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Asymmetry versus symmetric quadrupole deformation in even-even nuclei with 94 < 4 <192
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From experimental E2 matrix elements, the asymmetry shape parameter 8. (corresponding to Bohr’s
model parameter y) is derived for the ground states of some fifty even-even nuclei with 94=< 4 =192
(42 < Z <76) by the sum-rule method. For the nuclei studied, an overall correlation between asymmetry

and quadrupole deformation emerges.

PACS number(s): 21.10.Ft, 23.20.Js, 27.60.+j, 27.70.+q

The basic properties of the nuclear shape are described
[1] by the quadrupole deformation B and the asymmetry
angle ¥. The experimental value of the parameter B of an
even-even nucleus in its ground state can be derived from
the transition rate B(E2,0;" —2{") and is already well
known for most nuclei spectroscopically studied [2].
Much more limited is the experimental information on
the asymmetry. In the special case where the angular
momentum projection K is a good quantum number and
v is small, it is determined by the ratio of the two intrin-
sic quadrupole moments (Eq. 4-246 in Ref. [1]). The in-
terest in electromagnetic properties of asymmetric nuclei
has considerably increased in recent years in view of the
expected triaxial shapes at higher angular momenta (cf.
e.g., Refs. [3-5] and references therein). The parameter
v is usually fitted in model calculations of nuclear proper-
ties compared to nuclear spectroscopic data. Values of ¥
obtained in this way are thus strongly model dependent.

An approach for a model-independent determination
of the B-y shape distribution is offered by the sum-rule
method outlined in Refs. [6,7]. From invariant products
of the E2 operator it is possible to define two intrinsic-
frame quadrupole parameters Q; and §; for each nuclear
state J. The expectation values {Q?) and {cos38;) can
be derived [6,7] from an expansion over the experimental
reduced E2 matrix elements associated with the state J.
The quadrupole parameter { Q?) is a measure of quadru-
pole deformation including static and dynamic contribu-
tions, the latter resulting from fluctuations around an
equilibrium shape [B,,,=(47/3ZR3)V (Q?)]. The
value of 8 is closely related [6,7] (up to higher-order
terms) with the collective-model parameter ¥ .

The expressions for {Q?) and {cos38) are exactly val-
id if a complete set of experimental reduced E2 matrix
elements is available. Therefore, in practical cases the
question of reasonable convergence becomes important.
For instance, as argued in Ref. [6], the sum-rule con-
siderations are supposed to retain their validity without
the explicit inclusion of the E2 strength from the giant
E?2 resonance. A large set of experimental E2 matrix elel-
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ments between low-lying states could be at present ex-
tracted from advanced Coulomb excitation (CE) investi-
gations [6,9-13]. There, the shape parameters Q (and
sometimes 8) are determined for ground and several ex-
cited states facilitating a study of the shape evolution
with increasing excitation energy and spin. Complex in-
vestigations of this type, however, have been published so
far for a limited number of nuclei.

The most simple case in the application of the sum-rule
method occurs with the ground state of an even-even nu-
cleus (J =0). There, the expression for {(Q?) reduces to
a sum over the squared reduced E2 matrix elements
((OT||E2||)21)=(2"||E2||0")) linking this state with all
the J7=2"1 levels:

(@2, )=3I(0"||E2|12}) 1%, (1

where r =1,2,3,. ... It can be easily checked that in the
mass region 90 < 4 < 190 the above sum is practically ex-
hausted by the first two terms (» =1,2) including the first
(2{) and second (25 ) excited states with J™"=27. Where
known (e.g., in '™Ru [8], 197 !11°Pqd [6,9]), higher-order
terms with » >3 are found to contribute less than 1% to
this sum. Therefore,

(@2 Y=[CO*|E2|12{ Y2+ IO |E2)2 )2 . ()

For the same 0" ground state, one obtains
g
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(cos38, ;) =—

From careful empirical analysis of the contribution of
each product of matrix elements in all available cases we
arrive at the conclusion that the sum on the right hand
side (r.h.s.) of Eq. (3) can be approximated with

~(0t[|E2]121)2(2f | |E2][2] ) +2€07||E2||2{ <2 ||E2]125 <2 |[E2[j07) .
Thereby, the term (0T||E2|]2; )2(25||[E2||25 ) as well as terms including higher-lying 2, states with r >3 can be
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neglected. Generally speaking, this approximation will hold as long as [{O|[E2|2{ )| >>[(0{|E2|2;)| and
[C2F|E2)|2f Y= 1€2;F||E2||2,;7 )| for r >2. This is certainly the case in the nuclei considered in this work. With this

approximation, Eq. (3) reduces to
; 12

(cos38, )=~ — 10

Further, one may deduce an effective value for the asym-
metry parameter

8= 1 arccos({cos38,; )) .

In all cases where a large set of E2 matrix elements has
been published (CE in %Ru [8], 1967 119pq [9], !4Cd [10],
166Er [11], '$8Er [12], 172YD [13], 3% 184W [19], i.e., in nu-
clei with different shape), values of 8.4 derived from Eqgs.
(1) and (3) and Egs. (2) and (4), respectively, have been
compared. The differences A s hardly exceed 1°. Thus,
one can be confident that the approximation made in Eq.
(4) is justified. Moreover, it can be easily shown that the
r.h.s. of Eq. (4) [and Eq. (2)] is predominantly determined
by the ratio of static to transitional £2 moments

(2t ||E2|)21 ) /€O || E2)|2 )) -

Indeed, the asymmetry parameter 8 increases when the
absolute value of this ratio decreases. This is exactly in
the spirit of model calculations [3,14] of E2 moments
performed with variation of the parameter y.

The validity of Eq. (4) facilitates the derivation and the
systematics of the asymmetry shape parameters 5.4 over a
wide range of even-even nuclei. Data on quadrupole mo-
ments Q(ZT ) in many nuclei have been recently [15]
summarized

[Q(2{)=0.758{2{"||E2|]2{ )] .

Off-diagonal matrix elements (0} ||E2[2{,) and
(2{||E2||25 ) are commonly available (e.g., see Ref. [2],
Nuclear Data Sheets, and references quoted in Ref. [15]).

CE reorientation measurements generally provide two
(normally quite different) values for the quadrupole mo-
ment Qi(21+) depending on the usually unknown sign of
the term

Py==[CO |E2|12] Y 2T 1| E2125 Y2 || E2||0 ) | .

We have checked in several nuclei Eq. (4) with both alter-
natives and found values of 84’ (at positive interference)
only by up to few degrees larger than those at negative in-
terference 845 . In the analysis of CE reorientation mea-
surements (Egs. 34, 35, and 47 in Ref. [16]), the expres-
sion in the brackets [r.h.s. of Eq. (4)] appears again, only
the factor in front of the second term (P;) is usually
different from 2. This similarity may be the origin of
both values 8%’ and 8.5’ lying relatively close. On the
other hand, in the nuclei considered here the positive sign
of the term P; is widely considered as more probable
(e.g., Ref. [17]). For the above reasons, we apply Eq. (4) at
a positive sign of Pj;.

In this way, we have estimated according to Eq. (4) the
expectation values of {cos38) for the ground states of

(@2, )20 Y|E2|)2{ )2 2f ||E2|121 ) +2€0 |[E2|12{ Y2 |[E2(12 Y (25 |[E2[l07 )] . @)
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nearly fifty even-even nuclei with 94=<4 <192
(42=Z =76) for which data on E2 matrix elements are
available. More accurate input data on matrix elements
would change somewhat individual values of {cos38) but
the revealed trends will remain. Wherever information
on Q (22+ ) is available, we additionally include the term

(OF || E2)125 »2( 2 || E2|]25)

in the sum [r.h.s. of Eq. (4)] for completeness although its
influence on 8 is not significant. In Fig. 1, the results on
(cos38) are presented versus the quadrupole deforma-
tion B, derived from the values of {Q?) [Eq. (2)]. Indi-
cated also (r.h.s.) is the corresponding asymmetry angle
S.s An overall correlation between the asymmetry pa-
rameter & and quadrupole deformation emerges from this
presentation.

Equations (3) and (4) provide a mean value of the
asymmetry parameter 8.4 but they give no information
on the “softness” of the nuclear potential with respect to
the ¥ degree of freedom. The softness in 8 can be deter-
mined from sixth-order products of experimental E2 ma-
trix elements available at present only in very few cases
[6). There are several hints in the literature that the
asymmetry is generally dynamical, i.e., that nuclei with
firmly established rigid triaxiality would hardly exist
(e.g., Refs. [5,18] and references therein).

In Fig. 1, a value of 8.5~ 30° is observed only in nuclei
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FIG. 1. Values of {cos38) for ground states of even-even nu-
clei (indicated in the figure) derived from experimental E2 ma-
trix elements versus the quadrupole deformation [cf. Egs. (2)
and (4) and text]. On the right-hand axis, the corresponding
asymmetry parameter 8. is given. Arrows beside the isotope
symbol indicate that in the corresponding isotopic chain the
mass number increases (1) or decreases (|) with increasing
quadrupole deformation. Data are taken from Refs.
[2,8-13,15,17,19], from some references quoted in Ref. [15] as
well as from current issues of Nucl. Data Sheets.
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with B, <0.2. Most of these nuclei are spherical with a
potential which is completely ¥ unstable in the region
0°<y <60°. This is certainly the case, e.g., in '*Ba
(N =82) where the effective quadrupole deformation
(Brms=0.1) is supposed to arise mainly from dynamical
contributions. Strongly deformed nuclei ( 4 > 150) with
Bems > 0.3 are axial with a small effective asymmetry of
S.5<15°. (With the data from Ref. [11] we derive
8.4= 14° instead of 18° as given [11] for the case of **Er.)
Weakly deformed nuclei with 0.15 <f,,<0.3 are asym-
metric with 15°<8.4<30°. This observation is a clear
verification of earlier suggestions that the best prospects
for y instability are expected in weakly deformed systems
[5].

A different view at the shape parameter distribution is
presented in Fig. 2 where the quantity g, =/, Sind. is
plotted versus the mass number 4. The values of g, for a
very broad region of nuclei are placed in the interval
0.06 <q, <0.10. These are notably the studied nuclei
with A4 <140 except for *®Ba and those with A > 184.
The well-deformed nuclei as classical axial rotors reveal
an (expected) tendency for a decrease of g, but even there
in some cases (1¢17°Er, etc.) the g, values reach that in-
terval. A quantity which illustrates the deviation from
axial symmetry of an ellipsoid (symmetry axis 3) is the ec-
centricity e; (Eq. 5.75 in Ref. [20]) including the semiaxes
R, . Using the relations [1] for the asymmetric increase
S8R, of each axis (k=1,2,3) one obtains

RI-R} _ (15|, .

e, 2 - Bsiny . (5
Thus, the values g, =, sind.¢ plotted in Fig. 2 turn out
to be convenient to compare the deviations from axial
symmetry in a broad range of nuclei characterized by
different shape parameters B, and 6. (i.e., B and y).
Those deviations would arise from y fluctuations and/or
rigid triaxiality. The narrowness of the interval in which
most of the g, values are lying is remarkable. Fluctua-
tion contributions are certainly present in (most of) these
nuclei. One would expect static contributions from rigid
triaxiality of specific nuclei to result in g, values which
are appreciably higher than the systematic trend. In Fig.
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FIG. 2. The data from Fig. 1 presented as g, =Py sin8q¢
versus mass number 4. The same symbols are used as in Fig. 1.
Several g, values characterizing nuclei with neighboring Z but
the same 4 (e.g., Pd-Cd, '%6W-!%6Qs) are overlapping.

2, such g, values are hard to identify, a possible excep-
tion being indicated by the data points around 4 =100.

In conclusion, we have applied the sum-rule method
[6,7] to ground states of even-even nuclei using an ap-
proximation which requires the knowledge of only four
E2 matrix elements experimentally known for many nu-
clei. The asymmetry parameter 8. (which is closely re-
lated with the collective-model parameter y) derived in
this way for some fifty nuclei with 94< 4 <192
(42<Z <76) reveals a pronounced tendency to gradually
increase with decreasing quadrupole deformation. In
comparison, the quantity V' 15/78,,sind .4 characteriz-
ing the eccentricity of the nuclear ellipsoid shape about
the symmetry axis fluctuates only weakly around 0.16 for
transitional nuclei with a decreasing tendency for nuclei
with strong quadrupole deformation.
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