~+ m

2 mN(mN+m„)

X y f'dxf "dq, q,'
2m~ ™r

t/'„t. , „.(p2v', E —2mN —m„—
2 m~i m~+ m~ )

(vq, ar'l y'„I")
XQGt3(t ) (q2q3x)

a V

—y f' dx f dq"q,"'
Isrl's'r' p2p &

E 2mN ™r 2m~+ m„
2 mN(mN+ m„)

&vq2'&"'l0,""
&

X Q 6
p& t )t3

~ ( q 2 q 2 x )
pl I p

(3.30)
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TABLE I. Examples of three-body channel quantum num-
bers a and P which are defined in the basis states (3.12) and
(3.13), respectively. For both the ANN and XNN systems (r =A
and r =X), a and P are specified. The quantum numbers
(I,s,j, t) describe the two-body subsystem, while (A, ,I) belong to
the spectator. In the case of a(P), the two-body subsystem con-
sists of 2N (hyperon +W) and the spectator is a hyperon (X).
For other quantum numbers, see (3.12) and (3.13). The most im-
portant combinations of (l, s,j,A, ,I, t) coupled to J = 2+ and
T=0 of the hypertriton are given. The upper half of the table
shows quantum numbers a for r =A and r =X, and the lower
half shows quantum numbers P for r =A and r =X.

Channel

0
2

0
2

0

6, 1 1

712
8, 13

9, 14

10,15

This coupled set (3.21) and (3.30) is solved numerically
using the techniques as described in [16] and [17]. The
use of orthonormalized states, which we obtain by apply-
ing the kernel of the coupled set to some starting initial
state (in principal, arbitrary) is an especially e%cient
method [18] and has already been used very successfully,
even for much larger systems [19].Typical numbers for
the discretized momenta p and q are Np =40 and
Nq =23. Sufhcient cutoff momenta are p,„=60 fm
and q,„=10fm '. The x integrations can be handled
by about eight points. The set (3.21) and (3.30) is solved
under the assumption that the two-body forces act only
up to certain total two-body angular momenta j,„ for
the NN and YN subsystems. This leads to corresponding
numbers of channel quantum numbers a and P, as
exemplified in Table I.

IV. RKSULTS

Before we embarked into the many channel calcula-
tions, we tested our code using the Stepien-Rudzka and
Wycech separable potential [20], and repeated the calcu-
lations by Afnan and Gibson [8). The potential parame-
ters are given in Tables III and IV (4% deuteron d state)
of Ref. [8]. Our result for an 11 channel calculation is
2.55 MeV, which agrees sufBciently well with 2.5447
MeV determined by Afnan [21]. Now we turn to the
meson-theoretical Jiilich hyperon-nucleon interaction
model. We use an energy independent OBE parametriza-
tion (model A), as described in [13]. Between the baryons
N, A, and X, the mesons m., EC, p, co, E, and the fictitious
o. are thereby exchanged. Strict isospin conservation has
been assumed. This model 2 describes the very few ex-
perimental YN data. But, of course, those few data are,

by far, not sufhcient to fix the force m.odel well. The situ-
ation is not comparable to the NN case, where there is
only room left for fine tuning. For the NN potential we
take the OBE Bonn B potential [22]. In order to explore
the sensitivity to different choices of the NN force we also
use the Reid [23] and Paris [24] potentials.

We can write the coupled set (3.21) and (3.30) of homo-
geneous integral equations formally as

rf(E)$ =L (E)p (4.1)

with rl(E)=1. Introducing the eigenvalue g(E) allows
one to study the coupled set at energies E in the neigh-
borhood of the bound-state energy eigenvalue. The non-
linear energy eigenvalue problem is thus converted into a
linear one for g. In case a bound state exists one has to
search for its energy E below the Ad threshold at —2.225
MeV, such that 71(E)=1. We have chosen the energy to
be zero at the ANN threshold. The calculations have
been performed using m&=938. 919 MeV, m&=1115.6
MeV, mz = 1193.1 MeV, and A'c = 197.3271 MeV fm.
The eigenvalue g has been determined at three energies
below the Ad threshold. The simplest dynamical assump-
tion is to allow the YN and NN forces to act only in the
states 'So and S&- Di ~ As shown in Table I this leads to
a 15-channel calculation. This table includes the most
important orbital angular momenta for the two relative
motions, and the spin-isospin states for the various two-
body subsystems and the corresponding third particle. In
the Faddeev language this characterizes the Faddeev
components and therefore the wave function. Of course,
this most simple calculation includes the tensor forces in
the YN and NN systems and the A-X transitions. We
display in Fig. 1 the q eigenvalue for three energies below
the Ad threshold. For the convenience of possible later
studies we also give g at E = —2.40 MeV in Table II.
That calculation is based on the Bonn B potential, which
provides the highest triton binding energy for all realistic
NN potentials known (with the exception of the Bonn A
version, which has an even smaller d state probability,
but whose c,

&
values are definitely too small at high ener-

gies). Clearly the eigenvalues g are smaller than 1 and
therefore the system is not bound. Now we include more
force components, both for YN and NN: 30 channels forj,„=1, 54 channels for j,„=2, 78 channels forj,„=3,and 102 channels for j,„=4. The correspond-
ing modifications for g are displayed in Fig. 1 and at
E = —2.40 MeV in Table II. Though we find a slight in-
crease in g, and obviously a perfect convergence, that hy-
pertriton is not bound. We repeated those studies for the
Paris potential and for the Reid potential, as shown in
Table II. In no case is the hypertriton bound. The eigen-
values for the three potentials are similar in agreement
with the expectation that the loosely bound hypertriton
sees mainly the tails of the deuteron. Those tails are very
similar for the three potentials as described by the asymp-
totic s-wave normalization 2„ the asymptotic d/s ratio,
and, of course, the deuteron binding energy. Those three
numbers are A, =0.8860, 0.8869, 0.87758; d/s =0.0264,
0.02608, 0.026223; and Ed =2.22461, 2.2249, 2.22462
for Bonn B, Paris, and Reid, respectively. The d state
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-2 —1.9

FIG. 1. Eigenvalues g(E) of the Faddeev kernel defined in
(4.1) which are calculated at three energies below the Ad thresh-
old. The energy E is set to zero at the ANN threshold. The ar-
row indicates the Ad threshold. For the NN system, the Bonn B
potential is used. The results for the various truncations of the
YN and NN force components are shown: 15 channels ('So and
S]- DI) 30 channels (j,„=1), and 54 channels (j,„=2). The

results of the 78 channel (j,„=3)and 102 channel (j,„=4)
calculations are at almost the same point as the 54 channel cal-
culation. The lines are only to guide the eyes. The dashed line is
extrapolated artificially above the ANN threshold. The dash-
dotted line indicates the result of a 54 channel calculation in
which the So component of the Julich YN potential is multi-
plied by a phenomenological enhancement factor 1.04.

probabilities of the deuteron Pd are, however, quite
different, namely 4.99%%uo, 5.77%, and 6.47% for Bonn B,
Paris, and Reid, respectively. Also, it has been reported
[1,25] that the deuteron gets significantly distorted in the
hypertriton, an effect which will depend on the properties
of the NN force. A detailed study of that effect, now with
realistic NN forces, will be deferred to a forthcoming arti-
cle. In any case, from [1, 25] and the different Pd's one
might expect at least a slight dependence on the shorter
range parts of the deuteron. We can see this by extrapo-
lating the energy dependence of the eigenvalue g for the
three potentials, as shown in the example of Fig. 1 and
described below, and one finds a lack of binding energy
which differs by about 30 keV for the three potentials.
Thus, as in the triton, the smaller the Pd, the stronger the
binding. Also, it has been reported [8] that there is a visi-
ble interplay of the tensor forces for the YN and NN sys-
tems, which should be checked by using different NN
force models. FinaHy, as has been pointed out in several
places [14,2], in case a three-body potential will be in-
cluded on top of two-body potentials, the interplay of
both potentials can depend quite sensitively on the type
of forces chosen, in other words, on the correlations in-
duced by the two-body forces at short distances. This is a
well-known fact in three- and four-nucleon physics. For
a recent study see [26]. The inclusion of three-body
forces makes sense quantitatively only, if they are con-
sistent with the accompanying two-body forces. The
three-body forces used in our present study, induced by

TABLE II. Eigenvalues q of the Faddeev kernel defined in
Eq. (4.1) which are calculated at 2.40 MeV below the ANN
threshold for the Bonn B, Paris, and Reid soft core (RSC) NN
potentials and the meson-exchange Jiilich YN interaction (mod-
el A). The results for the various truncations of the YN and NN
force components are given: 15 channels ('S&, SI-'DI), 30
channels (j,„=1), 54 channels (j,„=2), 78 channels
(j,„=3 ), and 102 channels (j,„=4).

Channels Bonn B Paris RSC

15
30
54
78

102

0.850
0.845
0.867
0.868
0.869

0.837
0.834
0.856
0.858
0.859

0.830
0.827
0.847

A-X conversion, are consistent with the two-body forces
in the case of Bonn B, since they are generated by the
same sort of meson-exchange mechanism. In the case of
the Paris or Reid potential, this cannot be claimed and
the differences seen in Table II might be caused (at least
partially) by the mismatch of three- and two-body forces.

As a very rough estimate for the lack of binding energy
one may extrapolate the energy dependence of g to ener-
gies above the Ad threshold, as indicated by the dashed
line in Fig. 1, and determine the energy at which g
crosses the value 1. We read off a "lack of binding ener-
gy" of about 0.4 MeV. A better feeling for the amount of
missing attraction in the YN interaction can be obtained
from purely phenomenological enhancement factors for
different force components required to lead to a bound
hypertriton. We find that g depends quite sensitively on
the 'So strength and not so much on the S,- D,
strength. Known from many previous studies on the hy-
pertriton (see for instance [6]), this is based on the simple
fact that the averaged AN interaction is —,

' singlet and
only —, triplet and therefore primarily sensitive to the YN
singlet interaction. An increase by about 4% (multiplica-
tion of the 'So YN potential by 1.04) leads to a bound hy-
pertriton at about the correct binding energy. (The ex-
perimental A separation energy is 0. 13+0.05 MeV. ) This
is shown for the example of the Bonn B potential in Fig.
1 by the dash-dotted line. That curve corresponds to a 54
channel calculation. For the three NN potentials taken
together with the 4% increased 'So YN potential we find
precisely the following binding energies: —2.36, —2.32,
and —2.29 MeV for Bonn B, Paris, and Reid, respective-
ly. Again, we see roughly the 30 keV difference, already
mentioned above. It should be noted, however, that such
an increase of the 'So YN potential strength leads to a to-
tal AN cross section, which is too large in comparison to
the existing data. Therefore, a possible modification of
the YN interaction has to be more subtle, and it remains
to be seen whether the physical potential parameters
(cutoff values, coupling constants, cr-meson parameters)
can be modified in such a manner that a bound hypertri-
ton results. Such a study is in preparation.

Furthermore, we would like to add a remark on three-
body force effects, which are included in our coupled
channel calculation. The (intermediate) transitions from
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FIG. 2. Eigenvalues q(E) using the Reid XX potential. Oth-
erwise the notation of Fig. 1 holds. The dashed line connects q
values, which demonstrate a three-body force effect for a 15
channel calculation (see text).

The meson-theoretical Julich hyperon-nucleon interac-
tion in the form of the OBE parametrization, together
with various realistic XX interactions, turns out not to
bind the hypertriton. We included the A-X transitions in
a coupled channel procedure and carried the partial wave
expansion to convergence. It appears that the hyperon-
nucleon potential is not yet settled enough due to the lack
of data. These results cannot be too much of a surprise.
We feel that there is still room for modifying the meson-
theoretical YX force, without spoiling the agreement to
the very few YX data and without coming into convict
with well established theoretical ingredients. Such a study
and its application to the hypertriton is in preparation, in
collaboration with the Julich group. Finally, studying by
the same rigorous techniques the four-body and possibly
the five-body systems will magnify the effects and will be
a very rewarding test for the dynamical assumptions.
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A to X induces a three-body force, together with a disper-
sive effect if one works in the AX% space only. The
dispersive effect is a modification of the YN force due to
the presence of the second nucleon. It simply arises due
to the change in the intermediate hyperon-nucleon propa-
gator, which in the hypertriton includes the kinetic ener-

gy of the second nucleon. Both effects, the proper three-
body force effect and dispersive effect, should be called
three-body force effects. They have been studied before
quite intensively in the context of more simplified models
[14,5,27,2,4,8,9]. We can see roughly the proper three-
body force effect by turning off the t&A &z matrix ele-
ments of the two-body t matrix in the three-body system,
keeping them, however, in the two-body system. This ex-
cludes XXN states between consecutive t operations, and
one stays therefore always in the space of AN% states.
The result is that, for instance, at E = —2.40 MeV the ei-
genvalue for a 15 channel calculation g=0. 830 drops to
g=0. 765, which is shown by the dashed line in Fig. 2.
(The Reid NX potential is used. ) Thus, that three-body
force effect is attractive and quite significant. Not taking
it into account would require that the AX forces would
have to be even more enhanced and would have to simu-
late quite different and interesting physics.

From the study presented one has to expect that the
experimental binding energy of the hypertriton as a small
number will depend very sensitively on the interplay of
NX and YN forces and that three-body force effects in-
duced by A-X conversion will be very significant. Addi-
tional proper three-body forces [14] may also play a role,
but should be consistent to the baryon-baryon-force mod-
el.
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APPENDIX

The full expressions of the quantities G" &(q3q2x) and
G&&(q2qz'x) which appear in the recoupling coefficients
(3.17) and (3.27), respectively, are given. First, we men-
tion details for the basis states (3.12) and (3.13). In the
states (3.12)

~p3q3ar) = ~p3q3(lsj)(I,,')I(jI)J(tt„)—T)

the spin —,
' of nucleon 1 is coupled with the spin —,

' of nu-
cleon 2 to the 2N total spin s in this order. It is just the
same with the isospin —,

' of nucleon 1, the isospin —,
' of nu-

cleon 2, and the 2N total isospin t. Also in the other type
of basis states (3.13)

~p2q2pr )—:~p2q2(ls)j (1,—,
' )I(jI)J[(t„,' )t ,' ]T)——

the spin —,
' of the hyperon numbered by 3 is coupled with

the spin —,
' of nucleon 1 to the two-body spin s in this or-

der.
Then the quantity G".

& is

lb+lb l +l kl lbl lbG",t3(q'qx )= ,'QP„(x) g g—q'' 'q ' 'g, &" ' "h,&,
k l'+l'=l'l +l =l

a b a b

kl lbl Ibwhere Pk(x) are the Legendre polynominals. The purely geometrical factor g .
&

' is given as



2584 K. MIYAGAWA AND W. GLOCKLE 48

x QEs
LS

s' l s j' l s j
I' . , A, —,

' I
I. S J I. S J

(2l'+ 1)! (21 + 1)!
(2l,' )!(2lb )! (2l, )!(2lb )!

(A2)

l,' lb l' ls A,
' f' lb

L f' 0 0 0 A,

I, l l, A, f f' l,' L k l,' f k lb f'
L f 0 0 0 f lb k 0 0 0 0 0 0

where p'= —,', p =m„/(m~+ m„), and x =2x + 1. The isospin part h,
& is

1 —t„
h p=( —1) "+2t„' )

. 2

1

2

0

1

2 '=1 . (A3)

Next, the quantity G&& is

k I'+I'=I I +lb =I
(A4)

where the geometrical
p'=m„/(mz+m„). The

2

htrp=( —1) "2 '
I

. 2

kl Ibl Ibfactor g&)
' ' ' is given by the same expression as in (A2), with the expectation of

isospin recoupling coefficients h&& are
1

2 = —1. (A5)
2 .

I+s+1+t„
Notice that the expression (A4) differs from (Al) in an additional phase factor ( —1) ", which comes from the ex-
change of the hyperon and the nucleon 2 in the state P, z ~pzqzPr ).
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