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We study the contribution of meson-exchange currents (MEC) to axial charge transitions in

the framework of quantum hadrodynamics II. We extend a previous work which considered. the

contributions of one-body processes and vacuum polarization corrections. Calculations in mean-

field theory (the Walecka model) and in the relativistic Hartree approximation are presented. In

each of these cases we show results using pseudovector and pseudoscalar AN coupling. We find

that the MEC contribution to the process is always sizable (much more so when using pseudoscalar

coupling), transition dependent, and very sensitive to the coupling at the pz vertex.

PACS number(s): 23.40.Hc, 27.80.+w

In a recent paper [1], we presented a relativistic im-
pulse approximation (RIA) calculation of first-forbidden
P-decay (FFBD) rates as an attempt to understand the
enhancement of axial charge transitions found by War-
burton [2] in his aiialysis of nuclei in the A=205 —212 re-
gion. Warburton's fit to 19 FFBD transitions in this
region parametrized as g& ——gz" (1 + bMEc) gives a
"best fit" value of bMEc ——1.01 + 0.05, which is roughly
50% larger than the anticipated hMEc = 0.6 as given
by Kirchbach and Reinhardt [3]. In the calculations of
Ref. [1] (hereafter I) we employed relativistic shell-model
wave functions obtained in both (i) the mean-field (MF)
approximation and (ii) the relativistic Hartree (RH) ap-
proximation (where the shift in the vacuum energy at
finite baryon density is taken into account). Upon com-
paring the results obtained in I to a nonrelativistic IA
calculation we found a substantial increment (- 50%%uo) in
p-decay rates when working in the mean-field approxima-

tion and a smaller increase (around 30%%uo depending some-

what on the case studied) when employing the relativistic
Hartree wave functions. A calculation of random-phase-
approximation- (RPA-) type vertex corrections (core po-

larization) was also conducted but found to give a van-

ishing contribution for the small momentum transfers in-

volved in nuclear P decay.
The enhancement found in I was interpreted as orig-

inating on the Born and pair terms which are included

naturally in a RIA calculation. In this situation, and

unlike the nonrelativistic case, a dramatic contribution
from the two-body (2B) currents is not anticipated since
a great deal of the enhancement shows up already at
the IA level. In any event, in order to have a complete
description of the axial-charge process from the relativis-
tic point of view it is necessary to formulate the contri-
bution of two-body currents within the same consistent
framework. The aim of this paper is to present results of
a relativistic meson-exchange-current (MEC) calculation
of processes contributing to axial charge transitions. We
shall give results for both the MF and the RH approxi-
mations for the transitions in Pb and Bi presented in I
and we shall also compare with the IA results presented
there (relativistic and nonrelativistic) .

Anther motivation for this work arises from the results
of some recent calculations [4,5], involving the inclusion
of heavy mesons and which have shown to provide a satis-
factory explanation to the observed enhancement. Since
this heavy-meson contribution arises naturally in rela-
tivistic hadron theories, it is important to 6nd out what
its predictions are and how they come about.

For consistency we use for the MEC calculation the
same Lagrangian (quantum hadrodynamics II, QHD-II
[6]) employed in I. It includes, besides the nucleon field,
two isocalar meson fields, the o (scalar) and the ur (vec-
tor), and two charged isovector'meson fields, the vr (pseu-
doscalar) and the p (vector). The Lagrangian is renor-
malizable and is given by

8 = vP [ip„D"—(miv —g~o.) —g~p„~"—ig ps~ m]@+ gp(B"m x m) p„+-'g (7r x p„). (m x p&)

+2(BpoBPo —mo) —4F,„F""+2m w„w"—4B„B""+2m P„PP
+2 (Bpn B~m' —m m. m) + 2g m am

(2a)

(2b}Byv =—Bppv Bvpp gp(pp x pv)~

In Eq. (1) the neutral and charged vector meson field
strengths are de6ned by

F = 0 4) —19 cd

I

respectively, and we have also de6ned the covariant
derivative

(2c)

There is a Higgs-meson sector associated with the p-
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FIG. 1. Diagrams included
in the turbo-body contribution to
axial charge transitions: (a) p7r
and (b) p7rvr. The external and
internal momenta depicted in
the 6gure are those employed in
the actual calculations.

meson field which has been suppressed by taking the
scalar Higgs mass to be very large.

At tree level the two-nucleon MEC operator is given
by the sum of the two graphs shown in Fig. 1. They
include the pvr term (a) and a pion-pole diagram (pan)
(b). These two graphs are the most important since they
involve pion exchanges which generate the longest-range
exchange currents. We have not considered the L con-
tribution since, on the one hand, there is not yet an es-
tablished form to include the A into QHD calculations,
and on the other Nozawa et aL [7] have shown that its
contribution to these processes is small.

The original QHD-II Lagrangian [as given in Ref. [6]
and in Eq. (1)] uses pseudoscalar 7rN coupling in order to
preserve renormalizability. To take care of the otherwise
anomalous scattering length in vrN scattering an addi-
tional interaction term between the o and the vr fields
is included [last term in Eq. (1)]. In our calculations
we found that the use of the pseudoscalar coupling pro-
duces large MEC contributions which are not canceled
by the omar term. In fact, the orred contribution to the
28 current [a diagram similar to part (b) of Fig. 1 with
the p-meson line replaced by a o line] vanishes in the
q ~ 0 limit. It is known that in free space these cancel-
lations are necessary because the nonderivative coupling

m@ does not contain per se the soft-pion limit [8].
On the other hand, it is also known that the cancellations

are difIicult to maintain in the many-body problem, as
we find in our case. Therefore, we have performed cal-
culations using (1) but substituting pseudovector cou-
pling for the original pseudoscalar mN interaction and
dropping the o.urer term altogether. We want to remark
that either coupling has the correct low-energy limit in
the two-body case and that the partially conserved axial-
current (PCAC) results on two nucleons do not depend
on which one is chosen.

Renormalizability is lost when working with pseu-
dovector coupling. This poses, however, no major ob-
stacle for comparing with the results in I since for either
vrN coupling the MF and the RH approaches cancel the
vr contribution by parity considerations. Regarding the
RPA-type vertex corrections also presented in I, their
vanishing contributions turn out to be independent of
the coupling used at the AN vertex.

Use of the Feynman rules with vertices and propaga-
tors from the Lagrangian (1) (with pseudovector coupling
and no crvrvr term) gives rise to an expression for the two-
body per and purer currents of the form

J,""(per; q, k„k,) = i ~ [~, x ~2] u—(p', )p' P,u(p, )

1x 2 2
T""

2
"

2 u(p2)y"u(p2),

(3a)

qP 1 gJ." (p~~;q, », k2) = —~ '[~i x ~2] ub»)~ P~u(pi)f-, ,„., „,, (q+ ~)-u(p2)~"u(»).4M (3b)

In the last equation we used, for the weak-pion vertex,

«l~'"(0) l~'(q)) = ~f-qp~' (4)

with f = 0.93 GeV the pion-decay constant.
In Eq. (3a), the (isospin-independent) tensor T~ is

such that

"'T„„=(~'(k, )l J„' (q)lp„(k,)) (5)

and its value is determined uniquely from the PCAC con-
straint. To show this we first notice that the vr-absorption
amplitude on two nucleons (obtained from the p7rm dia-
gram by removing the external As line) reads

TABLE I. Parameters used for the calculations presented
in the text.

2 2 2
QcrN m& LrN gp

MFT 109.6 520 190.4 65.23
RHA 54 3 458 102 8 65.23

2
g~
178.4
178.4

M jM
0.54
0.73

I

M'(28) =—(g g /4M)[~j x ~2] u(p~)q Pqu(pq)
1

x 2 2 2
"

2 (q+ kg) u(p2)p"u(p2). (6)
k~ —m2 k2 —m2

On the other hand, the (—i) x4 divergence of the full 28
current is given by
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TABLE II. Results for the v: 2g9/q ~ m: 1h9/2 transition in Pb —+ Bi. First row: the

nonrelativistic (NRIA) and the relativistic (RIA) impulse approximation results are from I. The

meson-exchange-current results are from this paper. The table includes results for the mean-field

(MFT) and the relativistic Hartree (RHA) calculations. Meson-exchange-current results are shown

for pseudovector [MEC(PV)] and pseudoscalar [MEC(PS)] couplings. Second row: enhancement

with respect to the NRIA.

-1.23 x 10

RIA
-1.98 x 10

0.60

MFT
MEC(PV)
-1.14x 10

0.90

MEC(PS) RIA

-2.63x 10 -1.57x 10
2.14 0.28

RHA

MEC(PV)
-8.97x 10

0.72

MEC(PS)
-2.14x 10

1.72

q„Js"(p~+ p~~) = i(g~g—~/4M)[~i x ~2]' u(p', )ps Piu(pi)
2

The PCAC relation on two nucleons requires that

q 1""=i f [m /(q —m )]M'(2B), (S)
and this is satis6ed if

TI nq„(q—m ) + q (q+ ki)" = m (q+ ki)o.
7rgp

A solution can be found when

T""= f gp —g""+q"ki/(q —m ) (10)

which gives the strength at the mAp vertex. Notice that
in the soft-pion limit (ki —+ 0), T~" = f g~g"—" which
is the same strength obtained by Ivanov and Truhlik [9]
in the soft-pion limit of their hard-pion model. From the
above it is clear then that the Lagrangian (1) satisfies
PCAC on two nucleons and has the correct behavior in
the soft-pion limit.

To study individual transitions it is convenient to per-
form a multipole decomposition of the current matrix el-
ements. For the cases analyzed in I, and pursued in this
work, the main contributions come &om the Coulomb
operator

(9)

CrM(q) = f d rMr )qr) Jj) (r),

where

M~ (qr) = jg(qr)Y~™(r). (12)
For the small momentum transfers involved in FFBD's

the J = 0 multipole is the most important. The two-body
matrix element contributing to axial charge transitions
may be written in the form

(Jill&o'(q ~ o)II 12) = ) ) ((a' ~')&xll&o 'll(a t')&')
a, b a', 6'

I

where 4& '
o ((a', 6')Z f, (a,'6)j,) are the two-body density-

matrix elements defined in terms of the particle opera-
tors, c, by

(~ill@JM, ((a' b')i y (a ~)~')ll J2)

Ji
[ )

c p 3 cgp )3 [c )3 cg],. J2 14

with c = (—l)~ &c . The sums run over all possible
initial pairs of relativistic single-particle states (a, 6) lead-
ing to all possible final pairs of relativistic single-particle
states (a', 6'). Substituting (ll) into (13), using Eqs. (3),
and carrying out the summations one obtains the results
that we show shortly. Numerical details about the cal-
culation of the two-body matrix element of (13) will be
given elsewhere [10].

The coupling constants used in the calculations are
shown in Table I. Both sets of parameters, MFT and
RHA, are Rom Ref. [11] and are not tuned specifically
to the lead region. The scalar masses were determined
by fitting the charge radius of Ca. The other masses,
fixed to their experimental values, are M = 939 MeV,
m = 783 MeV, m~ = 770 MeV, and m = 139 MeV.
In the calculations we used for g the value determined
by fitting the bulk symmetry energy in infinite matter,
a4 ——35 MeV. Results obtained using g determined from
the p —+ wrier decay will also be shown. The intrinsic
structure of the nucleons was considered via an additional
q2 dependence of the form (1+q /M&) with M~ = 1.2
GeV.

In Tables II and III we summarize our results for the
two transitions we considered: the v: 2gg(2 —+ w: lhg/2
transition in 2osPb ~ 2 Bi and the 7r: (3siy2) —+ v:

TABLE III. Results for the m: (3siy~) m v: 3p transition in 2o7TI m 7pb. Fiist
row: the nonrelativistic (NRIA) and the relativistic (RIA) impulse approximation results are from
I. The meson-exchange-current results are from this paper. The table includes results for the
mean-field (MFT) and the relativistic Hartree (RHA) calculations. Meson-exchange-current results
are presented for pseudovector [MEC(PV)] and pseudoscalar [MEC(PS)] couplings. Second row:
enhancement with respect to the NRIA.

NRIA

8.30x 10
RIA

1.16x 10
0.39

MFT
MEC(PV)
4.57x 10

0.55

MEC(PS)
7.66 x 10

0.92

RIA
9.13x10

0.17

RHA

MEC(PV)
4.03 x 10

0.43

MEC(PS)
6.42 x 10

0.70
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MFT RHA

MEC(PV) MEC(PS) MEC(PV) MEC(PS)
1.53 2.74 1.00 2.00
0.94 1.31 0.60 0.87

209pb ~ 209B
207 TI ~ 207 pb

LE IY. Full increment (hMEc = RIA + MEC) for the
transitions in Tables II and III using g~ = 65.23.

MME~ ——RIA + MEC
&MEc = RIA + MEC

209pb ~ 2098 ~

207T] ~ 207pb

MFT RHA
MEC(PV) MEC(PS) MEC(PV) MEC(PS)

0.87 1.81 0.47 1.22
0.55 0.92 0.29 Or55

TABLE V. Same as Table IV but using gp 36 76.

(3pz&z) transition in Tl + Pb. The nonrelativistic

impulse approximation (NRIA) results are Rom I. We
divided the tables into two sets, one for the mean-field
(MFT) and the other for the relativistic Hartree (RHA)
calculations. For each set we quote results for the im-
pulse approximation (RIA) and for the meson-exchange-
current calculation. The latter are given in pseudovector
[MEC(PV)] and in pseudoscalar [MEC(PS)] couplings.
The second row of the tables shows the increase with
respect to the NRIA for the entries in the first row.

In Table IV we show results for bMEc which was re-
defined to contain the sum of the RIA plus the MEC
increments. This is in line with the fact that part of
the enhancement has already been considered in the RIA
calculation. The results are presented for the two tran-
sitions. Comparing the MFT with the RHA calculations
we notice that the first one is consistently larger than the
second for either transition, pointing out the role played
by the vacuum in relativistic calculations. In PV cou-
pling the MFT results for the transition in Pb give a 153%%uo

enhancement with respect to the NRIA, as compared to
100% for the RHA. In Tl the enhancement decreases from
94'%%uo (MFT) to 60% (RHA). This is consistent with the
fact that in RHA the ratio M*/M is closer to one as can
be seen from Table I.

One point to notice is the difference between results
obtained using pseudovector and pseudoscalar coupling,
the latter being consistently larger. Because pseudovec-
tor coupling shows the correct low-energy behavior in the
many-body problem it is has been considered [8] as the
appropiate coupling to be used in finite nuclei calcula-
tions. In this case, we may conclude that in QHD the
enhancement observed in the lead region (1) shows up
strongly in both the MFT and RHA, (2) the strength
depends on the particular transition studied, and (3) in
the RHA it is 40—50% smaller than in the MFT.

Despite these conclusions we call attention to the de-
pendence of the results on the value of g . Calculations
in finite nuclei within QHD (see, for example, Refs. [6]

and [12]) usually employ g determined from the fitting
to the symmetry energy instead of the coupling deter-
mined &om the decay of the p meson. The erst is a
many-body argument which favors its use over the sec-
ond. The largest p coupling, however, besides violating
the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin rela-
tion [13],seems to provide too much enhancement for the
transition in lead. Since there are not strong enough ar-
guments to discriminate them, and given the sensitivity
of the results to either choice, we include in Table V re-
sults for bMEc using g = 36.76. With this coupling MFT
with PV coupling seems to account for the observed en-
hancement whereas the RHA leaves room for the presence
of other eKects. We emphasize the necessity for consis-
tency in the use of the same coupling when determining
the nuclear wave functions and when calculating the ma-
trix element (13). One point to mention is that the RIA
results do not depend on the p coupling constant.

Summarizing, we have studied the contribution of
MEC processes to axial charge transitions for nuclei in
the lead region. We have thus extended the work of Ref.
[1] which, within the same relativistic theory (QHD-II),
considered the contributions of one-body processes and
vacuum polarization corrections. We conducted calcu-
lations in mean-field theory (the Walecka model) and
in the relativistic Hartree approximation where the full
one-nucleon-loop eA'ects are considered. In each of these
cases we presented results using pseudovector and pseu-
doscalar AN couplings. We found that the MEC con-
tribution to the process is always sizable (much more so
when using pseudoscalar coupling), transition dependent,
and very sensitive to the coupling at the prr vertex (which
is also twice the coupling at the pNN vertex by gauge in-

variance). The RHA approach consistently gives results
which are 40'%%uo smaller than in the MFT. Further studies
of other transitions in the periodic table are necessary to
establish the mass dependence of the effect. Also it is
necessary to further constrain the range of the p-meson
coupling constant to eliminate ambiguities in the inter-
pretation of the results.
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