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We study elastic proton-nucleus scattering at intermediate energies. The nucleon-nucleus optical
potential is derived from the Bonn nucleon-nucleon potential and the Dirac-Brueckner approach
for nuclear matter. Our calculations, which do not contain any adjustable parameters, yield good

agreement with experiment.
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I. INTRODUCTION

The microscopic description of the bulk properties of
nuclear matter, finite nuclei, and nuclear reactions in
terms of a realistic nucleon-nucleon (NNN) interaction
continues to be an interesting topic in nuclear physics.
There are two aspects to the problem. First, one needs
a realistic NN potential. This strong interaction should,
in principle, be derived from quantum chromodynamics
(QCD). However, up until now, attempts to derive the
NN interaction from QCD have led only to very crude
agreement with experiment which is unsuitable for stud-
ies of nuclear many-body systems. Presently, the only
quantitative models for the nuclear force are based on
meson exchange. Well-known examples for such realistic
potentials are the Bonn [1,2] and the Paris [3] potentials;
we will apply the former in this work.

The second aspect of the problem is a suitable many-
body approach that is able to deal with a realistic NN in-
teraction which has strong short-range components. The
Brueckner approach and the variational method have
been developed for this purpose. However, when us-
ing two-body forces in these nonrelativistic approaches,
one is faced with a fundamental problem: Even the bulk
properties of nuclear matter cannot be reproduced cor-
rectly [2,4].

Encouraged by the success of the Dirac phenomenol-
ogy for nucleon-nucleus scattering [5,6] and the Walecka
model for dense nuclear matter [7,8], a relativistic ex-
tension of the Brueckner method has been initiated by
Shakin and co-workers [9,10], frequently called the Dirac-
Brueckner-Hartree-Fock (DBHF) approach. This ap-
proach has been further developed by Brockmann and
Machleidt [11,12] and by ter Haar and Malfliet [13].
Horowitz and Serot have discussed in detail the basic
aspects involved in the derivation of the relativistic G
matrix [14,15]. The common feature of all DBHF re-
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sults is that a repulsive relativistic many-body effect is
obtained which is strongly density dependent such that
the empirical nuclear matter properties can be explained,
starting from a realistic NN interaction.

There are basically two motivations for the extension
of the DBHF approach to other observables of nuclear
physics, e.g., nucleon-nucleus scattering. The first mo-
tivation is fundamental: One wants to test if it is pos-
sible to describe nuclear matter, finite nuclei, and nu-
clear reactions in terms of the same basic NN interac-
tion. Second, the relativistic description of intermediate-
energy nucleon-nucleus scattering is by itself an interest-
ing topic of theoretical nuclear physics. Its most charac-
teristic feature is the appearance of a strong attractive
scalar and a strong repulsive vector potential, in terms of
which the single-particle motion of the projectile nucleon
in the mean field of the target nucleus can be described
using the Dirac equation. In the Dirac phenomenology
developed by Clark and collaborators [6,16,17], these po-
tentials are adjusted to the nucleon-nucleus scattering
data, using an appropriate number of parameters. Be-
sides the Dirac phenomenology, approaches have been de-
veloped in which nucleon-nucleus scattering is described
more microscopically. We mention here the relativistic
impulse approximation [18-20] and calculations based on
the Walecka model [21-23].

These approaches have some disadvantages. The
Walecka model has no connection to the free-space NN
interaction. In the relativistic impulse approximation,
the medium effects are ingored. Thus it is tempting to
develop a method that avoids both of these drawbacks.
The DBHF calculation based on a realistic NN interac-
tions offers this opportunity. There has been some work
in this direction; e.g., in Refs. [13,24] the DBHF equa-
tions are solved directly in nuclear matter for a nucleon
above the Fermi level.

In this paper we present an alternative approach which
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combines the microscopic origin of the DBHF calcula-
tion with the simplicity of the Walecka model, such that
an investigation of intermediate-energy nucleon-nucleus
scattering is feasible.

The direct extension of the DBHF calculation from nu-
clear matter to finite nuclei and nuclear reactions is not
trivial. More practically, one can parametrize the DBHF
results for nuclear matter in terms of an effective La-
grangian which leads to the same predictions for nuclear
matter as the original DBHF calculation. The effective
Lagrangian, with its parameters derived from the realis-
tic VN interaction, can then be used to investigate the
properties of finite nuclei and nuclear reactions. Differ-
ent schemes for this parametrization have been proposed
[25-28]. We use in the present work a scheme similar to
the one which was recently suggested by Brockmann and
Toki [28]: The DBHF results for nuclear matter obtained
from the Bonn potential are parametrized in terms of an
effective o-w Lagrangian allowing for density-dependent
meson-nucleon coupling constants.

We discuss in Sec. IT the details of our calculation. The
results and a discussion are presented in Sec. III. Finally
a short summary is given in Sec. IV.

II. DETAILS OF THE CALCULATION

The one-boson-exchange (OBE) Bonn potential [2,29]
used in this work is constructed in terms of the Thomp-
son [30] equation. The kernel of this integral equation
is the sum of one-meson-exchange amplitudes of six non-
strange bosons with given mass and coupling. Pseudovec-
tor (derivative) coupling is used for pseudoscalar mesons
(m and 7). A form factor of monopole type is applied
to each meson-nucleon vertex which simulates the short-
range dynamics of quark-gluon nature. See Refs. [2,29]
for details about the OBE Bonn potential and its descrip-
tion of the two-nucleon system.

As in conventional Brueckner theory, the basic quan-
tity in the DBHF approach is a reaction matrix GG, which
satisfies the in-medium Thompson equation. The nu-
clear matter properties are then obtained from this ef-
fective in-medium two-body interaction. Using the Bonn
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A potential [2], the DBHF calculation predicts that nu-
clear matter saturates at a density p=0.185 fm~3 and
an energy per nucleon of —15.6 MeV, which is in good
agreement with empirical information. More results and
discussion concerning the properties of nuclear matter as
obtained in the DBHF approach with the Bonn potential
have been presented in Refs. [2,12,31]. In this work, we
use the Bonn A potential [32].

As proposed by Brockmann and Toki [28], the DBHF
results for nuclear matter can be parametrized by an

effective Lagrangian, in analogy to the o-w model of
Walecka:

L = P[iv,0* —m — go(p)bo — 9u (P)VuPL]Y + (0" b5)?

—3mody — 1 (Oudl — Bu¢h)? + gmiel?, (1)

where 9 is the nucleon field, while ¢, and ¢* are effec-
tive sigma and omega fields, respectively. The masses
of the sigma and omega mesons, m, and m,, respec-
tively, are kept fixed at their values in free-space scatter-
ing (m, = 550 MeV, m,, = 782.6 MeV). However, the
coupling constants of these effective mesons, g, and g,
depend on the baryon density p. They are determined
from the DBHF results for nuclear matter.

The (complex) nucleon self-energy produced by the ef-
fective meson exchanges in nuclear matter can, in general,
be written as

(k) = Bs(ku) + 'YOEO(ku) +7-kEv(ky) =V + ZW{?)
2
where g, Yo, and Yy denote the scalar component, the
timelike part of the vector component, and the spacelike
part of the vector component of the nucleon self-energy,
respectively.

In our notation, k, stands for all four components of
the momentum four-vector, and k = |k|.

Treating the effective coupling constants locally as
numbers and calculating in the relativistic Hartree-Fock
approximation [see Figs. 1(a) and 1(b) for the cor-
responding Feynman diagrams], we obtain the explicit
expressions for the real part of the nucleon self-energy
8,21,23],
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FIG. 1. Feynman diagrams for the calculation of the nu-
cleon self-energy in nuclear matter. (a) Hartree contribution,
(b) Fock contribution, (c) fourth-order contribution.

The effective mass m*, the kinetic momentum k*, and
the single-particle energy ko are given by

m;;(p) =m+VS(kap)a
k* = k(1 + Vi (k)]
ko = B + Vo = (k" + my%)'V/2 4+ V,,

and similarly for q.
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The first term of Vs and V, is the momentum-
independent Hartree contribution [see Fig. 1(a)], while
the other terms are the Fock contributions [see Fig. 1(b)]
which depend on k. A very small spacelike component of
the vector potential is due entirely to Fock diagrams.

In order to determine the effective coupling constants
from these expressions, we drop the spacelike component
of the vector potential [Eq. (5)] and calculate Vs [Eq.
(3)] and V, [Eq. (4)] for k = kp, which are then identi-
fied with the scalar and vector potentials obtained in the
DBHEF calculation (see Table VII of Ref. [12]). This is a
reasonable assumption since the spacelike component of
the vector potential is very small and the potentials are
only very weakly momentum dependent [33]. Note that
these approximations are used only for the determina-
tion of the effective coupling constants; in the calculation
of the optical potential, the spacelike part of the vector
potential [Eq. (5)] is taken into account [see Eq. (10)
below]. The momentum k in Egs. (3)—(5) is related to
the incident energy of the projectile [see Eq. (11) below]
through k9 = E. Both effective coupling constants drop
with increasing density [34,35].

The lowest-order contribution to the imaginary part
of the nucleon self-energy is obtained from the fourth-
order (counting the meson-nucleon vertices) Feynman di-
agrams which are characterized by two-particle—one-hole
(2plh) intermediate states [see Fig. 1(c)]. The nucleon
lines in these Feynman diagrams are described by dressed
nucleon propagators, which corresponds to performing
the calculation on the Hartree-Fock ground state. The
imaginary part of nucleon self-energy due to the fourth-
order Feynman diagrams can be expressed as [22,23]
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where ¢ is the magnitude of the three-vector ¢, while

m* = mg(p),

EI — E]*( _ (k%v + m*2)1/2,

p= [(El: _ %)2 _ m*z]l/z’
a2 = quq”,
A _ 1 .
i(q) = m, 1=0, w,

and 7(q) are meson polarization insertions; their imagi-
nary parts are
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The derivation of the nucleon self-energy [Egs. (3)—(8)]
from the Walecka model has been discussed in detail in
Refs. [21,22]. For the effective Lagrangian [Eq. (1)] used
in the present work, the expressions for the nucleon self-
energy are the same, only with the coupling constants of
the sigma and omega exchanges replaced by those deter-
mined from the DBHF approach which are now density
dependent.

The same fourth-order diagrams which yield the imag-
inary part also give rise to a contribution to the real part
of the self-energy, which should be added to the Hartree-
Fock term. Note, however, that the Hartree-Fock con-
tribution has been derived from a G-matrix description
of nuclear matter and therefore already contains these
terms in a certain approximation. In order to avoid any
double counting no contributions of the fourth-order di-
agram to the real part have been considered.

The nucleon self-energy in a finite nucleus is obtained
by means of the local density approximation, in which the

spatial dependence of the microscopic optical potential is
directly related to the density of the target nucleus. For
a self-consistent description of nucleon-nucleus scatter-
ing (by self-consistency we mean that there are no free
parameters after the NN potential has been selected),
the target density should also be determined from the
effective Lagrangian, Eq. (1). In this paper, we use the
density determined in the relativistic density-dependent
Hartree-Fock (RDHF') calculation with the effective La-
grangian of Eq. (1) [35]. For comparison, we also use the
density determined in a relativistic density-dependent
Hartree (RDH) calculation [35], as well as the density
determined in the relativistic Hartree (RH) calculation
with the Walecka model [36]. As shown in Ref. [35],
the RDH results for the binding energy and root-mean-
square radius of 4°Ca are in good agreement with exper-
iment, while the RDHF results slightly underestimates
them.

The Dirac equation for the single-particle motion of the
projectile nucleon in the mean field of the target nucleus
can be written as

[k + B(m + Us) + Uy + Vely = Ev, (9)
with
Es — mzv Yo+ EXy
Us 1+ EV ) Vv 1+ EV ’ ( )

where E is the energy of the projectile in the center-of-
mass (c.m.) system of projectile and nucleus, which is
related to the incident energy T}, through

m? + mq(m + Tiap)

E=F c.m. — 9
P [(m + mr)? + 2mrTiap) /2

(11)

with m and mg the mass of the projectile and target,
respectively. V¢ is the Coulomb field which we treat in
the same way as in Refs. [20,36].

In order to calculate the experimental observables, the
Dirac equation is usually converted into a Schrédinger-
equivalent equation. The Dirac equation for the four-
component spinor ¥ is equivalent to two coupled equa-
tions for the large (upper) and small (lower) two-
component spinors. One can eliminate the small com-
ponent of the Dirac spinor in a standard way and obtain
a Schrodinger-equivalent equation for the large compo-
nent of the Dirac spinor [6,20,36],

[él% + Uet(r) + Ve (r) + Us.o.(r)o - 1:| o(r)

2 2
=T, (12)
where Ueg and Us,. are the central and the spin-orbit
parts of the Schrodinger-equivalent potential, which is
known as the nucleon-nucleus optical potential in non-
relativistic approaches. The explicit expressions for U.g
and U ,. are

1
Ueﬂ' = UV + E[Us(?m + US) - (UV + ‘/C)2 + UDarwin]1

(13)
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1 dD(r)
Uso. = —WT’ (14)
with
o _3[ 1 dD()]?
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D('r') =m+FE+Us—Uy — Vg.
III. RESULTS AND DISCUSSION

We show in Fig. 2 the density of “°Ca determined in
a RDHF (solid curve) and RDH (dashed curve) calcula-
tion [35] using the effective Lagrangian of Eq. (1); they
are compared with the density (dotted curve) as obtained
from a relativistic Hartree (RH) calculation applying the
Walecka model (QHD-I) [36]. Note that the RDHF cal-
culation slightly underestimates the root-mean-square ra-
dius of *°Ca [35].

We show in Fig. 3 the scalar potential Ugs and vec-
tor potential Uy for p+4°Ca scattering obtained in the
present calculation. The RDHF density is used in the
local density approximation. The real parts of these po-
tentials are only weakly energy dependent; in the inte-
rior of the nuclei, they are about —420 and +320 MeV,
respectively. The overwhelming part of these real po-
tentials comes from the energy-independent Hartree con-
tribution; the energy-dependent Fock contribution plays
only a minor role. On the other hand the imaginary part
of the scalar and vector potentials depends of course very
strongly on the energy; both increase in magnitude with
increasing energy. Note that the radial shapes of the real
Dirac potentials follow essentially that of the target den-
sity (cf. solid curve in Fig. 2).

With the nucleon self-energy determined from the ef-
fective Lagrangian which is related to the realistic NN
interaction used in the DBHF calculation, we can ob-
tain the Schrédinger-equivalent potential through Egs.

[%p]
o T T T T T T T T T

solid: RDHF
dashed: RDH

? QL dotted: RH+QHD-I |
&
> oo T
P
[z
g ol i
o N > )| N 1 n
0 2 4 6 8 10

r (fm)

FIG. 2. Nucleon density of *°Ca as obtained in RDHF
(solid curve) and RDH (dashed curve) calculations with the
effective Lagrangian, Eq. (1) [35]; the dotted curve represents
a RH calculation with the Walecka (QHD-I) model [36].

(13) and (14) which is then used in Eq. (12) to calcu-
late the experimental observables [36]. The Schrodinger-
equivalent potentials, corresponding to the Dirac poten-
tials in Fig. 3, are shown in Fig. 4. As can be seen from
the figure, the real part of the central potential is strongly
energy dependent. At low incident energy (7., =150) the
real part of the central potential is attractive throughout
the whole radijal space and has a longer range. With the
increase of the incident energy, the real part of the cen-
tral potential becomes less attractive and is repulsive in
the interior of the nucleus when 71,,=300 MeV. A typi-
cal pocket of attraction is observed at the nuclear surface
at this energy. At even higher energy (Tj.,=450 MeV),
the real central potential is repulsive in the whole ra-
dial space. The imaginary part of the central potential
also shows a strong energy dependence. The imaginary
central potential is negative at all energies; its magni-
tude increases while its range decreases with increasing
energy.

The important feature of the relativistic approach is
that the spin-orbit potential arises naturally from the
coherent sum of the contributions from the scalar and
vector potentials. While the real part of the spin-orbit
potential is attractive, its imaginary part is mostly pos-
itive. The real part of the spin-orbit potential decreases
(in magnitude) with increasing incident energy, whereas
its imaginary part increases with the energy. The fluc-
tuations of the spin-orbit potential in the interior of the
nucleus are due to fluctuations in the target density (cf.
solid curve in Fig. 2).

The results for differential cross sections and analyz-
ing powers in elastic p+%°Ca scattering at Tj,, =300 and
400 MeV are shown in Fig. 5 and Fig. 6, respectively.
In these figures, the solid and dashed curves are the re-
sults of our calculations with RDHF and RDH densities,
respectively, while for the dotted curves the RH density
from the Walecka model (QHD-I) [36] is used. The ex-
perimental data are from Ref. [37].

For full self-consistency of our calculations, we must
use the RDHF density since it is based upon the same ef-
fective coupling constants as our optical potential. With
the RDHF density, our results (solid curves) are in rea-
sonable agreement with experiment. The agreement is
particularly good at small angles (0., < 15°). At
large angles, we overestimate the experimental differen-
tial cross section. The oscillations in the differential cross
section and analyzing power seem to have a larger period
than the experimental data show (note that there is a cor-
respondence between the minima in the differential cross
section and the dips in the analyzing power). Since our
calculations are parameter free, the quality of agreement
with the experimental data is remarkable. The remain-
ing discrepancies are probably mainly due to the fact
that the target density as obtained in the RDHF calcu-
lation underestimates the root-mean-square radius [35]
(see discussion below).

When using the RDH density, which is in better agree-
ment with the experimental root-mean-square radius
[35], our results (dashed curves in Figs. 5 and 6) improve;
and there is further improvement when the RH density
(dotted curves) is used. Thus, the accurate reproduction
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FIG. 3. Scalar and vector potentials in p+*°Ca scattering at 150 (solid curves), 300 (dashed curves), and 450 MeV (dotted
curves). The RDHF density is used in local density approximation.
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FIG. 4. The Schrédinger-equivalent potential in p+*°Ca scattering at 150 (solid curves), 300 (dashed curves), and 450 MeV
(dotted curves). The RDHF density is used in local density approximation.
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p+*°Ca, T, =300 MeV
— , T -
solid: RDHF density

dashed: RDH density
dotted: RH+QHD-I density

differential cross section (mb/sr)

0.01 C . L
0

analysing power

0 10 20 30
c.m. angle (deg)

FIG. 5. Elastic differential cross section and analyzing
power in p+*°Ca scattering at Tia,b=300 MeV. The solid and
dashed curves are the predictions by the present calculations
with RDHF (solid curve in Fig. 2) and RDH (dashed curve
in Fig. 2) densities, respectively, while the dotted curves are
the results using the RH density from the Walecka (QHD-I)
model (dotted curve in Fig. 2). The experimental data are
from Ref. [37].

of the nucleon density of finite nuclei is probably the most
important outstanding problem for the self-consistent de-
scription of nuclear structure and nuclear reactions.

IV. SUMMARY

In this paper, we have continued our efforts of obtain-
ing a parameter-free and self-consistent description of nu-
clear matter, finite nuclei, and nuclear reactions in terms
of one realistic NN interaction. Here, we have studied
p+4°Ca scattering in Dirac dynamics. In order to carry
out a systematic study, we parametrized the DBHF re-
sults for nuclear matter in terms of a simple effective
Lagrangian consisting of an attractive sigma exchange
and a repulsive omega exchange. The coupling constants
of these effective mesons are density dependent and are
determined from the DBHF results for nuclear matter.

The nucleon self-energy in nuclear matter is then calcu-
lated based on the effective Lagrangian up to the fourth-
order Feynman diagrams. The nucleon-nucleus optical

2449

. p+*°%Ca, T,,, =400 MeV
107 ¢ : . . :
i solid: RDHF density
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dotted: RH+QHD—I density
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differential cross section

0.01 C
0

10 30
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0 10 20
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30

FIG. 6. Same as Fig. 3, but at T1.b=400 MeV.

potential in finite nuclei is related to the self-energy in
nuclear matter by means of the local density approxima-
tion, where the target density is determined by the same
effective Lagrangian as the nucleon self-energy. Further-
more, the Dirac equation describing the single-particle
motion of the projectile in the mean field of the target is
converted to the Schrédinger-equivalent equation which
is solved to obtain the observables.

With the optical potential thus determined, we have
calculated observables of p-+4°Ca scattering at intermedi-
ate energies. The predictions by our model for the elastic
differential cross section and the analyzing power were
compared with the experimental data. The agreement
between our parameter-free calculations and experiment
is remarkable. At large scattering angles, our results for
the differential cross section overestimate the experimen-
tal data. This can be attributed, in part, to small defi-
ciencies in the densities as obtained in the RDHF calcu-
lation.
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