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Approximate ways to treat the nucleon-nucleon tensor force in the four-nucleon bound state
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Several approximation methods are tested in the four-nucleon bound-state problem as a means to un-
derstand how the two-nucleon tensor force propagates through the underlying (2)+(2) and (3)+ 1 subsys-
tem amplitudes to yield a final four-nucleon binding energy. The aim is to show how to include as much
of the nucleon-nucleon tensor force as possible in the dominant S-state component of the four-nucleon
wave function for the purpose of optimizing the starting point in the iterative solution of the full prob-

lem.

PACS number(s): 21.10.Dr, 21.45.+v, 21.30.+y, 21.60.—n

Until the initial work of Fonseca [1] and the more re-
cent calculations of Glockle and Kamada [2], the two-
nucleon tensor force in the four-nucleon system had al-
ways been treated approximately [3—6], leading to four
nucleon bound-state equations where all relevant orbital
angular momenta are zero. As a consequence, the result-
ing four-nucleon wave function is reduced to the £=0,
L =0 components with symmetric and mixed-symmetric
spatial configurations. At the time, the question was:
“How close to the exact four-nucleon binding energy can
these approximate methods lead us?”

In order to be more specific, let us consider a simple
problem where nucleons interact through rank-one in-
teractions in channels S, and 3S,-3D,. It is well known
that in the triplet channel Vy, (V) is a poor starting
point for the calculation of 7y, and an even poorer ap-
proximation in the calculation of the triton binding ener-
gy. In earlier calculations by Tjon [4], he proposed use of
the full two-body ¢ matrix truncated to the / =1'=0 ele-
ment which leads to a triton wave function that carries
no D-state component. Calculations by Fonseca [1] using
Tjon’s approach give the binding energies shown in Table
I in the column labeled ¢,,. They are compared with the
exact results obtained from the solution of the Faddeev
equations for the wave-function components ¥, (Q),
where

Wi )= (VSL|B/|V'S'L')r |¢l,gr.) , 1)
vS'L'

where B/ is the well-known one-nucleon-exchange driv-

ing mechanism whose matrix elements may be found in

Ref. [7]. Here we follow the traditional notation where v
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denotes a singlet or triplet two-nucleon pair, S is the
channel spin, and L is the particle-pair orbital angular
momentum. The values of S and L are displayed in Table
I for j=1%.

Although the ¢y, approximation looks reasonable for
the binding energy, it is by no means the only way one
may reduce the problem to L =0 components alone. If
one truncates Eq. (1) to (v,S,L)=(1,1,0) and (2,1,0)
components and solves the resulting 2X?2 integral equa-
tion, the results obtained are shown under I, in Table 1.
(This approach was called the ‘““‘truncated ¢-matrix” ap-
proximation and denoted “zy,”” by Gibson and Lehman in
the last of Refs. [3], while Fonseca in Ref. [1] called it the
“truncated %+” approximation.) Despite the fact that
both the ¢y, and I, wave functions have no D-state com-
ponents, both are equally good starting points for an
iterative solution of the full (tensor) Faddeev equations
for the wave function and binding energy, and both are
significantly better than a typical arbitrary starting func-
tion.

If we now proceed to the four-nucleon problem, it is
evident that there is additional freedom present for the
choice of the approximation methods. For rank-one
two-nucleon interactions [3], the four-nucleon equations
read

[REZ)= 7{ve|X|ve){IRE.)+|R%. )} (2a)
V!
and
TABLE 1. Three-nucleon binding energies in MeV for

different potential models and approximation methods used to
include tensor-force effects.

Pp(%) too® Exact® I
4 8.657 8.573 8.191
5.5 8.078 8.040 7.560
7 7.560 7.588 7.051

#Reference [1].
Last of Refs. [3].
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TABLE II. Values of S and L for j=%+. v=1 denotes a
spin-singlet nucleon-nucleon pair while v=2 denotes a spin-
triplet pair.

v S L
1 1 0
2 i 0
2 3 2
[R22)=3 27, {ve|Y|vc¢') IR ) . (2b)
V'

The superscripts 13 and 22 denote the (3)+1 and (2)+(2)
components, respectively, and ¢ gives the corresponding
channels shown in Table III, where X is the four-nucleon
channel spin and A the relative (3)+1 or (2)+(2) orbital
angular momentum. In Eq. (2a), X is the three-nucleon
Alt-Grassberger-Sandhas (AGS) [8] operator for
n +v—n ++ scattering and Y the AGS operator for the
scattering of two noninteracting pairs v and v'. It should
be noted that X exists on-shell, but Y only takes place
off-shell embedded in the four-nucleon system. The equa-
tions for X are given by

(v'S'L'j'|X|vSLj)=8,;{+'S'"L'|X’|vSL ) (3)

and

(v'S'L'|X’|vSL ) ={+v'S'L’'|B/|vSL)
+ 3 (V'S'L'|B/|v'S"L" )1,
v'S"L"
X{v"'S"L"|X/|vSL) , (4)
where B/ is the same as in Eq. (1) and (vSL) run over the

channels listed in Table II for j =%+. Likewise, the equa-
tion for Y which involves the pairs v’ and v has the form

(VI|Ylv)=5,v|Blv)
+2 <V’|E|vu>8v"v’7v"<v”| Y|V) s (5

where §,,,=1—38,,,,v" runs over v and v/, and

TABLE III. Four-nucleon channels for total angular

momentum J =07, The three-body subsystem has been limited

toj=1%.

(3)+1 channels
L j p)

(2)+(2) channels
v b A
1 0 0
2 0 0
2 2 2

<
1%}
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('V,|EIV>=2|f;;)GO<fs"/I' (6)
sl

s’

In Eq. (6), G, is the four-particle propagator, |f¥) is the
two-nucleon form factor that comes from the correspond-
ing rank one potential in channel v, and (sl) gives the
pair spin and relative-orbital angular momenta that are
consistent with the total angular momentum and parity
of channel v. If v'=v=1 (1§,), then s =0 and ! =0, but
for v=v=2 (3S,-’D,), we have s =1 with / =0 and 2.
Therefore, the off-shell scattering of noninteracting trip-
let pairs involves a summation with / =0 and / =2, while
for two singlet pairs only the / =0 term contributes.

If we now attempt to truncate the four-nucleon equa-
tions to A=0 channels alone, different possible options
arise, some of which may lead to overbinding, while oth-
ers underbind. We investigate six alternatives based on
different truncations at the two-body, (3)+1, and (2)+(2)
levels.

At the two-body level, we can start with #y, alone for
singlet and triplet pairs. This leads to / =0 terms alone
in the equation for Y [Eq. (5)] and 2 X2 equations for X/,
all as if the tensor force were absent, except in the
nucleon-nucleon propagator 7,. This we denote as the
too /too approximation.

Beginning at the (3)+1 level, we may derive two op-
tions denoted as the I, and Xy, approximations. The I,
approximation amounts to truncating Eq. (4) to a 2X2
equation while for the X, approximation we solve Eq. (4)
exactly, but only use the L =0 components in the solu-
tion of the four-nucleon equations.

Finally, at the (2)+(2) level, one has a similar option
named Y,, which involves the exact solution of Eq. (5)
for two triplet pairs, but retaining only the / =I/'=0 com-
ponent of the Y amplitude in the four-nucleon problem.

In Table IV, we show the results of our calculations for
different combinations of two-body, (3)+1, and (2)+(2)
approximations together with the exact result Ref. [1].
Although the accuracy of each approximation depends
on the strength of the two-nucleon tensor force, one can
easily conclude that ¢y, /ty and Xy, /Y, are the best
starting points for a full iterative solution of the four-

TABLE 1IV. Four-nucleon binding energies. Exact and vari-
ous approximations.

Percentage D state

Treatment in the deuteron

of tensor force 4% 5.5% 7%

Ioo/too 30.39 26.56 23.61
Ty /Yoo 31.68 28.15 25.41
Xoo/too 31.66 28.09 25.27
too/too 32.85 29.24 26.15
Exact 32.34 29.10 26.56
Xoo/ Yoo 32.74 29.56 27.03
too/ Yoo® 34.01 30.79 28.02

?Also obtained by convolution method to same number of
significant figures.
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nucleon bound-state problem. It is also clear that going
from tq, to Xy at the (3)+1 level, while keeping #y, at
the (2)+(2) level, decreases the binding energy by ~2.5
MeV. On the other hand, if ¢, is changed to Y, at the
(2)+(2) level, while retaining #(, at the (3)+1 level, the
binding energy increase ranges from 1.2 to 1.9 MeV de-
pending on the strength of the nucleon-nucleon tensor
force. Given its simplicity, ¢y, /2, therefore becomes the
most recommended approximation.

Finally, it is worth mentioning that if we solve the
four-body equations using the convolution method [9] to-
gether with ¢y, Iy, or X, for the (3)+ 1 subamplitudes,
the g0/ Yoy, 199/ Yoo, and Xy /Y, results are naturally
recovered as indicated in Table IV, but never any of the
approximations based on ¢y, at the (2)+(2) level. Given
that the convolution method is based, as the name sug-
gests, on the convolution of two noninteracting-pair
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propagators 7,, and 7,, it automatically includes, in inter-
mediate states, all possible combinations of s and d waves
in both pairs, which, in Eq. (5), can only be reached
through an exact solution. In other words, the convolu-
tion method precludes a complete set of states for both v’
and v, while in Eq. (5), one may truncate v' and v in-
dependently.
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