
PHYSICAL REVIEW C VOLUME 48, NUMBER 6

ARTICLES

DECEMBER 1993

Momentum and coordinate space three-nucleon potentials

S. A. Coon*
Physics Department, New Mexico State University, Ias Cruces, New Mexico 88008

M. T. Pena~'~
CEBAF, Theory Group, 12000 Jejjerson Ave , N. ewport News, Virginia 28606

(Received 1 June 1993)

In this paper we give explicit formulas in momentum and coordinate space for the three-nucleon
potentials due to p and vr meson exchange, derived from ofI'-mass-shell meson-nucleon scattering
amplitudes which are constrained by the symmetries of +CD and by the experimental data. Those
potentials have already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The potentials are decomposed
in a way that separates the contributions of difTerent physical mechanisms involved in the meson-
nucleon amplitudes. The same type of decomposition is presented for the vr-m Tucson-Melbourne
force: the A isobar, the chiral symmetry breaking, and the nucleon pair terms are isolated.

PACS number(s): 21.30.+y, 21.45.+v

I. INTRODUCTION

Three-nucleon potentials based on 7r and p meson ex-
change have been derived from di8'erent underlying ap-
proaches. The recent papers which include p exchange
[1—4] tend to extend to the rho meson whichever ap-
proach had been already used for the two-pion exchange
potential considered earlier (because of its longer range).
The early history of the vr-vr three-nucleon potential was
categorized in this way and summarized in [5]. Those
potentials built upon the excitation of the nucleon into
a L isobar were the first and contain the least physical
input. These 4 mediated potentials have recently been
extended to include p exchange in Refs. [1,4]. Soon af-
ter the first L mediated m-vr potential was constructed,
it was realized that chiral symmetry (breaking) must be
included in the potential. That is, the theoretical vrN am-
plitudes must satisfy well-defined chiral (so called "soft
pion") limits [6]. One way to accomplish this begins with
the use of (effective) Lagrangians with pions, nucleons,
deltas, etc. , which satisfy approximate chiral symmetry
[7—9]. This approach has recently been extended to in-
clude p mesons, so that the assumed Lagrangians must
also obey gauge invariance [2]. This approach has built
in the correct symmetries but the couplings must be esti-
mated and, furthermore, the results have not really been
tested against the pion-nucleon data [10].

Alternatively, the approach used in the Tucson-
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Melbourne (TM) family of forces is based upon applying
the Ward identities of current algebra to axial-vector nu-
cleon scattering. The Ward identities are saturated with
nucleon and A(1230) poles. Then employing PCAC (par-
tial conservation of the axial-vector current), one can de-
rive expressions for the on-mass-shell pion-nucleon scat-
tering amplitudes which map out satisfactorily the empir-
ical coefFicients of the Hohler subthreshold crossing sym-
rnetric expansion based on dispersion relations [11].The
off-mass-shell extrapolation (needed for the exchange of
virtual, spacelike pions in a nuclear force diagram) of the
most important amplitude E+ can be written in a form
which depends on measured on-shell amplitudes only.
This rewriting of the amplitude to bury all reference to
models of the A exploits a convenient correspondence be-
tween the structure of the terms corresponding to spon-
taneously broken chiral symmetry and the structure of
the model 4 term. However, both the field theoretic [12]
and dispersion theoretic [13] A contributions to I"+ re-
sult in an equally excellent description of the data [14],
so the early emphasis on maximum model independence
can perhaps be relaxed. This will be done in the present
paper.

Extending this current algebra-PCAC program to the
Compton-like processes [15] p + N ~ A& + K, where p
is a vector photon and A~ is an axial-vector current, pro-
vides, through vector dominance, a solid basis for mod-
eling a p-m exchange three-nucleon force. Again the am-
plitude is obtained via Ward identities but this time ex-
ploiting in addition the gauge condition on the ofF-shell
electroproduction amplitude. Unfortunately, there is no
empirical subthreshold expansion of the invariant am-
plitudes of pion photo- and electroproduction. Instead,
the amplitudes are tested against the soft pion theorems
and (on-shell) against multipoles at threshold or slightly
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above threshold. The amplitude which forms the basis
of the TM p-vr force ineets these tests [15], including the
challenge of the recently measured neutral pion photo-
production [16].

The so-called Tucson-Melbourne (TM) family of three-
nucleon forces, in the particular case of p-vr and p-p ex-
change, has never been displayed in a form suitable for
applications in general nuclear systems (in particular, we
have in mind few-nucleon systems). In the work of Ref.
[3] those potentials were applied to nuclear matter where
certain approximations could be carried out. As a result,
Ref. [3] failed to provide a simultaneously complete and
convenient explicit form of the TM p-vr and p-p forces,
ready for immediate use in any calculation, as we propose
to present in this paper.

Nevertheless, the nuclear matter calculation of Ref. [3]
was indicative of the role of the p meson in screening the
m exchange effect. The same efFect had already been seen
in the nuclear matter calculation of Ref. [1] where a three-
nucleon force constructed only &om NN-NL transition
potentials was used.

I'urthermore, calculations of the triton bound state
with inclusion of the TM 2' exchange potential yield
overbinding and strong dependence on the vrNN form
factor regulator mass [17,18]. This reflects the presence
in the vr-m TM force of a term (usually denoted in the
published literature as the "c" term [5]) in part due to
chiral symmetry breaking and responsible for the rapid
variation of the lower-order terms in the vr-N amplitude,
as demanded by the soft pion theorems. It appears then
natural to extend the calculations on the three-nucleon
system to the inclusion of the TM p-~ and p-p forces
hoping to cancel part of the vr-m force effect, in a similar
fashion to what happens in the two-nucleon interactions.
Moreover, since the leading terms of the expansions of
the pN ~ ~N and pN —+ pN amplitudes do not have to
build in a drastic variation in the low energy region, they
do not have such short-range singularities. In this spirit,
the Sendai group included a p-m force in a triton calcula-
tion [19] which, however, due to lack of a consistent body
of information in the literature, mixes several terms and
parameter prescriptions of more than one origin.

Another motivation tg have p-vr and p-p forces de-
rived &om the same principles used in the construction
of the TM m-vr force is to have available a more complete
two-meson-exchange three-nucleon interaction, which is
needed to draw conclusions about the role played by the
delta-isobar in the force. Only after introducing the con-
sistent full family of forces in the Hamiltonian, does it
become legitimate to make comparisons with the Han-
nover (two-body NN ~ NA transition potential) ap-
proach and judge how much effect comes &om true 6-
isobar propagation. A first study of this question, re-

stricted however to the use of the TM m-7r force, ap-
peared most recently in the literature [20]. Another one
is in preparation where the p-m and p-p TM force in-
put is needed [21,22]. In the context of these recent de-
velopments in few-body calculations, the present paper
supplies the necessary information to address the one-
decade unsolved problem of comparing and constrasting
the Hannover with the Tucson-Melbourne approaches.

Finally, and aiming beyond the triton bound-state
problem, the stage of nowadays powerful calculations
allows the information of this paper to be applied
to (1) the present concentrated effort on experimental
searches for direct evidence of three-nucleon forces in the
three-nucleon continuum guided by the three nucleon-
scattering calculations of the Bochum group [23] and (2)
the n particle wave-function calculation [24], under the
strong indications from existing calculations [25—28] that
the three-nucleon force efFects, when fully considered, will
be relevant in bringing the binding energy closer to its
experimental value.

II. THE m-m POTENTIALS

In this section we carry out the program of splitting
the ~-m force into the contributions relative to the dif-
ferent physical processes underlying the vrN amplitude.
Historically the current algebra amplitudes were given in
a form which emphasized their model independent char-
acter. That was achieved by not disentangling explicitly
the 4 contribution &om the chiral symmetry breaking
terms. Such an attitude was justified by allowing a more
direct relation to empirical quantities, where that sepa-
ration could not be seen. The process of undoing this
way of displaying the force is implicit in the set of initial
papers [5,29]. Here we merely summarize the procedure
by showing the main steps.

The 7r-vr force was derived &om a nonrelativistic re-
duction of the Feynman diagram of Fig. 1. We begin
by defining the T matrix for the three-nucleon process
depicted in Fig. 1 in terms of the S matrix:

where Ny = Q. (l/2E&) ~2(2m) ~~2 (the index j label-
ing all the particles in the final state and ny being the
number of fermions) and N; (defined similarly) are the
normalization factors necessary to make Ty; the covariant
T matrix. Then the matrix elements of the momentum
space three-nucleon potential R' are given by the nonrel-
ativistic reduction of the three body 5 —1:

(»p2&s IS —1lpip»s) ~~ = —~(2~)~(Ko —
&2o —I so

—»o —»o —»o) (»p2ps I ~I»p»s), (2)

so that

(pi, p2, psl~lpi, p2, ps) = (2~)'~'(pi + p~ + ps —pi —p2 —ps)(pip2pslT~~lpip2p. ) . (3)
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body) nN scattering amplitude n~(q) + N(p) + 7r'(q') +
N(p') written in terms of invariant amplitudes F and B
which have the the most general isospin decomposition:

B+
4m )

+ze'~ E
4m '

)
[A 4] u(p s) .

(4)

FIG. 1. Diagram for the m-vr force.

We note that this choice for the normalization corre-
sponds to the use of Dirac spinors normalized as uu
= 1 and to momentum eigenstates such that (p~p')
(2m) h(p —p'). Most momentum space three-body codes
normalize the momentum space eigenstates to the Dirac
delta function without the factor of (2~); this point is
discussed rather extensively in Ref. [29]. Our choice of
convention does not affect the coordinate space formulas
as it is (correctly) absorbed into the Fourier transform,
such that (r~r') = b(r —r'). The full three-nucleon poten-
tial TV is the sum of three cyclic terms TVq, R 2, and R'3
where Ws has particle 3 in the middle (active nucleon)
as in Fig. 1. The other two terms are obtained by cyclic
permutation of the indices of the incoming nucleons.

Now we turn our attention to the intermediate state
depicted as a blob in Fig. l. It is described by the (two-

I

F+ (v, t, q, q' ) = f (v, t, q, q' )
fm

+C+ (v, t, q, q' ), (5)

where cr is the pion-nucleon o term and f 93 MeV.
The double divergence q' M+ . q/f of the background
axial vector amplitude denoted by C+ contains the higher
order 4 isobar contribution. This amplitude is given by
[i3,5]

To proceed, one removes the nucleon pole from the four
oB'-shell crossing symmetric invariants F+(v, t, q, q'2)
and B+(v, t, q2, q'2). Given the four background srN am-
plitudes (obtained after the nucleon pole is removed)
F+ (v, t, q2, q'2) and B+(v, t, q, q' ) where v = (q + q') .
(p ~ p') /(4m), t = (q —q') 2, one performs an expansion
in the pion four momenta q, q'. In this expansion, after
terms of the order of (p/m) (p and m stand for the
pion and the nucleon mass, respectively) or higher are
dropped, only the (t channel) isospin even nonspin flip
F+ and the isospin odd spin-Hip B amplitudes survive
[5,29]. We will concentrate then on those two. The non-
spin Hip even current algebra amplitude is

C+(v, t, q, q' ) = [(M —m) (M + m)' + (q' + q") (2M + m)

—q' q(2M —m+ (q + q' )(M+ m) ')], (6)

C+(v, t, q, q' ) = cgv + c2q. q'+ O(q ) . (7)

On the other hand, the assumed form of the function f,
&q'+q" ) f t

f(v, t, q, q' ) = (1 —P) —1 +P ——1
)

(adapted [5,14] for mN scattering from the SU(3) gener-

where g* 1.82p, is the 7tLN coupling, M = 8.825@
the 4 mass, m = 6.726p, the nucleon mass, v~ = (M—
m —q' . q)/2m, n(q' . q) = (E —q' q) [(M + m)
q' q] + (p,

2 —q' - q)[(M+ m)E —2(p, + q' q)] with
E = (M —m2 + p2)/2M the center-of-mass energy of
the pion at the L resonance. Here we have taken p
1/2(q + q' ) which reduces to p2 when both pions are
on mass shell.

In general, C+ must have the simple form [13,5]

alization of the Weinberg low energy expansion for urer

scattering [30]) is such that F+ does satisfy the soft pion
theorems

F+(0, 0, 0, 0) = ——,, (9)

E+(0, p, , 0, p ) = F+ (0, p, p, 0) = 0, (io)

F+(0, 2p, , p, p ) = —+O(q ).

In contrast to meson-meson scattering, P in (8) is not
determined by soft-meson theorems (because the nucleon
four momenta cannot be taken soft) and is to be ex-
tracted Rom experiment. The most recent data analy-

where C+ vanishes identically, and [with the aid of
Eq. (7)] the constraint at the (on-shell and measurable)
Cheng-Dashen point:
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sis from the Karlsruhe group [11] makes this extraction
slightly dependent on t: P varies &om 0.46 (for t = 0) to
0.52 (for t = p ). This situation is different from the sit-
uation of older data [5,13,31] which was consistent with
an almost constant P value of 0.4 in the same range of t.

Neglecting the v2 and qo terms in (5) because they are
of the order of (p/m) or higher, the F+ amplitude can
be expanded in the three-vector pion momenta q and q'
as follows:

&~2P
F+(O, t, q, q') = — 2+ ~ 2

—c2 iq q'

(q
2 + qI2)

The last equation explicitly exhibits the separation be-
tween the (higher order in q ) A contribution con-
tained in the c2 term alone —and the remaining chiral
symmetry breaking terms. In Ref. [5] and subsequent dis-
cussions of the TM m 7r for-ce, the c2 and P constants in
the coefBcient of the q q' term were eliminated in favor
of the on-shell (measurable) quantity F+(0, p, , p, p, )

2

F+(o, p' p' p') =(1 —&) 2+ (13)

According to Eq. (12), the 4 term alone does not bring
a structure in momentum space dift'erent from the chi-
ral symmetry breaking term in q . q'. To isolate the A
contribution one simply evaluates the constant c2, which,
from (7) (and taking both pions on-mass-shell), can be
done by evaluating the derivative of (6) with respect to
q. q', at t = 2p (q q' = 0) and v = 0. The result
is c2 ———1.54@ . This coeKcient coincides with twice
C+ evaluated at t = p2 (q . q' = p /2) and v = 0 and
compares well with the value —1.58@,obtained for the
total contribution from C+ at t = 0 (q . q' = p2) and
v = 0. The two last comparisons give an idea of the
negligible importance of the O(q ) terms in Eq. (7).

From the 7t N amplitude in conjunction with the vrNN
vertices and pion propagators, one constructs the three-
body T~R, which according to Eq. (3) defines the three-
body force represented in Fig. 1 [5,29]. The constant
c2 contributes then to the overall coefficient "b" that has
been used in nuclear calculations (b = b + b~, b~ = c2)

~ ~p
2
—2+"= ——

2f.' p' p' i f.'
—F+(0,p, p, p )

)
(14)

The value b = —2.58@,obtained from early experimen-
tal results [31]F+(0,p, p, , p, ) = —0.16p, and cr/f
1.13@ implies a chiral symmetry breaking coeKcient
b = b —c2 ———1.04@ . If the updated set of Karlsruhe
data is taken instead, F+(0,p, p, p, ) = —0.28p and
o/f = 1.03p, , then b = —2.62p and consequently
b = —1.08@ . The comparison between the numbers
b~ and b exhibits that the A terms do not dominate the
amplitude and any description of the oA'-sheH p-wave vrN
amplitude which does not obey chiral symmetry breaking
[32] is insufficient.

The isolation of the L from the broken chiral sym-
metry terms being complete, we have to turn to the
backward-propagating nucleon Born term that is added
to the background amplitude, to generate the three-body
force. That term is calculated by subtracting the forward
time-ordered propagating nucleon term from the covari-
ant nucleon poles. Such a subtraction was done in Refs.
[5,29]. Dropping again terms that are of the order of
(p/m), the backward-propagating nucleon term F& ("Z
graph") is

(15)

where g is the pseudoscalar vrNN coupling constant.
Since E& shows the same momentum dependence as the
third term in Eq. (12), the constant c, = —g /4m
—0.15p contributes, together with the coeKcient of
the last term of Eq. (12), to the overall constant "c"
(c = c + c ) that multiplies the q2 + q'2 term, in the
definition of the TM 7t-vr three-body force:

CT

C =
p'f-' 4ms f+ FvrNN(0) (16)

We note that the term proportional to F'~~(0) did not
appear before in Eq. (12). This term nevertheless is in-
serted in c because both the backward-propagating part
of the nucleon pole E& and the L couple with the pion
with a (assumed the same) form factor F ~~(q ) which
is defined as g(q ) = gF ~~(q ). The chiral breaking u
term is a c number [14] and has no intrinsic q depen-
dence [although it is multiplied by f (v, t, q, q' )]. It is
convenient, if not necessary, however, since part of the
amplitude is due to E& and C+, to multiply the Anal
amplitude by form factors, dependent upon q and q' .
Consequently, the constant term (o/f, labeled "a" in
the literature) attains a spurious momentum dependence
from the form factors. The term proportional to F' ~~(0)
in Eq. (16) is inserted to correct for this spurious mo-
mentum dependence to the orders in q and q' kept in
the amplitude.

The value c = c + c, = 1.0p that has been used
before changes slightly to c = 0.91@,with the new de-
termination of 0/f2 From these .numbers one concludes
that in the nonspin-flip amplitude the chiral symmetry
breaking term dominates the backward-propagating nu-
cleon term.

The spin-flip current algebra amplitude B is simpler
to decompose into the physical contributions. This am-
plitude is [13,5]

B (v, t, q', q") = [Fiv (t) + F2~ (t)]2.'
2

2m2
+D—

( t 2 12) (17)

where the function D contains the higher order L con-
tribution and is given in Refs. [5,13,29]. After the non-
relativistic reduction of the vrNT matrix is done, in the
process of doing the p/m expansion to derive the three-
body-force, we note that B is multiplied by [g, If"] which
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and only the constant term (Do ——4.87' ) in the expan-
sion of D is kept. Taking into account the multiplica-
tive factor —1/2m Rom Eq. (4), the 6 contributes with
a coefficient d~ = Do/2m = —0.36p, . The remaining
contribution, due to the two first terms of Eq. (17), is
d = —0.24p . The sum d4 ——d + d~ ———0.60@
defines the d4 parameter that one encounters in the pub-
lished equations for the force.

Finally the Bz contribution from the backward-
propagating nucleon pole ("Z graph") is given to zeroth
order [5] by

(+g P
2m (m j

(19)

Traditionally then these disparate contributions have
been added into a total "d" coefIicient, d = d4 + d,
where d4 has already been defined and d, = B&/2m-
singles out the pair term contribution. The constant d
has the same value as the pair term coefIicient d = c, =
—0.15@ of the F+ amplitude. The total "d" term co-
eKcient becomes d = d + d~ + d = —0.75p . Again
the numbers indicate that the pairing term is small rela-
tive to the background amplitude and although the 4 is
important, it is only half of the "d" coefIicient.

Now that we have undone the usual representation of
the Tucson-Melbourne vr-vr three-body force, let us close
by recalling the form of the amplitude mN —+ vrN,

z+ &T+q'-M (20)

which best expresses the degree of model dependence of
the amplitudes. Here Tz stands for the "Z-graph" con-
tribution& Tz = T~ —TppB, where T~ is the covariant
Born term and TFpB is the forward propagating (posi-
tive energy) nucleon term. The model independent AT
is added to the full Born term T~ so that to leading order
T~+b,T satisfies the low energy theorems (Ward identity
constraints) exemplified by (9) and (10), and q' M q is a
background term for which (isobar) models are necessary.
The grouping of the isobar contributions into LT+q M.q
in Eq. (20) enforces the largest degree of model indepen-
dence of the ofF-shell amplitude. This is because to lowest

is already of second order in p, /m, so we need only keep
the first term in the expansion of (17). Therefore, the
electromagnetic isovector form factors are approximated
by a constant value

(
+iv + +2v = 1.+ 3.70 + 0

(m

TABLE I. Expansion coeKcients of the AN amplitude used
in the ~-~ force. Units of charged pion masses. Tz is the
"Z-graph" contribution, AT is the model independent part
needed to satisfy the low energy theorems, q' M q is the
background term for which (isobar) models are necessary.

pa
p b

p c
IJ

Tz
0
0

-0.15
-0.15

AT
+1.03
-1.08

+1.06
-0.24

I
q . Mz. q

0
-1.54

0
-0.36

Total
+1.03
-2.62

+0.91
-0.75

order (all) isobar contributions are included in AT, and
q M q is constructed to give contributions only in higher
order terms. These general statements apply equally to
the p-vr and the p-p amplitudes discussed later on.

What is unique about the m N F+ amplitude is that
the background term q' . M . q of Eq. (7) has just the
right structure to combine nicely with the momentum
dependence (8) of AT so that the entire off-shell ampli-
tude can be obtained directly from data without a spe-
cific reference to the 4 contributions to either LT or
to q ~ M q. This point, while giving us greater con-
fidence in the three-body force derivation, has lead to
considerable frustration among those interested in three-
nucleon forces. Hence the deconstruction above which is
summarized in Table I. The table organizes vertically the
coefIicients according to the type of momentum and spin-
isospin structure which ultimately they multiply. Within
each row, the decomposition according to (20), is pro-
vided. The model independent terms labeled LT in the
table arise &om current algebra but are of two difFerent
types. In the first three rows (labeled a, b, c) they con-
tain the pion-nucleon sigma term, an axial current-axial
charge commutator which is a measure of chiral sym-
metry breaking. The last row (labeled d and originated
by B ) contains a AT which is also a current-current
commutator. However in this case the algebra is closed
by the electromagnetic form factor of the nucleon and
has nothing to do with chiral symmetry breaking. As
we shall see in subsequent sections, the chiral symmetry
breaking contributions to the LT of the pN —+ AN am-
plitude are quite small and, of course, absent altogether
in the pN + pN amplitude obtained via vector domi-
nance from pN —+ p¹

The specific momentum and spin-isospin structure of
the final three-nucleon force is provided in momentum
space in Ref. [29] and coordinate space in Ref. [33]. For
completeness, it is repeated here:

(P1P2P31~-(3)IPip2P3) = (»)' ',',' „, ,&.'NN (q ')&.'NN(q") (~i q) (~2 q')q2+ p2 q'2+ p2 4m2

x ((ri r2) a+ bq q'+ c(q + q' )j + (iT3 ' Ti x T2)d(io3 q x q') j .
(21)
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The strength constants of the 27r exchange three-body
force are given in units of the charged pion mass (139.6
MeV). The potentials, however, use an isospin formalism
instead of charge states so it would seem natural to em-
ploy the SU(2) average pion mass (2m + +m 0)j3 = 138
MeV in the propagators and form factors.

III. THE p-vr POTENTIALS

The working definition of the p-7r three-nucleon poten-
tial is, as in the vr-a case, Eq. (3) written in Sec. II.
The three-body transition matrix T~~ pictured in Fig.
2 contains now two difFerent meson propagators together
with the mNN and the pNN vertices from the external
nucleonic lines of the diagram, in conjunction with the
pN —+ aN intermediate amplitude. The amplitude is
modeled through vector dominance from the amplitude
pN —+ 7rN which is obtained by the method of Ward
identities [15]. Those identities are (single and double)
divergence conditions that determine the terms of the
amplitude that are constant or linear in the exchanged
momentum. Of the several spin-isospin components of
the p-7r three-nucleon potential only a few appear to be
numerically significant. They correspond to the leading
terms of the low energy expansion of pN ~ xN trun-
cated to terms of second order, as was the 7r-7r force,
in powers of the exchanged three-momenta between the
nucleons. The (t-channel) isotopic spin decomposition of
the amplitude is the same as that of the AN amplitude of
Eq. (4) because the p is an isotriplet as well as the pion.
Again, the expansion can be rearranged into the form of
Eq. (20) for an optimal display of its degree of model in-
dependence. The isospin even model-independent terms
T& + AT+ nearly cancel to leading order because AT+
goes to the soft pion (q ~ 0) p analog Fubini-Furlan-
Rosetti limit of pion photoproduction [15,16]. The total
model independent term in the k ~ 0, q —+ 0 limit takes
on the form 1 —mg~(0)/(f g) which is of the order of
few percent (Goldberger- Treiman discrepancy [34]). This
cancellation is lessened away from the expansion point at
zero, but there the model-dependent (and A dominated)
background term q' M - q appears to totally dominate
the pN ~ 7rN amplitude. Therefore, in the isospin even
amplitude, only the L contribution, obtained in a dis-
persive sense, is developed into a p-vr potential in this
paper. The situation is just the opposite for the model-
independent terms T& + AT of the isospin odd am-
plitude. Here the low energy theorem of pion photo-
production is due to Kroll and Ruderman and is simply
the "Z-graph" T& in pseudoscalar coupling [15]. This
leading order (constant) term from the p-analog Kroll-
Ruderman theorem as q ~ 0, k —+ 0 should then form
the basis of an important part of the p-7r potential. It
must be supplemented, however, by the largest p-vr po-

FIG. 2. Diagrams for the vr-p force.

tential terms arising from the 4-dominated isospin odd
background. Potential terms other than the above from
AT+, including the chiral symmetry breaking terms, ap-
pear to be much smaller than these just mentioned and
will be neglected in the following (for details see Ref. [3]).

We now pick out the terms with one p and one 7r from
Fig. 2(a) which are believed to dominate the expansion
and write them in detail. Those terms correspond to the
"Z-graph" and the seemingly largest terms from the L
isobar. The contribution from Fig. 2(b) follows from 2(a)
with the substitutions 1 ++ 2 and k ++ —g where k is the
three-momentum of the rho and q the three-momentum
of the pion. (In what follows the notation is slightly
different from that of Ref. [3] but closer to existing codes
and practices. )

A. "Kroll-Ruderman" p-m potential

The analogue of the Kroll-Ruderman term of pion pho-
toproduction forms the basis of a specific local contri-
bution to the overall p-m exchange three-body potential
that presents a first-order dependence on the exchanged
mesons momentum k and q. It is consequently a con-
tribution that is expected to compete strongly with the
delta-isobar terms that are quadratic in the momentum.

This contribution comes from the t-channel isospin odd
term in the pN ~ VrN amplitude. When the pseu-
doscalar coupling for the aNN vertex is assumed, this
term is the backward-propagating nucleon Born term. In
a form that evidences sequentially from left to right the
role of the four vertices involved in the diagram, we can
write for its momentum space representation

(P1~P2~P3l~p (3&)lP1 P2~P3) =+(2&) 2 2 2 2 &~] ~2 && 1-s CT] x k- o'scr2 q
1 I I (Pl + P2 + Ps Pl P2 P3)

(22)
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Prom this form it is evident that the coupling of the p
meson to the inner "blob" is proportional to Fip(k ),
in accordance with the low energy theorem of Kroll and
Ruderman. Also, to obtain Eq. (22) we kept the dis-
tinction between the Dirac and the Pauli couplings of
the p meson to the outer nucleon, which appears as the
sum Fip(k ) + +pF2p(k ) . Subsequently, we retain in
all equations one form factor Fip(k ) for the Dirac cou-
pling of the rho to the nucleon and another form factor
F2p(k ) for the Pauli coupling. The latter is multiplied

by the on-mass-shell K~ which is taken to have the Hohler
and Peitarinen value 6.6 [35]. Separate form factors are
not usual in nuclear physics, where it is common to take
the same form for both the charge and the magnetic mo-

mentum form factors. Our choice has the advantage of
being general and flexible to any type of (independent)
behavior of the two form factors that experiment may
eventually reveal. The price we have to pay is the intro-
duction of a new parameter relative to F2p(k2).

The coupling of the pion to the nucleon is described by
a form factor E ~~. Other form factors are introduced as
needed. All form factors are normalized to unity at the
meson on-mass-shell momentum. As for the structure,
o2 . q is the nonrelativistic coupling of the vr to one of
the outer nucleon lines, while o q x k comes &om the p
coupling to the other external nucleon. In coordinate
space the "Kroll-Ruderman" potential becomes

(ri r2 1 3Iw (3A) Iri, r2, rs) = 8 (x', —xi)h (x2 —x2)b (xs —xs)
pmpx
2 sg gpT1 ~ T2 x Ts(cri x V'1 os)024x 216ms

X [ZDDp(zl3) + KpZPDp(zls)]Zp(Z23) (23)

4~ dsq H p(q2)
p, (2vr)' q'+ p2

(24)

where x;~ = x; —x~ and V', —:V';s = 8/Bz;2

d/dz, s, (j = 1, 2, 3 specifies a given Cartesian com-

ponent and i = 1, 2 a given nucleon).
The generalized form factor H(q 2) in each dimension-

less coordinate space function Z„(z;~) is typically a prod-
uct of monopole form factors: one for the vertex to the
outer nucleon and a second is included in the coupling of
the meson to the "blob" of Fig. 2. The coordinate space
"propagator" has the generic form

where

H p(q') = (25)A2 + q2 Ap2+ q2

For the exchanged pion H p(q ) = F2&&(q ) so that
A = Ap and the n, P indices are suppressed. The p
propagator with subscript "DDp" also indicates A

Ap with values from the Dirac coupling [Fip(k ) ] and
the transformation p ~ m~ but the subscript "PDp"
indicates A g Ap with values arising from the product
of F2p(k ) and Fip(k ) and P -+ mp.

With these form factors and carrying out the indicated
derivatives, the "Kroll-Ruderman" potential becomes

(ri, r2, rsIW (3A)Iri, r2, rs) = g g b (xi —xi)8 (x2 —x2)8 (xs —xs)4n 216ms

XT1 T2 X T3(CJ1 X Z13 %3)&2 Z23[X1DD(zls) + KpXipD(Z13)]Xi (Z23), (26)

where Xi(x) = Z'(x). Explicitly for A = Ap = A

and for A g Ap

A2
X,"(x) = —p, G(pz) — G(AZ) ——

p 2 (p
(27)

where

/Apl' ~A' —@21
Xi.P(z) = —V G(S*) —

I I, 2 G(Anz) +
I I A, A2 G(A-z)

& & ) ~A. —A,') ( p ) (A2 —Ap2)

e*t' 1l
G(*) =

I
1+ —I.*)

(28)

(29)

Note that the generic Xi (z) = Z (x) has dimensions of mass and the spin operators are coupled with unit radial
vectors. Then the overall constant has units of MeV and the magnitude is 28.72 MeV. It should be clear that for rho
exchange the generic Xip(z) is written as p, —+ mp. This finishes the explicit display of the "Kroll-Ruderman" term.
It is expected to be the most important of the model-independent parts of the rho-pi potential.



S. A. COON AND M. T. PENA

B. pm' potential with A intermediate state

1. Iaoapin even amp/itude

Of the eight spin functions the potential decomposes into, the terms proportional to 1 + K~ are believed to be
the largest because vp has the value 6.6 on the rho-mass-shell. Those terms which are (t-channel) isospin even are
generated from the spin functions o q qcr2 q and crq .kcr2 q. They take the momentum space form [see Eq. (2.19a)
of Ref. [3]]:

(pi, p2, p'. l~,+.~(») I», », p. ) = —(2~)'s ~'(p& + pz + ps —pi —p2 —ps)
q +p k +m

xTy ' 72 (k ko'] ' qcTz q —k. qcrq . kcr2 q)

, gp[F~p(&') + KpF2p(k') ]GNI, FpN~(I ')
48ms '

x — gF NN (q ) [mg*F Nz (q ) ] (3O)

where M is the mass of the delta and m is the nucleon mass. The two terms can be combined as (o'j x k) (q x k)cr2 q
which manifests the pe% coupling to "outer" nucleon 1 and the ~AN coupling to "outer" nucleon 2. On the other
hand, we note that the second term of Eq. (30) has the same structure (crq . kcr2 qk . q) as the "b" term of the 2m

exchange potential.
In coordinate space the potential becomes

(r~, r2, rs~W+ &(3A)~rq, r2, rs) = h (x~ —xq)b (x2 —xz)h (xs —xs) ggp GM (mg')
4m 248Mm4 M —m

XTl . T2[Vy Vy&y . V20'2 . V2 —Vy V20'y . V)O 2 Vz]
x [ZDGp(x13) + KpZPGp(x13)]ZN&p(x23) ) (31)

where subscripts "DGp" refer to the generalized form factor arising from the product of F~p(kz) and the pAN form
factor FpN~(k ), "PGp" to the analogous productF2p(k , ) FpN~(k ), and "Nb p,

" to F NN(q )F N~(q ).
The second derivatives of Eq. (31) are most conveniently carried out with the aid of the following basic identity:

0;O, Z(x) = -'[8;,Y2(x) + (3x;x, —b,, )X2(x)]

(x; = x, ~x, ~) where Xz(x) = Z" (x) —1/xZ'(x), and Y2(x) = Z" (x) + 2/xZ'(x). Explicitly they are

X2P(x) = p, F(px) — F(Ax) ———Ax
~

—1 G(Ax)
P )

e-P* A' e-&- 1 A t'A2
Y," x) = p' —, ———Ax

px ps Ax 2 p qp' ) Ax) Ax (33)

Because

-*f
I
1+ —+-

x X2

for the seldom needed A = A~ = A we can make the identifications X"(x) = ~2T(x) and Y&(x) —&&Y(x)
fami»ar from the Argonne-Urbana two-nucleon force expressions [33]. In the present case, however, A g A~ for each
propagator and we must employ the longer forms

X," p(x) = p' F(px) —.. . F(Apx)ps (A2 —Ap2)

—p~ As (A2

px ps A2 —A2) A xc Pg P

As f Ap —p')

A: «p —S'l e-A-.

p IA —A) A

Before displaying the final potential in r space let us introduce the "tilde" notation for the combination 1 + e~
which appears so often. For example, the p propagator in (31) which has two form factors in the pNN coupling and
only one in the pe%, takes on the compact form

ZNGp(x) —ZDGp(x) + +pZPGp(x) ~ (36)
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Since differentiation is a linear operator we can write, for example,

2(*) = 2~a(*) = 2Da( ) + ~ 2~a(*)

to shorten the following equations.
Using Eq. (32) the first term of Eq. (31) (from o 1 . qcr2 qk k) becomes

(ri, r2, rslW+ n(3A)lri, r2, r3)1 ——8 (x.', —xi)b (x2 —x2)h (x3 —x3)

X
(4~)248Mm4 ' M —m

CT'y CT2 —
p PX'rl ' &2 Y2 (Z13)Y2 (Z23)3

+ Y2 (»3)X2 (Z23) .S»(Z23) —,
3 (38)

The second term of Eq. (31) has the same structure (o'1 kcr2 qk q) as the "b" term of the 2x exchange potential
and is

(ri, r2, rslw+&(3A)]ri, r2, r3)2 ——8 (xi —xi)8 (x2 —x2)b (x3 x3)
+@mp 5M —m

X
(4~) 48Mm M —mggp GM mg*

x 7 1 ' ~2 g [cr1 ' cr 2 Y2 (Z 13)Y2 (Z 23 )

+S12(Z13)X2 (Z13)Y2 (Z23) + S12(Z23)Y2 (Z13)X2 (Z23)

+ (9cri xiso2 . x23xi3 . x23 —Si2(xi3) —S12(z23)
—cri cr2)X2~(z13)Xg(z23)] .

The sum of these two terms agrees with the corresponding equation (2.23) of [3]. Identification of Eq. (39) with the
coordinate space "b" term as given in Ref. [33] can be made by remembering that S12(x13) = 3o 1 z13cr2 'z13 cri ' c72
and noting that [Y2(x) —X2(x)]/3 = Z'(z)/z. The overall coordinate space constant [including the powers of meson
masses in the definitions of Xg(z) and Y2 (x)] for both terms (38) and (39) is 524.28 MeV. This number is huge
because the pNA coupling constant GM is (rather artificially) defined on the p mass shell but is in reality obtained
from the experimental GM (k = 0) = 14.7. That is, GM (k = 0) = GM F~iv~(k2 = 0). Solving for GM, one

finds GM ——GM (k2 = 0) &, , where A = 5.8p, and m~ = 5.6p. The product G~ F~~c, (k ) is employed in the
P

subthreshold region for spacelike momentum transfer, where it is much smaller.

2. Isospin odd amplitude

Those largest terms which are (t-channel) isospin odd multiply the spin functions of Eqs. (2.13f) and (2.23g) in
Ref. [3]: m Ks ——icri x k crscr2 q and m Kq = icri x k. qcr3. ko2 q. The particular combination containing the
delta-nucleon mass difference takes the form m K7 —q. km K6 ——icrq x k qcr3 kcr2 q —q kio q x k o3cr2. q. This
can be rewritten as io'1 x k [(os x q) x k]o 2 . q to show the spin structure connected with the several vertices most
clearly, or finally as —i[o3.q x ko 1 kcr2. q —oi x cr3 q(k) o'2. q]. The third form is convenient for the coordinate
space manipulations and has appeared before from nonrelativistic transition potential derivations [1,4]. We will quote
the momentum space potential with the last form of the spin functions

(» p. psl&,.&(»)l» p2 p3) = -(2~)I I I 3~ (Pl + P2 + P3 Pi P2 P3)

xi[cr3 q x kcri ko'2 q —cri x cr3 q(k) cr2 ~ q]

3 g~(F1~(k') + &~F2~(k') ]GM,Fp~r (k')

x — gF ~~(q2)[mg*F ~c, (q2)]. (40)

One can readily see that the first term has the same spin structure cr3 . q x ka'i . kcr2 q as the "d" term of the 2'
exchange potential. In coordinate space the isospin odd potential becomes
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(rl, r2, r3lWp +(3A)lri, r2, rs) = b (xl —xl)b (»2 —»2)b (»3 »3)

pm' M+ m
ggp G~ (mg*)T1. T2 X Ts

4& 296Mm4 M m
X [0 2 V2 X Vl&l . Vlo 2 . V2 —&1 X 0'3 V2V1 Vi+2 V2]
X [ZDGp(Z13) + +pZPGp(Z13)]ZN&y, (z23) ~ (41)

After the derivatives are carried out, the first term of Eq. (41), analogous to the "d" term of the 2n exchange
potential, takes the form

(r'„r'„rslW ~(3A)lri, r2, rs)1 ——8'(»', —xl)b (x', —»2)h'(xs —xs), ggp GM (mg*)
41r 296Mm4 M —m

x Tl ' T2 x T3 (cT3 z23 x zls) (%1 z13) (K2 ' z23)X2 (zls)X2 (z22)

+(wl z13)(M2 zls x cT3) X2 (z13)X1 (z23)
X23

+(o 2 ' z23) (~3 ' z23 x ~1) Xl (z13)X2 (z22)
X13

1 p 1 p+(W2 Wl X CF3) Xl (Z13) Xi (Z23)
+13 X23

(42)

The second term of Eq. (41) does not have a counterpart in the 2m exchange potential but instead takes the simple
form

(rl, r2, rslw &(3A)lrl, r2, rs)2 ——b (xl —xl)b (»2 —»2)b (xs —xs) ggp GM (mg*)
4~ 296Mm4 'M —m

xT1 ' T2 x T 3 l +(o 2 ' z23) (cF3 o 1 x z23) Y2 (z13)X2 (z23)

+(W2 tT3 X O'1) Y2 (Z13)Xl (Z23)
1 p P

X23
(43)

The overall numerical constant in both (42) and (43) is
109 MeV, about a factor of 5 smaller than that of the
isospin even term (for this reason this term was not in-
cluded in the nuclear matter calculation of Ref. [3]; in
a trinucleon calculation however it may turn out to be
meaningful). A model three-nucleon potential derived
kom the transition potential approach would have an
exact ratio of 4:1 for the isospin even versus isospin odd
contributions.

One local term proportional to i[cr 1 x k .o scr2 q]k k
remains &om the expansion of the covariant expression
for the amplitude with an intermediate L. The overall
numerical constant is about a factor of 10 smaller than
that of (42) and (43) so we will not consider it further.
It requires a third derivative of S or first derivative of Y2
in coordinate space anyway, which eventually suppresses
it further.

The total rho-pi contribution is obtained from
W (3A) by first adding the contribution from

(3B) = [W (3A): 1 e+ 2] and then taking cyclic
permutations of three "active" nucleons.

IV. THE p-p POTENTIALS

of Fig. 3 involves the pN —+ pN amplitude, together
with two p meson propagators and pe% vertices. The
calculation of the latter amplitude is obtained by gen-
eralizing the Thirring theorem for Compton scattering
to the case of p mesons, through the current-field iden-
tity, under the assumption of vector dominance. The
longitudinal character of the p has however to be con-

The definition of Eq. (3) is once more the starting
point. The three-body T~R for the Feynman diagram FIG. 3. Diagram for the p-p force.
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sidered as well as the fact that it carries isospin. To
do that one proceeds as did Beg [36] in his analysis of
Compton scattering of isovector photons. The dominant
term in the background (free of the nucleon pole term)
Beg amplitude arises from the t channel p pole (3p cou-
pling) and &om a direct ppNN contact (seagull) term.
Those contributions constitute the AT part of Eq. (20).
The 4 term, contributing to the quadratic terms in the
momenta, cannot be fixed by any divergence condition
and is introduced, explicitly separated Rom the remain-
ing amplitude, in a model-dependent way. The following
subsections will turn to the detailed form of all these
components of the pN amplitude of difFerent (physical)
origin.

A. Model-independent potentials from low-energy
theorems

The apparent dominant terms in the model-
independent parts of this potential are odd in the t-
channel isospin. The term displayed below results &om
the coupling of transverse (T) p mesons to the low-energy
amplitude constructed by Beg and has been labeled the
"Beg" potential in the previous nuclear matter calcula-
tions. Similarly to the Kroll-Ruderman term, the "Beg"
term is linear in each of the meson momentum, and it
turns out to be important when comparing to the 4 iso-
bar contributions. In momentum space it takes the form

s ~'(pi + p2 + ps —pi —p2 —ps)(p»p»psl~zz Ip»p2, ps) =+(2~) '(» 2
7.i. ~2 x v3

x[(cubi x k) (cr2 x k') x mrs] Fi (0) I
1+ F2v(0) &

4

x s [Fi~(k ) + ~~F2~(k ) ][Fi~(k' ) + K~F2&, (k' ) ],

where F2v(0) = trav = 3.7 is the isovector anomalous
moment of the nucleon. While the term independent
of F2v in Fi (0)(1 + &; ~ol ) arises from the backward-

1p

propagating nucleon pole term (or pair term), the term in
F2v(0) represents a direct ppNN contact (seagull) term
in the underlying pN m pN amplitude. In principal the
second term should be distinguished by a form factor of a
different character [Fi~(k —k') ] than the previous terms
of the p7r potential. In practice, this component of the pp
potential has so far been calculated in the approximation
of no form factors on the "active" nucleon and therefore
includes only the pNN form factor at the external nucle-
ons. This approximation is similar to the approximation
made in the "d" term of the 2' force. In that case, only

A2
Z,'„—:X,",(x) = —p, G(px) — G(Ax)

p
where the added subscript 1 is meant to remind us about
the single. form factor, the coordinate space potential be-
comes

(45)

the constant term of the current commutator expansion
Fiv(&) + F2v(&) = Fiv(o) + F2v(0) + &(q ) = 1+ 3.70
was retained [see Eq. (18)].

In coordinate space the "Beg" potential has a slightly
different form &om the previous ones displayed, because
the propagator Z of Eq. (24) has only a single monopole
in the I function of Eq. (25) and (as in the "Kroll-
Ruderman" term) only the first derivative is needed.
With the definitions

(ri r2 r31~3TTI»»») = ~'(xi —xi)~'(x2 —x2)~'(xs —xs)

F, (0)&x gF 0 1+(4~)'64m' ' F,' (0) )
XTi T2 x 7 s(O'i x V i) ~ (&72 x V2) X 0's

x Zi (xis) Zi, (x2s) (46)

or

(—) s 4 2 ~ F2v(0) ~(ri, r2, r3I&3TT, Iri, r2, rs) =
2 sg~F~~(0) 1 +

xbs(x', —xi)h (x', —x2)&'(xs —xs)

XTy ~ &2 X T3 ~] X X/3 ~ 02 X Z23 X (J3

xXii(xi3)X„( 2s) . (47)
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B. pp potential with dL intermediate st at e

3
GMp2m(M + m)

(48)

for the low-moment um transfer pe% vertex. The two

There are two local potentials which correspond to the
coupling of transverse p mesons to the 4 pole. We intro-
duce the notation

local terms correspond to t-channel isospin even and odd
amplitudes. We take them up in turn.

Isospi n even amplitude

The form of the term generated by this amplitude
agrees with the form arising &om a transition potential
construction and reads in momentum space

I I I ~+ (Pl + P2 + P3 Pl P2 P3)
(P1~P2iP31 pp~~P1~P»P3) = —( ) (g2

xT1 T2 [(o.l x k) x k] . [(o 2 x k') x k']
2 p2

[Flp (k') + &pF2p (k')]Fp~~ (k')

x [F, (k' ) + r. E2 (k' )]Fplv~ (k' ) (49)

which, after Fourier transform becomes

(rl1 r2 r3 ~~pp~ ~rl ) r2 $ r3) ~ (Xl Xl) ~ (X2 X2) (X3 X3)

(4~) 18(M —m)
x[((o'1 x Vl) x Vl) ((o2 x V2) x V2)]
X [ZDGp (&13) + KpZPGp (+13)][ZDGp (&23) + KpZPGp (T23)]. (50)

Carrying out the derivatives one obtains the final form of the matrix element in r space

(rl, r2, r3~W &~rl, r2, r3) = b (xl —xl)8 (x2 —x2)8 (x3 —x3)

(4vr) 2 18(M —m) 9

X ([4o'1 ' o 2+g (+13)1 2 (+23) 2S12 (+13)~2 (2 13)+g (+23)

2S12 (&23)12 (2:13)~2(&23)] + [9&13 ' &23o 1 ' &13o2 ' &23

—S12 (%13) —
S12 (+23) —o 1 o'2]X2 (+13)~2 (2 23))-

2. Isospi n odd amplitude

There is a relative factor of —1/4 between isospin odd and isospin even in this case. This is precisely the relative
factor obtained &om a transition potential approach. The reason why the TM force ends up with the same factor
lies in the fact that the k . C k contributions to the pN ~ pN amplitude were mo deled by 4 poles in the 8 and u
channels:

(Pll P21 P3 lapp~ IPl ~ P» P3) + (2'7r)
k 2 2 gp 2

3 (Pl +P2+P3 Pl P2 P3)

x 4T1 ' T2 x T3 o'3 ' [((o'1 x k) x k) x ((o2 x k') x k')]
2/2

x [E,p(k ) + ~pF2p (k ) ]Fp~~ (k )

x [Elp (k' ) + vpF2p(k' ) ]Fp~~ (k' ) .

In coordinate space the equation becomes

(r'„r'„3~M ~ ~rl, r2, r3) = b (x', —x, )h (x2 —x2) b (x3 —x3)
+m2 g2 AM~ ]

xo'3 ' [((o'1 x Vl) x Vl) x ((o2 x V2) x V2)]
X [ZDGp (&13) + &pZPGp (&13)][ZDGp (&23) + K pZPGp(Z23)]

(52)
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We note that the expansion of the vector products in the previous equation leads to four terms, one of which is
identical to the "d" term of the a-vr force.

After carrying out the derivatives we find finally

(ri, r2, r3~W &~ri, r2, r3) = h (xi —xi)b (x2 —x2)8 (x3 —x3)
+m2 g2A2M 1

(4vr)2 18(M —m) 4

(o 2 cr3 X o'1)Y2 (X13)Y2 (X23)

—(cr3

—(O 1

—(O3

—(O3

o 1 x X23)o 2 ' X23Y2 (X13)X2(X23)

Xi~(Z23)
rr2 x o3)Y2~(Z13)

X23
' X13 x o 2)(crl X13)X2 (X13)Y2 (X23)

Xf(Z13) -
po, x o, )

' Y2'(Z23) !

X13

(rr3 X23 X X13)(o 1 ~ X13)(&2 ~ X23)X2 (X13)X2(X23)

z»)(cr2. z» x cr3) X2(z»)X, (Z23)
X23

Xf (Z13) —
pX23) (o 1 o 3 X X23) X2 (X23)

&13

Xf (Z13) Xf (Z23) ~

CF1 X 03
&13 +23

where the four last terms correspond to the "d" term
analog piece of the matrix element.

V. RECOMMENDED CHOICE OF
PARAMETERS

The set of numerical values for the coupling constants
and the monopole form-factor regulator masses are com-
piled in Table II. The monopole formfactors are defined
in Eqs. (24) and (25).

g
g
~~NN
~~ND

13.4
1.8p
5.8p
5.8p

For the p
gp
GMp
A&N~ (Dii'ac)
A priv (Pauli)
~pNb,

5.3
191.1

12@
7.4p
5.8p,

TABLE II. Couplings labeled by a generic g and cutoff
masses labeled by A. See [3] for complete definitions.

For the m

This set difFers from Table A2 of Ref. [3] only in the
value for the mNL coupling constant, which should be
g' = 1.82@, instead of the larger value of that table.
Only this value is consistent with the vrNL coupling con-
stant implicit in the 2n exchange three-body force (see
Appendix A of Ref. [5]) and with the value obtained by
the Karlsruhe group [11] from srÃ scattering analysis.
They used a fixed-t dispersion relation for the invariant
amplitudes in order to determine the parameters of an
"efFective pole" which simulates 4 exchange at energies
near and below threshold. The coupling constant so de-
termined corresponds to the dimensionless coupling f '
(f' /4vr = 0.26) used by MartzolfF et al. [1], and dif-
fers from the Hannover group choice f' /4' = 0.35 for
their transition potential [37]. The latter value is de-
rived &om the 4 width, using the interaction term of
the Lagrangian and "should not be used in application
of pole term formulas near or below threshold" [38]. This
latter value is 40% higher and therefore emphasizes the
efFects of the forward propagating isobar in the transi-
tion potential picture compared to the covariant isobar
contribution to mN scattering.

The decision for the prescribed values of the remaining
parameters was justified in Ref. [3]. BrieHy, we recall here
that

(i) The coupling constants concerning the m come from
low energy ~ —N scattering data. The value of g = 13.4
has been challenged in recent years by partial wave anal-
yses of nucleon-nucleon scattering [39]. Much discussion
has ensued on this still unsettled point.
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(ii) The cut-ofF value for the 7rNb, form factor is taken
to be the same as 7t NN, which is suggested by data from
neutrino;nucleon scattering (p+ v M A++ + p ).

(iii) For the p meson, the choices made on the param-
eters were determined through vector meson dominance
models (which ties the needed hadronic pAN coupling to
the pAN vertex) that are believed to be valid for pro-
cesses involving low four-momentum transfer. We follow
the experimental analyses of the pAN vertex and use
a monopole form factor with cutoff mass A~~~ ——5.8p
to approximate this vertex. As for the pNN vertex,
it has two couplings: a direct Dirac coupling and the
Pauli coupling to the anomalous magnetic moment of
the nucleon. In the Tucson-Melbourne prescription, the
ratio of the Pauli to Dirac coupling is allowed to vary
with the four-momentum of the p. This choice appears
to accommodate reasonably both the vector dominance
value of rv. (k = 0) = 3.7 and the on-mass-shell value
of r~(k = m~ ) = 6.6 [35]. The typo cutofF masses
AD;, = 12@ and Ap „~; ——7.4p are then determined
from nucleon electromagnetic form-factor data. Some-
what later, a group led by Gari [40] made a detailed fit
to the electromagnetic form factors of the nucleon with
the ansatz suggested already in [3] and came to a similar
conclusion as [3]. What was not noticed by the authors
of [3] and presumably of [40] was that the k dependence
of the Dirac and Pauli rho form factors away from the
rho mass shell were also shown and even parametrized for
spacelike momentum transfer by Hohler and Pietarinen
in [35]. Indeed, the ratio of Pauli to Dirac coupling from
the latter analysis does not vary much with k and is 6.0
at k = 0 [41]. It turns out that this form-factor result
for the pNN vertex is quite compatible with the data for
the electromagnetic isovector nucleon form factors [42].

We next discuss the most varied aspect of the TM
force: the fact that each user feels free to substitute his or
her own choice for the recommended cutoff value of the
monopole vrNN form factor. The recommended value
(A = 5.8p 810 MeV) is inspired by the 5% Goldberger-
Treiman discrepancy which is consistent with a 3% de-
crease in the vrNN form factor from q = m to q = 0
[34]. The present understanding of the variation of the
other quantities in the Goldberger- Treiman relation from
the chiral limit to the chirally broken "real world, " im-
ply an "error bar" of +200 MeV for the A determination.
This makes our choice in good agreement with the OPEP
tail in many contemporary NN potentials: A 980 MeV
for Argonne V14 [43], A = 800 MeV in the present-day
evolution of the Bonn OBEP potentials [44], and A = 800
MeV for both m and p in the Bochum potential [4]. The
vrNN form factor A —1300 MeV of the full Bonn po-
tential [45] has always been inconsistent with evidence
other than partial wave analysis of the NN system [34];
this diKculty is expected to be overcome if additional
diagrams with correlated p-vr exchange is included into
the full model [46]. On the other hand, the cutoff mass
Ap = 965 MeV in the exponential form factor of Nijmegen
potentials [47] corresponds to A = v 2Ap 1365 MeV for
a monopole form factor [39], rather like that of the full
Bonn potential.

We should note that the current controversy over the

value of the an-shell aNN coupling g affects the cut-
off mass determination from the Goldberger- Treiman dis-
crepancy KG~ = 1—mg~ (0)/( f g) 0.05; a smaller cou-
pling constant implies a smaller discrepancy and a larger
cutofF mass. But other analyses which isolate one-pion
exchange via a Regge analysis of the charge exchange
data do'/Ch~ „minus do/dt~„„al-so find a 3% decrease in
the vrNN form factor from q = m to q = 0 [34], in-
dicating a certain robustness in the recommended value
of the cutoff mass.

The recent consensus on a low mass cutoff for pion ex-
change highlights the point already emphasized by the
Hokkaido group [25] and, in the modern context, by
the Sao Paulo group [48]. The contact terms (those
proportional to a coordinate-space b function and its
derivatives) are spread out with increasing importance
as A becomes smaller and the size of the nucleon grows.
The dominant attitude so far was to consider that these
contact terms, bringing the nucleon structure signature,
should not be included in potential models. In contrast,
the low cutoff mass of the vrNN and pNN form factors of
the Bochum NN potential, means that alt mesons more
massive than the p are subsumed into contact terms.
This reformulation of the traditional OBEP can still yield
a satisfactory description of the NN data, although a

analysis is needed for a definite judgment. The nice
feature of the Bochum NN potential is that the small
two-pion exchange term is highly suppressed, cut down
by four powers of a rapidly varying cutoff function and
partially replaced by the contact terms. Weinberg ob-
tains similar contact terms in his NN potential from a
presumed four-fermion interaction [9].

We knish this section by returning to the subject of the
pNN form factor. We have developed the formulas in
momentum and coordinate space for two separate Dirac
and Pauli form factors of the monopole type. Clearly it is
easy to specialize these general formulas to a single form
factor and then the choice of parameters is between the
vector dominance value of Kv. (k = 0) = 3.7 expected
for a narrow resonance and the on-mass-shell value of
v~(k = m~2) = 6.6 obtained from a dispersive analy-
sis of AN scattering. From our current understanding
of the pNN vertex, a better but more difBcult to im-
plement form factor might be those (Dirac and Pauli) of
Eq. (4.3) in [35] which goes into a monopole for high k2

but has a more complicated structure at small k near 0.
We suggest that future users of three-body forces might
concentrate on the pNN vertex rather than on the vrNN
vertex, where the form factor of the Tucson-Melbourne
three-nucleon potentials is not only determined by parti-
cle and nucleon-nucleon data but, in addition, is rather
consistent with most of the realistic two-nucleon poten-
tials.

VI. NUMERICAL RESULTS

It is well known that calculations with many recent "re-
alistic" two-nucleon potentials (Argonne V14, Nijmegen
potential or the folded diagram version of the full Bonn
potential) produce underbinding of the trinucleon bound
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state [49]. However, the same interactions, when taken
in conjunction with the TM two-pion exchange three-
body force, provide too much binding. There are over-
lapping and retarded pion exchange graphs not discussed
in this paper which yield nonlocal terms [8]. These have
not been numerically evaluated yet, but are expected
to be less important than the (already small) nucleon-
antinucleon pair terms of the 2'-TM potential and are
not expected to alter the binding defect problem.

To test the idea that the three-nucleon potentials of
the two-meson exchange structure, extended to include
p-exchange, act against the overbinding eKect of the
2'-TM potential, we estimated perturbative contribu-
tions to the binding energy of the triton from the ex-
tended TM force described in detail in the previous sec-
tions.

The calculation was done using a wave function in
the coordinate space obtained by solving the Faddeev
equations with the Malfliet-Tjon I-III potential [50]. We
present the results in Table III, where the individual con-
tributions from the di8'erent physical processes consid-
ered in the force are singled out. The contributions from
the vr-vr force are slightly diferent from preliminary re-
sults presented before [49] because in this paper we use
the expansion coefficients of Table I [51]. We stress that
the wave function used is "semirealistic" at most (no NN
P or D waves are included in the Mal8iet-Tjon I-III po-
tential). The past history of results obtained with the
vr-vr force showed us already that any calculation with
less than 18 three-body channels has to be considered
with caution. Also the predictive power of a perturba-
tive calculation is limited, since the m-m force, through its
"c term, " was seen to acct crucially the wave function
[52], thus disabling a serious application of perturbation
theory to the overall vr-vr force. This fact constitutes a
warning when comparing our calculation with an exact
one. The numbers given here were produced merely in
the spirit of having a quicl: and hopefully qualitative in-
formation on the importance of the p exchange in the

three-nucleon force. A much more sophisticated calcula-
tion, which is out of the scope of this paper whose aim is
restricted to provide the force to be used, will be reported
[21,22] soon.

To corroborate our caution in presenting the numbers
of Table III we mention that the calculation of Ref. [20]
gives for the effect of the background 4 isobar term
q' - M~ q in the Reid-soft-core potential 5 channel case,
the result —7.56 —(—7.15) = —0.41 MeV, which con-
trasts with the result +0.013 MeV of our table. The last
number results &om a cancellation between the "b" and
"d" contributions, and we consider two reasons for this
discrepancy: (i) our calculation is not, in contrast to the
one of Ref. [20] an exact calculation but a simple per-
turbative estimate (as mentioned already, the TM m-vr

force changes dramatically the wave-function structure
[52]); (ii) also in contrast to Ref. [20], we left out three-
body channels generated by the NN interaction in the
D state that are included however in the 5 channel cal-
culation. Our results for the separate contributions from
the considered channels matrix elements agree with the
(unpublished) results [53] of an expectation value calcu-
lation done by the authors of Ref. [20]. Moreover, their
results for the expectation values also show the impor-
tance of the D channels that we left out: the tensor force
terms of the TM potential produces visible eÃects, es-
pecially through the nondiagonal or interference terms.
This gives us confidence to state that the second reason
mentioned here is indeed the most important one to ac-
count for our results.

From Table III we conclude Erst that the p exchange
does indeed modify the e6'ect of the m-7r force and that
the effect goes in the (expected) direction of less bind-
ing. Since it has been fashionable to take the derived
strengths of a nuclear force seriously, but to consider
the meson-nucleon form factor cutofFs as adjustable pa-
rameters, we show in the columns labeled "MartzolF'
a set of calculations which keep the strength constants
of the Tucson-Melbourne three-body force but use the

TABLE III. The three-body force contributions (in MeV) to the triton binding energy. The con-
tributions are arranged according to Eq. (20). Distinction between the isospin even and odd contri-
butions is also shown. The calculation was made perturbatively with a (three-channel) Malfliet-Tjon
I-III model wave function.

Exchanged mesons Tucson-Melbourne form factors
T AT q'. M~ . q Total

"MartzolfF' form factors
AT q'. M~ . q Total

T+
T
Total

0.055 -0.409
-0.032 -0.052
0.023 -0.461

0.090
-0.077
0.013

-0.264
-0.161
-0.425

0.011 -0.363
-0.043 -0.070
-0.032 -0.433

-0.257
-0.105
-0.362

-0.609
-0.218
-0.827

T+
T
Total

0.215
0.215

-0.022
0.090
0.068

-0.022
0.090
0.283

0.342
0.342

0.261
0.340
0.601

0.261
0.340
0.943

TOTAL

T+
T
Total

0.001
0.001

0.002
0.002

-0.005
-0.007
-0.012

-0.005
-0.004
-0.009
-0.151

0.005
0.005

0.019
0.019

-0.101
-0.247
-0.348

-0.101
-0.223
-0.324
-0.208
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much heavier cutoff' masses &om Ref. [I] (we had to
convert however their monopole parametrization of the
product of two vertices to our dipole convention to And
A = 10.6p and Az ——13.4p for alt couplings to ¹sor
A' s). We note then that although the contributions of
the vr-m are, as is well known, strongly cutoH' dep"ndent,
the inclusion of the 7r-p force suppresses, at least in this
triton model, much of that cutofF dependence. Finally,
the results obtained. for the TM force show a satisfying
pattern of d.ecreasing eR'ect with increased mass of the
exchanged meson. The same pattern does not exist in
the pointlike nucleons (large cutoff masses) calculation
of the rightmost columns. In any event, the addition of
three-body forces due to p exchange, especially the p-vr

exchange force, does indeed counter the too strong at-
traction of the m-m and seems to stabilize the total effect

under variations in form factors. We await future tests
of these tentative conclusions with some eagerness.
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