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We argue that the ratio of cross sections of quasielastic electron scattering for heavy and light
nuclei at z ) 1 and Q ) 1 (GeV jc) should exhibit simple scaling relations which are ultimately
expressed through the ratio of the light-cone nucleon distributions in nuclei. We extract these cross
section ratios from existing data in a practically model independent way. The results are found to
be in reasonable agreement with our x-scaling relations for the region of 2 ) x ) 1.4 where the
contribution of two-nucleon short-range correlations are expected to dominate. The ratios exhibit
scaling in the light-cone fraction, n, of the struck nucleon for the range 2 ) x ) 0.9. The o. scaling is
in agreement with the expectations of the light-cone quantum mechanics of nuclei, providing further
evidence for the dominance of short-range correlations in nuclei at h ) 0.3 GeV jc. An extension of
this analysis to the interpretation of color transparency experiments is discussed.

PACS number(s): 25.30.Fj

I. INTRODUCTION

For many years now short-range correlations (SRC) in
nuclei have been considered as an essential feature of the
nuclear wave function. However, at medium energies the
inQuence of SRC is hidden by the effects of multistep
processes dominated by the soft (low momentum) com-
ponents of the wave function. The situation improves
significantly at high energies which allow one to select
processes in which (a) the scattering from low momen-
tum nucleons is kinematically suppressed and (b) the en-
ergy transfer exceeds the characteristic kinetic energies
of correlated nucleons in the nucleus.

One of the simplest reactions which satisfies both these
requirements is A(e, e') at

2

Q ) 1(GeV/c) and x = ) 1,
2mqo

1 GeV & qo & 300 400 MeV,

where m = mN and qo is the energy transfer. These
reactions have been intensively investigated during the
last decade or so at SLAC on both light and heavy nuclei
[1—5]. In this paper we argue for the existence of simple
scaling relations between the cross sections of light and
heavy nuclei in the kinematics where electron scattering
off SRC should dominate. We present ratios extracted.
from data which demonstrate that these relations are

reasonably well satisfied and which emphasize the dom-
inance of two-nucleon SRC in the spectral function for
A: ) 0.3 GeV/c.

This paper is organized as follows. In Sec. II we ex-
plain the specifics of the space-time evolution of the final
states in the A(e, e') reactions in the kinematics given by
Eq. (1), which helps us account for the final state interac-
tion (fsi). In Sec. III we use the nonrelativistic impulse
approximation to deduce the scaling relations between
cross sections of the A(e, e') reaction on difFerent nuclei.
Therein we explain how, within our model, the fsi cancels
in the ratios of the cross secticns, though it contributes
to the individual cross sections. In Sec. IV we describe
the procedure we developed for extracting the ratios &om
existing experimental data and demonstrate that the ex-
tracted ratios agree with the scaling relations. In Sec. V
we explain why and how relativistic kinematics leads to
the light-cone dynamics of the process. We generalize the
scaling relations for relativistic kinematics and calculate
the ratios of the cross sections in terms of the light-cone
quantum mechanics of nuclei. We also explain in Sec. V
how the extracted ratios could be used to improve anal-
yses of A(e, e'p) experiments at large Q2 undertaken to
investigate color transparency phenomena. In the Ap-
pendix we discuss the fsi of the struck nucleon with the
slow nucleons of the nucleus.

The physics of quasielastic processes [which doininates
the cross section in the kinematics of Eq. (1)] has been
discussed in detail in the analyses [6,7], so that here we
only outline the ideas leading to basic formulas.
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II. SPECIFICS OF SPACE-TIME EVOLUTION
OF FINAL STATE INTERACTION AND

AP PROXIMATIONS

The kinematics of Eq. (1) allows one to compute the
cross section through processes local in space if

2m~q30 "~= e'" 4 j& y, jp 0 Ae" e& d y.

Here e~"~ is the polarization vector of the virtual photon.
For the kinematic region of interest, where the contribu-
tion of inelastic processes is suppressed by phase space, it
is appropriate to consider the ratio a. = o /G2(Q2), where
G (Q ) is the square of the nucleon electromagnetic form
factor. Equation (3) is also valid for cr; we then use j„,
the electromagnetic current for photon interaction with
a pointlike nucleon.

Introducing the light-cone (LC) coordinates y~ = yo 2
ys we see that in the domain given by Eq. (1), where

q~ ——qo + q3 are large on the scale characteristic for
nuclear phenomena, the major contribution to Eq. (3) is
given by the region of integration where

1 ( 0.2 fm. (4)

qo —— and
~
q ~= qs

——gQ + Q /4m x
2mg

are sufIiciently large. To explain this, let us analyze the
representation of the cross section as a Fourier transform
of the commutator of electromagnetic currents:

fsi of the struck nucleon and fast spectators with slow
ones can be calculated using the usual semiclassical ap-
proximation for the interaction of fast particles with slow
ones. If the energy transferred to the struck nucleon sig-
nificantly exceeds the characteristic kinetic energies of
the nucleons in nuclei ( 40 MeV) this fsi can be well
accounted for within the semiclassical approximation by
closure. The validity of the completeness approximation
can be checked within the optical model description for
the interaction of the fast ejected nucleons with the rest
of the nucleons. However, it is not legitimate to apply the
semiclassical approximation to the interaction of a struck
nucleon with the nucleon which has comparable momen-
tum in the final state, since in this case the invariant en-

ergy of the two-nucleon interaction is not large the rel-
ative momenta of these nucleons in their center-of-mass

(c.m. ) frame are ki = —k2 —— ~
4 . Remember

that this nucleon has been the neighbor of the struck
nucleon in the initial state [6,7] (see also Sec. III). In
particular, for the kinematics set by Eq. (1), the fsi be-
tween the struck nucleon and its neighbors increases the
cross section by as much as 50% as calculated for the
deuteron [8]. Thus, we conclude that the fsi's are not
small but are nearly local in space. The interaction of
the struck nucleon with the slow spectator nucleons of
nuclei may reveal itself in (e, e'p) reactions where the
closure (completeness) approximation discussed above is
inapplicable. It will be important to calculate any dif-
ferences in the fsi's (presumably quite small) due to the
motion of the pair in the mean Geld of nucleus by which
the final state mass of the pair deviates &om that of the
deuteron.

2 2
y =y+y —

y~ )0, (5)

leading to

2 1
y] (6)

This estimate of the Fourier transform is based on
the oscillatory behavior of the exponent in Eq. (3), the
causality condition, and the presence of singularities in
the amplitudes at small space-time timelike intervals. A
simple method to numerically check this estimate is to
reconstruct, Rom the experimental data, the matrix ele-
ment of the commutator of electromagnetic currents (cf.
[7]). Therefore the significant fsi of the struck nucleon
would occur only with nucleons which are very close to
it. We give additional arguments in favor of this conclu-
sion in the Appendix.

It is easy to check that for our particular kinemat-
ics, the struck nucleon and its nearest neighbors in the
initial state have large and comparable momenta in the
Gnal state, while the rest of the nucleons, which were
at large distances from the struck nucleon in the initial
state, end up with small momenta [6,7]. Therefore the

(We use the system of units where the velocity of
light is equal to 1.) Using the causality condition,

[j„(y),jq(0)] = 0, for y2 ( 0 implies that

III. NONRELATIVISTIC IMPULSE
AP PROXIMATION

In virtual photon-nucleon scattering, energy-
momentum conservation laws restrict x to be less than
unity if the target nucleon is at rest. The kinematic
boundary x = 1 corresponds to elastic e-p scattering.
This well known result can be easily generalized for e-
A scattering in the impulse approximation. A similar
consideration of the kinematics of nucleons in the final
state shows that for x ) j —1 momenta of j nucleons
should be large at large Q [6,7]. Hence the j nucle-
ons are close to each other and the inhuence of the other
(A —j) nucleons on their wave function is small, provided
the nearest-neighbor (NN) interaction is sufficiently sin-
gular at small r~N. Numerical calculations of the nucleon
density of nuclei in momentum space show that its shape
becomes essentially independent of atomic number for
nucleon momenta k ) 0.4 GeV [9].

To convey the basic ideas, we start with the nonrela-
tivistic impulse approximation as a guide. The general-
ization to include relativistic kinematics and. fsi is pre-
sented below. Nuclear wave functions contain mean-field
and. correlation effects, with the high momentum nucle-
ons arising from the efFects of correlations. Thus nonrel-
ativistic spectral functions containing one nucleon with
large momentum can be represented as the sum which in-
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eludes contributions of few (2,3, . . .) nucleon correlations.
This approximate description agrees reasonably well with
current numerical calculations of spectral functions of the
lightest nuclei and of infinite nuclear matter, where two-
nucleon correlations are dominant, provided the center of
mass motion of the pair is taken into account. (See the
discussion in Ref. [10].) The same decomposition over
the contributions of few nucleon correlations is valid for
the scattering Rom more exotic compact configurations
in nuclei discussed in t;he literature, e.g. , LN, 6-quarks,
etc. In line with the experimental evidence that the con-
tribution of meson currents to the cross section of hard
processes is small [13], we systematically neglect in this
work the possible effects of meson currents.

By considering that in the kinematics of Eq. (1)
nucleon-nucleon correlations should dominate, we can ap-
proximate the inclusive cross section in the following way:

A

o.(x, Q2) = ) A a, (A)—o., (z, Q'),
j=2 j' (7)

It is trivial to generalize Eqs. (7) and (8) to take into ac-
count the isospin dependence of SRC.

where o.~(z, Q ) = 0 at x ) j and a~(A)'s are propor-
tional to the probabilities to find a nucleon in a j-nucleon
correlation. The mathematical observation that the high
momentum behavior of Fourier transforms of the wave
function is determined by singularities of the potential
should be recalled here. Therefore the high momentum
behavior of the contribution of SRC to the spectral func-
tion is universal and does not depend on A. This is
the essential assumption required for the 3astrow cor-
relations to describe nuclei. At this point, we ignore the
different functional dependence for the contributions of
correlations with different isospin and spin. In any case,
for pair-nucleon correlations the contribution of nucleon
pairs with isospin 0 dominates due to combinatorics [11].
We choose u2 to be equal to the electron-deuteron cross
section to define the normalization, and then a2 is closely
related with the number of quasideuteron pairs in the
nucleus. Similarly, 0 3 is the cross section for the scat-
tering &om sHe. Thus Eq. (7) is a reasonable interpo-
lating formula. It accounts for the fact that in the re-
gion j & x & j —1 the contribution of j-nucleon SRC
dominates. It should, however, be pointed out that the
parametrization given by Eq. (7) implies that the center
of mass of the j-nucleon cluster is at rest; the validity
of such an approximation has to be investigated, since it
was shown in [10] that the center-of-mass motion plays
a role in determining the removal energy dependence of
the spectral function.

Since the nucleus is a rather dilute system, in any real-
istic model aj should rapidly decrease with j. Therefore,
Eq. (7) leads to the following scaling relations between
scattering ofF the lightest nuclei (A = 2) and heavier nu-
clei (these relations were suggested in [6] within the few
nucleon correlation model and implicitly in [12] for the
scattering ofF sHe within the quark cluster model):~

2 o' (x, Q2)
(

and (8)

3 cr~(x, Q2)
,

)
= n. (A) Iz&*&. .

A o'~ —s(z,

IV. SCALING RELATIONS AND
EXPERIMENTAL DATA

There exists a considerable body of data from the
deuteron and heavier nuclei which cover the (x, Q ) range
of interest here. As no single experiment includes both
the deuteron and heavy nuclei, the data sets, taken at
various incident and final energies and electron scatter-
ing angles, are not at the same values of (x, Q ) necessary
to form the ratios in Eq. (8). The data sets, however,
span a common region in the (z, Q ) plane such to make
it possible to form the ratios in a straightforward way
which we now describe.

The inclusive experimental cross sections at large Q2
for all nuclei are a smooth function of x, falling steeply at
large x. The original bin sizes of the data used here are
quite small, with energy loss bins of typically no larger
than 15 MeV. In order to improve the available statis-
tics and to provide common x bins we rebinned data
for all nuclei into less than two dozen x bins spanning
0.8 & x & 2, with the largest x bin centered at 1.9. After
the inclusive cross sections were rebinned, it was neces-
sary to take into account the difFerent Qz, which were
unique for every x bin. We selected the experiment on

The dominance of the contribution of pair nucleon corre-
lation in the z & 2 region was also suggested in [14]. We
have chosen the scale of oz so that o D (x, Q ) = oz(x, Q ),
etc.

The evident advantage of Eq. (8) is that in the impulse
approximation the cross section for the virtual gamma
scattering off a nucleon is canceled in the ratio as are any
off-shell effects in the interaction of the virtual photon
with the struck nucleon. The fsi between the outgoing
nucleons of the SRC is proportional to the internucleon
wave function at small distances and therefore weakly
depend. s on the nuclear environment. As a result this fsi
is canceled out in the cross section ratios if the motion of
the pair in the mean field is neglected. This property of
the wave functions of the final state is an analogue of the
above mentioned independence of the Jastrow correla-
tions on the nuclear environment. In particular, we may
safely ignore possible differences between fsi for different
channels for 1 & x & 2. Corrections to Eq. (8) arise due
to the difference of the fsi for I = 0 and I = 1 outgoing
NN systems. However this difference is small enough if
M~~ —2M~ & 50 MeV, as it is in the kinematics we
study below. Additionally, the scattering of the I = 0
pairs contributes greater than 80% of the cross section
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heavy nuclei [5] to define the kinematics of the ratios
given below (since in that experiment data on He, C,
Al, Fe, and Au were obtained at identical energies and
angles). To form the ratios it was then necessary to fit
at each z the Q dependence of the deuteron data and
to evaluate the fit at the Q2 of the heavy nucleus. Most
of the deuteron Q dependence is due to the elastic form
factor of the the nucleon and can be accounted for by an
impulse model calculation of the cross section. This is a
good approximation, since the fsi s change only slightly
over the small Q interval involved in the interpolation.
We removed this Q dependence before making the fit
using the y-scaling model [5]; after the fit was evaluated
at the appropriate (z, Q2) the resultant was renormalized
with the same model. We required that for every x point
at least three spectra contribute to the fit. For all nuclei
at the lowest Q 0.9 GeV/c for z ( 1.25, we evalu-
ated the fit of the Q dependence outside the kinematic
boundary defined by the deuteron data. This contributes
only slightly to the error as the fit was strongly deter-
mined by a nearby [at Q 1.2 (GeV/c)2] data set with
small error bars. For Fe, for the two highest Q spec-
tra, we similarly extended the fit for the z range between
1.4 and 1.5 with an estimated contribution of 5 jo to the
error.

All the data we have used were obtained at SLAG.
The deuteron data are from [15,1,2] and the heavy nu-
clei &om [5]. Data &om He are from [4,16]. We show

in Figs. 1—4 the ratios of & ~
~

',
~

for He, Al, Fe,

and is Au at four (six for Fe) values of Q . For nuclei
not shown (sHe and C) the ratios have identical char-
acteristics. One can see that Eq. (8) is satisfied within
experimental errors in the kinematics where, according to
our model calculations, two-nucleon correlations should
dominate. At these z (z & 1.3 —1.4) a2(A) does not
depend on z and Q . If we average a2 over all nq & 1.25
(at is introduced below and the range we have averaged
over corresponds approximately to values of z & 1.4), we
find

a2( He)

a2( He)

o,2(' Al)

a2(' Au)

= 1.7(0.3),
= 3.3(0.5),
= 5.0(0.5),
= 5.3(0.6),
= 5.2(0.9),
= 4.8(0.7),

where the number in parentheses is the standard devi-
ation. The average value is much larger than the stan-
dard deviation, suggesting the independence of a2 on x
and Q . Data with better statistics will be necessary to
look for any possible deviations &om a Q independent
a2(A). The interpretation of these ratios may be difficult
for kinematics very close to threshold for disintegration.
We have therefore indicated in Figs. 1—4 those values of
x that result &om scattering to a final hadronic state
which exceeds the deuteron mass by less than 50 MeV.
Note that in these kinematics the light-cone dynamics
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FIG. 1. Ratio & ~i '~&,

&

for He at four different Q 's. The average Q is given for each frame. To the right of the vertical
w ~~(~,q2)

dashed line are those data which correspond to a final state less 50 MeV greater than the deuteron rest mass.
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~& for Al at four different Q 's. The average Q is given for each frame. To the right of the vertical

dashed line are those data which correspond to a final state less 50 MeV greater than the deuteron rest mass. The solid line is
a calculation based on the nuclear spectral function of Ref. [22] (see Sec. VI).
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dashed line are those data which correspond to a final state less 50 MeV greater than the deuteron rest mass. The solid line is
a calculation based on the nuclear spectral function of Ref. [22] (see Sec. VI).
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( ~')FIG. 4. Ratio — ~I '~, I for "Au at four difFerent Q 's. The average Q is given for each frame. To the right of the vertical
dashed line are those data which correspond to a 6nal state less 50 MeV greater than the deuteron rest mass. The solid line is
a calculation based on the nuclear spectral function of Ref. [22] (see Sec. VI).

of the deuteron with inclusion of the fsi as calculated by
Ref. [8] provides a good description of the SLAC deuteron
data for Q ( 3GeV/c [7].

V. LIGHT-CONE PHY'SICS AND LIGHT-CONE
SCALING

Substituting

and

gA M2 /gA.

(grec)2 + p2
+ (i —n/A) P+ A

The argument presented above in favor of Eqs. (7) and
(8) was implicitly nonrelativistic. But the kinematics un-
der discussion are relativistic, so it is necessary to elab-
orate. It is well known that the cross sections of hard
high-energy processes are expressed through the light-
cone (LC) wave functions of nuclei. To see the relevance
of LC wave functions, consider the on-shell condition of
the struck nucleon,

(p'"'+ q) = m

(~A rec) ~A
A

we obtain

( "')'+p'&!
(A —n)/A ) A

(i2)

where m, '" is the mass of the recoiling (A—i) nucleus.
Equation (9) can be rewritten as

where p'" = P —p', where p' ' is the momentum of
the recoiling nucleus. Introducing the LC variables for
the virtual photon and the struck nucleon, q~ = qo + q3,
for any vector a„= (a+, a, aq), we have

m + q+I
'" + q-I'+ + q

A+int
t (io)

and

= (+ —p )+ (-P —p ) —(& —
& ), . (»)

where at the second step we choose the rest frame of the
nucleus P+ ——P = M~.

A simple differentiation yields
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Bn ( 1+ (q /n)(M~/A)
Om' ((q+M+/&) —[q (m'+ p,')]/n'Ma/&)

(14)

2.00

1.75 50

10

At sufFiciently large Q [several (GeV/c) ], q+ is large
enough so that a, (m —(m2)) is rather small. Thus
at Q2 2—3 (GeV/c)2 n does not depend on (m"', pg).
Consequently, one can integrate over the recoil mass at
fixed o. in the expression for the total cross section, which
then can be expressed only in terms of o.. In formal
terms this result means that the cross section is expressed
through the light-cone nucleon density matrix [7].

The decrease of s, with increasing Q is not uni-
form for x & 1.7 —1.8 the decrease is slower. Using
Eqs. (12) and (13) it is easy to check that the derivative

is small for realistic distributions over m and for
kinematics corresponding to x ( 1.7, Q & 2 (GeV/c)2.
As a result

1.50

1.25
eV/c)

1,00

0.75

o.eo
0.5 0.75 1 1.25 1.5 1.75

X

FIG. 5. n~ against x for Q = 1, 4, 10, 50, oo. At Q = oo,
O'tn = &.

hn = n(m ) —n((m )) = (m —(m ))

(m) m +2n, m
m2+ p2

n,„(2—n,„) (15)

Here o.q is the light-cone variable for the interacting nu-
cleon belonging to the correlated nucleon pair. It is de-
termined from the kinematics of the p*+ (2N) ~ N + N
reaction. The simplest way to calculate o.z is to make
use of the invariance of the ratio of the light —cone &ac-
tions, p /p, under longitudinal boosts. In the c.m.
&arne of p*NN

spectN I p NN
p — /p—

(@ON + P31V)

2EoN
(1 + QW2 —4m2/W)

(16)
In the rest frame of the two-nucleon pair

specN
2p

NNp

spectN p NNp- p-
p'NN NNp' p- (17)

U»ng p' /p
"= (q + 2m)/2m we fnally obtain

q + 2m f QW2 —4m2)
~en =2— 1+

2m ( W )
(18)

W is the invariant mass of the two nucleon system (W
—Q +4qom+4m ), and q = qo —qs is given by Eq. (1).
The re»tion of ng„ to x can be seen as a function of Q2
in Fig. 5.

and in the essential integration region does not exceed
several percent at Q = 2 (GeV/c) . Thus one can re-
place the integral over o. by taking o. at the mean value of
m in Eq. (14), corresponding to electron scattering from
a correlated nucleon pair, where the spectral function has
a maximum [10]. Substituting in Eq. (12), m"' = m,
M~ ——2m, we obtain

The above analysis was based on the consideration of
the kinematics of high-energy inclusive electron scatter-
ing at large Q and x & 1. Thus our conclusion that
the cross section depends only on the LC projection of
the spectral function holds whatever the formalism used.
This property is present implicitly in all approaches used.
to describe such A(e, e') reactions. However, if the wave
function is chosen to be quantized at t = 0, as in nonrel-
ativistic quantum mechanics, and not at t+ z = constant
as in the LC formalism, use of completeness and, hence,
the restriction of fsi to nearby neighbors becomes by no
means obvious. Thus there is no analog of Eq. (14).

Since cross sections are expressed through the light-
cone nucleon density p&~(n, pq) at large Q and x ( 2
this leads to the o.q scaling relation:

~~, (x, Q') f p~, ( ~np~)d'Se
0 ~, (x, Q') f p~, (n~, p~) d'p~

(19)

Thus this ratio of cross sections should be a function of
n& only. Note that the fsi within the SRC are canceled in
this ratio to a large extent (cf. the above discussion) and,
hence, do not destroy the scaling. We have checked. that
this relation is satisfied for realistic wave functions both
in LC formalism and in the "minimal relativity" formal-
ism of De Forest [17]. This relation is reasonably satisfied
by the data, as shown in Fig. 6 where we present o~/a Li

as a function of nq for He and s Fe. Equation (19) will
not hold for Q & 6 (GeV/c) due to the contribution of
inelastic processes which lead to an increase of the ratio
at fixed o..

The d.egree of inQuence of the inelastic channels can
be studied. Since the inelastic contributions are not
experimentally separated &om the elastic contributions
in inclusive scattering, a Inodel of the nuclear struc-
ture functions is needed. Here we use the model of
Ref. [7] [see Eq. (5.28) therein], which is motivated by
the physics of color screening effects and is consistent
with the EMC (European Muon Collaboration) effect.
In Fig. 7 we show a comparison between this model and
the data of SLAC experiments [3,5] at x = 1. One can
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0
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( ~')FIG. 6. Ratio — ~'&~ '~,
&l for Fe for six different q 's plotted together against the scaling variable oq„. The solid line is aw ~~(~,q )

calculation based on the nuclear spectral function of Ref. [22] (see Sec. VI).

see that in the Q range under discussion the inelas-
tic contribution is small at z = 1. For fixed Q its
relative importance decreases with increasing x. The
saturation of the ratio [Eq. (19)] as seen in Fig. 6 at
a = 1.25 —1.3 re8ects the dominance of two-nucleon
correlations for k ) m~ 0.3 GeV/c. Note,

(2—ala
however, that the contribution of higher correlations and
the motion of the pair in the mean field should lead to
a slow increase of the ratio at a & 1.5; cf. the analysis
in [6].

1.0

I I 1 I

VI. NUMERICAL RESULTS
0.5

In principle, calculating the LC density matrix requires
a complete relativistic treatment of the problem. How-
ever, we are interested in this paper mainly by the kine-
matical region o. & 2, where it is sufBcient to use a non-
relativistic approximation for the spectral function of the
nucleus. In the nonrelativistic approximation the light-
cone and nonrelativistic spectral functions must be the
same. Formally this statement follows &om the form
of the master equation for the LC wave function of the
nucleus [18]. When non-nucleon degrees of freedom are
neglected one finds [7)

00
2 4 6

(GeV/c) '
I I I I I

10

FIG. 7. o as a function of Q for x = 1. Data is from
[5,3]. The dash-dotted curve is a calculation including inelas-
tic channels but without consideration of the EMC effect. The
solid curve encloses a range of values that are possible (due
to uncertainties in the model) in the color minidelocalization
model of the EMC eff'ect [7]. The two dashed curves are the
results of a calculation without inelastic contributions with
the lower of these including the effect of nucleon swelling.
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2p~(n) jn~(k)(1/k)d k (1
Ape (o'), jnLi (k) (1/k) dsk (20)

and

2p~(n) n~(k)
A&~( ) i.s«i. ~ @5(k) g)p.

' (21)

a2( He) = 4, a2(C) = 5 —6, a2(Ne) = 6 + 2.

Equation (21) combined with calculations [7] of nuclear
matter wave functions leads to

g,, (A » 1) = 5.

where n~(k) is the nonrelativistic momentum distribu-
tion of nucleons. The result (21) is obtained by com-
puting the cross section at o. = 1 and using spherical
symmetry to express n~(k&, ks ——0) in terms of n~(k).

Equations (20) and (21) both refiect the fact that the
nucleus is a more dense system than the deuteron. Equa-
tion (20) shows that the deuteron contains more nucle-
ons (per nucleon) with small momenta, k « k~ 270
MeV/c, than a heavy nucleus. At the same time, heavy
nuclei are more dense than the deuteron and therefore
have a higher probability of SRC and the probability of
high momentum nucleon components increases with nu-
clear density.

Our treatment is based. on using completeness over re-
coil system states with different m„at a fixed value
of n, which is allowed because c)n/c)m2 is small at re-
alistic Q . The prescription of [19,20] uses completeness
over more restricted phase space corresponding to a fixed
four momentum of the struck nucleon. Since momenta
of nucleons in SRC are large, A: ) ky, and correspond-
ing excitations energies E are not small, (E) k /2m,
relativistic effects may significantly change Eq. (21), if
one tries to calculate p(o. , pq) based on the existing cal-
culations of nonrelativistic S(E,k). In the I C quantum
mechanics of many-nucleon system [6,7] interacting and
spectator nucleons are treated symmetrically, leading to
p~(1 + b, pq) p(1 —8, pz), and small corrections to
Eq. (21) both at n & 1.3 and n & 0.7. In the Bethe-
Salpeter-type prescription, used for example in [19,20],
the interacting nucleon on average carries less energy
than the spectator nucleons (i.e. , mLi —gm2+ p2 and
grn2 + p2 in the case of scattering ofF the deuteron). As
a result, this formalism leads to p(l + h, pq) & p(1 —b, pq)
and this asymmetry is larger for A ) 2 nuclei than for
the deuteron. (For a detailed discussion of this feature
of the Bethe-Salpeter models see [21].) As a result, in
this formalism one obtains substantially smaller values
of the ratio p~(n)/pD(n) at n & 1.3, approximately by a
factor of 1.8—2 as compared to the nonrelativistic results
of Eq. (21). Correspondingly, at n & 0.7 this formal-
ism leads to significantly larger values of this ratio than
Eq. (21).

Information on LC nucleon distributions is also avail-
able from the analysis [6,7] of a number of hard nuclear
reactions [25], such as fast backward nucleon and pion
production, and correlations in v(v) + A ~ p+ + K + X
reactions where it is found:

One can see that these numbers reasonably agree with
results of the above analysis of (e, e') data presented here.
Note also that the x and o. dependences of the ratio of
the nucleus and deuteron cross sections is well described
(solid line in Figs. 1—4 and 6) in terms of the nuclear
spectral function (density matrix), which was taken to be
proportional to the deuteron spectral function (density
matrix) at k & ky and Fermi-step-type distribution at
smaller k as calculated by Zverev and Saperstein [22].
(For description of the program used in the calculation
of the curve in Fig. 3 see [23].) It is worth emphasizing
that violation of the "a scaling" (less than 20%%uo) is smaller
than the violation seen in y scaling for heavy nuclei at
similar momenta [24].

VII. EXTENSION TO COLOR TRANSPARENCY
EXPERIMENTS

g&(~ ~P)/g&(& ~P)T=
gA( e'e)/g D(e, e')

~

(22)

Here z =
2 can be calculated through a = o.q using

Q2
2gp f75

Eq. (18). The n resolution of the experiments does not
decrease with increase of the energy, though the resolu-
tion in the momentum of the nucleon and in the energy
of the recoiling system worsens with increasing Q2 (for
the fixed inomentuin resolution of spectrometers). Thus
T(n) can be measured with better accuracy than T(k).

VIII. CONCLUSIONS

To summarize, we have presented arguments for early
dominance of light-cone physics in high Q2 (e, e') re-
actions and found supporting experimental evidence for
early scaling of the ratios in the light-cone variable. De-

Let us briefly comment on the utility of this analysis
for the color transparency experiments studying A(p, 2p)
and A(e, e'p) reactions. One of the problems of these ex-
periments is to convert the experimentally observed cross
section of the reaction to the value of the transparency
coefBcient T with minimal theoretical uncertainty. This
problem is especially acute, since theoretical estimates
indicate that the color transparency phenomenon would
lead to a rather slow increase of T with Q . Thus it is
necessary to minimize uncertainties due to (a) relatively
poor knowledge of the light-cone density matrix for the
distribution of nucleons in nuclei, which enters into anal-
ysis of high-energy scattering of A(a, ap) reactions (see,
e.g. [7]), and (b) possible ofF-energy-shell efFects in the
interaction of the projectile with bound nucleons. The
idea is that in the impulse approximation the ratio of
the cross sections of A(a, ap) and D(a, ap) at fixed n in-
tegrated over pz is equal to the ratio of the light-cone
densities, which, as we demonstrated, could be extracted
from the ratio of (e, e') cross section with good accuracy.
The off-shell effects cancel out in the ratio. Therefore,
the transparency can be calculated as
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tailed measurements of the discussed ratios would pro-
vide a new effective way to study LC nucleon distribu-
tions. Such distributions are necessary for many appli-
cations, especia y orll f the theoretical analysis of color
transparency p enomeh omena. New dedicated measurements
of inclusive cross sections as well as (e, e'p), (e, e'pp) reac-

k ard ~26~ aretion with the spectator nucleon flying backward,
necessary for detailed investigation of SRC. Such mea-
surements will help us to understand deeper the role o
many-nucleon corre a i1 1 tions final state interactions, and
the possible role of non-nucleon degrees of freedom.

We want to stress that since QAM2 is large it is not
legitimate to apply semiclassical approximation for the
calculation of the Green function. (We must recall that
the semiclassical approximation corresponds to taking
the residue over the energy of the fast particle. )

To illustrate the importance of the large virtuality o
the struck nucleon let us use the uncertainty principle
to estimate mean distances, which are trave e y eb the
struck off—energy —shell nucleon in the nucleus rest frame.
We switch here for simplicity to the old fashioned non-
covariant formalism where energy is not conserved and
momentum is conserved in the interme iate states:
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APPENDIX: fsi OF A STRUCK NUCLEON WITH
SLOW NUCLEONS AT z &1.3

Let us consider the problem of the fsi at x ) 1 in
more detail. In the beginning of the paper we explained
that for our kinematics the fsi should occur mostly with
the other nucleons of the short-range nucleon correlation.
Now let us analyze the multiple-scatterine contribution
arising when only mean field effects are included in the
wave function of the nucleus and all nucleons have low
momenta. In this case a nucleon can only acquire high
momentum ( qs) by absorbing the virtual photon. (See
Fig. 8.) I et us consider how the fast nucleon interacts
with the remaining slow nucleons. In this case the struck
nucleon has a virtuality

where tI is the struck nucleon velocity, v = p/E, and AE
is given by

b,E = —q —M~+ Q(m2 + (q+ p t)2

+ (pint)2 (A4)

The results of calculation using Eq. (A3) are presented
in Fig. 9 for x ) 1 for the case where we average over
momenta of nucleons with p & pFe,~j using the spec-
tral function of [22]. One can see &om inspection of
Fi . 9 that the struck nucleon can only interact withig. a
other nucleons at distances r & 1 fm, i.e., wi in ein the
SRC. Note that this estimate is different &om the related
estimates for deep inelastic scattering. This is because in
the quasielastic kinematics qo &( q3, while in eep inelas-
tic processes qo q3.

The large virtuality of the interacting nucleon pointed
out above leads to the further suppression of fsi, since the
rescattering amplitude decreases with the virtuality. In
the noncovariant formalism this virtua ity is manifeste
in the large difference of kj~jtj~I an the absolute
values of the momenta of the nucleons before and after
the rescattering. They can be written as (neglecting mo-
mentum of the second nucleon):

2 — 2 2AM = m~ —p, (A1)

h — '" + If ~p'"
~

would be small in the kine-where p= p +q. p
matics of interest then

Pi. 5 I I I I I I

i

I I I I

(A2)
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1.0

~ = ~int+ q

(A —1)
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FIG. 8. Reaction diagram for nucleon knockout inciuu. ing
final state interactions.

FIG. 9. Maximum distance in Fermi units from the interac-
tion at which fsi can still contribute to the total cross section
using Eq. (A3).
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k,„=([Qm2 + (p;„, + q)' + m]'
—(p;„t + q)' —4m')'/'/2, (A5)

Here E& ~ is the energy of recoiling system. For exam-
ple for x = 1.5 and Q = 2 GeV/c k;„= 0.65 GeV/c,

ksn = (qo + mx —E~, + m) —(p;„t + q)2 —4m2/2.

(A6)

while ks„= 0.41 GeV/c. (This problem is quite similar
to the role of the difference between the masses of the p
and the vector mesons in the photoproduction of vector
mesons which leads to lack of nuclear shadowing for nu-
clear photoabsorption cross section at E~ 1 —3 GeV.
See for example Ref. [27].

The effects discussed in this appendix, which strongly
suppress long range fsi in the interaction of virtual photon
with slow nucleons of nuclei in the x ) 1 kinematics, were
absent in [20] leading to an overestimate of the fsi. (A
similar conclusion has been reached recently in [28].)
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