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The first uniform semiclassical (SC) calculations of Regge pole positions and residues have been car-
ried out for four complex optical potentials, which have been used to fit ' 0+ Si elastic-scattering data
at El,b =55 MeV. In particular, we have extended a SC formalism developed for atomic and molecular
scatterings to allow for the presence of a long-range Coulomb potential. The SC Regge poles and resi-

dues are compared with quantum results of Takemasa and Tamura [Phys. Rev. C 18, 1282 (1978)], who

numerically integrated the radial Schrodinger equation. The SC computations show that Takemasa and

Tamura missed ten poles. Using a modified version of the quantum computer code REGGE, due to Take-
masa, Tamura, and Wolter [Comput. Phys. Commun. 18, 427 (1979)] we have located five of these

poles —the remaining poles have residues of modulus (10 '. For low values of the Regge pole quan-

tum number n, the SC and quantum pole positions are in close agreement, with larger differences for the
residues. As n increases, the SC results become less accurate. However at high values of n, the quantum
results also lose accuracy due to numerical instabilities in the REGGE code. It is demonstrated that the
choice of Coulomb interaction —charged sphere or pure Coulomb —can significantly effect the proper-
ties of the Regge pole positions and residues.

PACS number(s): 03.65.Sq, 12.40.Gg, 24.10.Ht, 25.70.8c

I. INTRODUCTION

A powerful technique for understanding elastic angular
scattering is the Regge pole formalism [1]. In this tech-
nique, the properties of the Regge pole positions and resi-
dues in the complex angular momentum plane play a fun-
damental role [2,3]. The development of efficient and ac-
curate methods to calculate Regge pole positions and
residues is thus an important problem.

Complex angular momentum techniques have been
used to describe both nuclear heavy-ion and molecular
collisions, which share the common property of being
short-wavelength (or high-frequency) scattering phenom-
ena [4,5]. The most popular approach for heavy-ion
scattering has been to adopt a simple parametrized form
for the scattering matrix element. This has the advantage
that explicit formulas can often be assumed or deduced
for the Regge pole positions and residues; see, e.g. , Refs.
[6—16). A second approach is to start with an interaction
potential function, for which the pole positions and resi-
dues are then calculated. This second approach has only
been used a few times for heavy-ion collisions [17—22],
with the most extensive quantum results being reported
by Takemasa and Tamura (TT) [18).

In molecular scattering, the situation just described is

*Present address.

reversed: Although simple parametrized scattering ma-
trix elements have been used [23,24], the more popular
approach has been to calculate the Regge pole positions
and residues from an assumed potential [25—34]. In par-
ticular, uniform semiclassical (SC) techniques have been
shown to yield accurate pole positions and residues. For
reviews of complex angular momentum techniques as ap-
plied to molecular scattering, we refer to Refs. [35—38].

The purpose of this paper is to apply the SC techniques
developed for molecular problems to nuclear heavy-ion
scattering. We have used the same potentials as TT, so
we can compare with their quantum results for the Regge
pole positions and residues. The potentials are denoted
SD, GK, E18, and LC, and have been used to fit
' 0+ Si elastic-scattering data at E&,b=55 MeV [18].
They are described in Sec. II.

The SC theory is presented in Sec. III, where uniformly
valid formulas for the pole positions and residues are de-
rived. An important difference between nuclear heavy-
ion and molecular scattering in the presence of a long
range Coulomb tail for heavy-ion collisions. We show
how to extend the SC theory of Ref. [26] to include this
effect.

Our initial SC calculations revealed that TT failed to
locate ten poles in a specified region of the first quadrant
of the complex angular momentum plane. We therefore
obtained the source code of the REGGE computer pro-
gram they used [19] and with a modified version of it
were able to find five of the missing poles, using the SC
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pole positions as initial estimates. Section IV describes
some practical points associated with the quantum and
SC computations.

Our SC results for the Regge pole positions and resi-
dues are presented in Sec. V, where they are compared
with the quantum values of TT together with our results
from the REGGE code. We also investigate the e6'ect of
replacing a uniformly charged sphere potential (as used
by TT) by a pure Coulomb potential. Our conclusions
are in Sec. VI.

II. THE POTENTIALS

Takemasa and Tamura [18] have calculated quantum
pole positions and residues for four complex optical nu-
clear potentials, three of which have the Woods-Saxon
form,

where Z& and Z2 are the atomic numbers of the colliding
ions. Note that the parameters R &, R2, and R& are relat-
ed to r, , r2, and rc in Table I by

R;=r;(A,' + A' ), i =1,2, C,
where Ai and A2 are the relative atomic masses of the
colliding ions. We will also report Regge pole calcula-
tions in Sec. V C using just a pure Coulomb potential for
all r.

lt is easy to see from Eq. (2.1) that the SD, GK, and
E18 potentials each possess in the complex r plane an
infinite number of poles that arise from the real and
imaginary parts of the potential. The positions of these
poles are

ri,"'=R,+i (2n +1)~a, , n =0, 1,2, . . . ,
0

Vo
V~(r) =-

1+exp[(r —R, )/a, ]

i@'0

1+exp[(r —R2 )/a2]

(2.1)

re, ' =R ~+i (2m + 1)ma2, m =0, 1,2, . . . .
0

(2.4)

The LC potential also has an infinite number of poles
in the complex r plane, but in this case the positions of
the poles for the real and imaginary parts of the potential
coincide. The positions of the leading poles were found
to be at r+ = (6.58+1.65i ) fm.

where Vo and 8'0 are the strengths of the real and imagi-
nary parts of the potential, respectively. The parameters
for these potentials are given in Table I and correspond
to the potentials of Shkolnik and Dehnhard (SD) [39],
Golin and Kahana (GK) [40], and the E18 potential of
Cramer et al. [41]. The fourth potential, due to Lee and
Chan (LC) [42], has the modified form

—
( VO+i JVO)

V~(r) =
1+0.99 exp[(r —R, )/a, ]+exp[(r —R2)/a2]

(2.2)

The parameters for this potential are also given in Table
I. Three of these potentials have been found to reproduce
the experimental elastic di6'erential cross section for

0+28Si reasonably well, although we shall not be con-
cerned with this point.

In addition to the nuclear potential, it is also necessary
to specify a Coulomb interaction. We follow Takemasa,
Tamura, and Wolter [19] and use a uniformly charged
sphere potential of radius Rc,

III. SEMICLASSICAL CALCULATION
OF RKGGE POLE POSITIONS AND RESIDUES

The radial Schrodinger equation for the problem is
(Ref. [4], p.34)

X iij&(r) =0 . (3.1)

g(l„;r =0)=0, (3.2)

at the origin, and an outgoing-wave-only boundary condi-
tion at infinity:

f(1„;r) — exp[i [kr —y 1n(2kr)]], (3.3)

where V~(r) is the nuclear potential and Vc(r) is the
Coulomb potential. The collision energy E is a real pa-
rameter but the angular momentum quantum number I is
allowed to be complex.

The boundary conditions for a Regge pole are [2,3]

e ZiZ2

Vc(r) =
e Z(Zp

2Rc

r &Rc,
32 (2.3)

where I„ is the pole position, n =0, 1,2, . . . , and the
Sommerfeld parameter y is y=e ZiZ2p/i5 k with the
wave number k =(2pE)' /A'. Equation (3.3) dift'ers from
the usual boundary condition for a short-range potential
by the factor exp[ iy ln(2k—r)] due to the long-range

TABLE I. Parameters for the four nuclear optical potentials.

Potential

SD
CxK
E18
LC

t/0/Me V

27.456
75.2133
10.0

286.5

r, /fm

1.310
1.2355
1 ~ 35
1.122

a &/fm

0.485
0.4929
0.618
3.7

8 0/MeV

4.865
8.5

23.4
19.7

1.277
1.2065
1.23
1.122

a, /fm

0.323
0.1844
0.552
0.49

rc/fm

1.0
1.4204
1.0
1.2
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Coulomb interaction.
The semiclassical procedure for obtaining the pole po-

sitions and residues consists in deriving a (uniformly) val-
id approximation for the wave function in the asymptotic
region, and then imposing the outgoing-wave-only
boundary condition (3.3) by setting the incoming com-
ponent of the wave function to zero. This results in an ex-
pression for the S matrix element S(1), which yields a
semiclassical quantization formula for the pole positions
I l„j, together with the corresponding residues [r„j.

SD potential

&e-0
0

ay

Vp x ~g

50

eq

50

A. Semiclassical wave function

We start our semiclassical analysis by first examining
the distribution of classical turning points in the complex
r plane. By definition, the classical turning points are
solutions of

k (l;r) =0,
where

2p
A' (1+—')

k(l;r)= E —V (r) —V (r)—N C
2 1Pr

and the Langer substitution of (1+—,') for l(1+1) has
also been made.

Figure 1 illustrates the (complex valued) classical turn-
ing points closest to the real r axis for l =0—50 for the
SD potential + uniformly charged sphere interaction at
E„b= 55 MeV (E =34.994 MeV). Also illustrated are the
positions of the leading poles arising from the Woods-
Saxon potential [see Eq. (2.4)]. It can be seen that ai is al-

ways we11 removed from cI and e& but that cI and e& can
come relatively close to each other.

To obtain the semiclassical wave function for r ~ ~ re-

-2

5ox g p

Vp

16@ + 28Si ELAB 55 MeV

-3 I I I I I I

0 2 4 6 8 12 14
Re r /fm

FIG. 1. Turning points al,cl, and el for I =0—50 in the com-
plex r plane for the SD plus charged sphere potential. Rc
denotes the radius of the charged sphere. The locations of the
leading potential poles are indicted by crosses, with the poles
from the real part of the Woods-Saxon potential labeled V0, and
those from the imaginary part labeled W0.

10

quires the use of semiclassical formulas. We make two
approximations when doing the following. First, we as-
sume linear connection formulas can be used at a& (which
neglects the Coulombic nature of the e6'ective potential
close to a&) together with parabolic connection formulas
around c& and ei. Secondly, we assume the poles arising
from the nuclear potential can be ignored. This is valid
provided none of a&, ci, eI lie close to any of these poles.
With these assumptions, the semiclassical wave function
for r —+ oo can now be written [from Eq. (12) of Ref. [26]]:

QI(r) —[k(l;r)] ' (e' A (e)+e ' e ') exp i f k(l;r')dr' i m- —.
p~ oo el 4

+[k(l;r)] ' (e ' A+(e)+e' e ')exp i k(l;r'—)dr'+i vr—1

el
(3.4)

where a(l) and me(l) are phase integrals given by
Cl el

a(l) = f k (1;r)dr, me(l)—: i f k —(1;r)dr,
al Cl

and A —(e) is defined by

(2~)'"
A —(e) —=

, exp — me exp—[+i [e e ln( —e—)] j .I ( —,'+ie) 2

In order to handle potentials with a Coulombic tail, it is convenient to introduce

b, (l) —= lim f k (1;r')dr' —kr +y ln(2kr) +—m 1+—1 1

r~~ . 'l 2 2
(3.5)

In terms of b, ( 1), Eq. (3.4) can be written

QI(r) —exp( —i—'m)[k(l;r)] '~ [e' A (e)+e ' e '] expIi [kr ' ln y ln(2kr)+b—(l—)]j—
+exp(i —,'n)[k(l;r)] '~ [e ' A+(e)+e' e "']expI —i[kr ,'lay in(2kr)+5—(l)—]j

..— (3.6)
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B. Semiclassical S matrix element

The (full) S matrix element, S(1), is defined by

il2&(r) —Nl(exp[ —i [kr —,'12r—y—ln(2kr)] j

—S (1)exp [ i [kr —
—,
' 1n.—y ln(2kr) ) j ),

(3.7)

to cr &, namely (Ref. [4], p. 37),

crI = —y+(1+—,') tan '[y/(1+ —,')]
+ —,'y ln[y +(1+—,') ] .

Equation (3.11) for b, (l) therefore becomes

6,( 1) =5~(1)+o.
I (3.13)

(3.8)

This differs from the result for a non-Coulombic poten-
tial (see Eq. (19a) of Ref. [26] ) by the extra term
y ln(2kr) that is present in the definition of b, (l).

The nuclear Sz(l) matrix element is related to S(l) by
(Ref. [43],p. 12)

I 1+1+iy
=e 'S(l),

where o.
&

is the Coulomb phase.

(3.9)

where XI is a normalization constant. Comparison of
Eqs. (3.6) and (3.7) shows that the semiclassical S matrix
element is given by

Since y))1 in our applications to nuclear heavy-ion
collisions we can also replace crI by o I in Eqs. (3.8)
and (3.9) for S~(l), obtaining with the help of Eq. (3.13)
the result

S~(l)— 2'5 (1)
A+( )+

(3.14)

D. Semiclassical Regge pole positions and residues

The expression (3.14) for the nuclear S matrix element
is formally the same as for non-Coulombic scattering, ex-
cept that the nuclear phase 5~(l) occurs in place of the
non-Coulombic WKB phase 5(l) (see Eq. (19a) of Ref.
[26]).

The positions of the Regge poles are obtained by equat-
ing the denominator of Eq. (3.14) to zero. This yields the
following quantization condition

C. The phase A(I)

It is useful to consider the phase b,(l), which is defined
by Eq. (3.5), in more detail. After adding and subtract-
ing a term

f kc (1;r')dr', (3.10)
"Cl

where

N(l„)=(n +,')2r, n —=0,1,2, . . . ,

where

C&(l) =a(l) ——,' I e(l) —e(l)ln[ —e(l)]j

(2m)'~ exp[ —,'me(l)]

I ( —,
' —

1 e(l) )

(3.15)

(3.16)

kc(l;r) = Zj Z2e
1/2

2

r

and the classical turning point is given by

r„=I y+ [y'+(1+ -,
' )']'"j /k,

we can write b, (l) in the form

g(1)=5&(1)+ lim f kc(l;r')dr' —kr+y ln(2kr)
p~ oo rC

1 1+—w l+—
2 2

(3.1 1)

In Eq. (3.11), 5~(l) is the nuclear semiclassical phase shift

5&(j)=f k(1;r)dr —f kc(l;r)dr .
el CI

The integral (3.10) can be evaluated explicitly for r large,
and we find

r
lim kc(l;r')dr'=kr y ln(2kr) 21 ~(l +—

21
)+awKB—

p oo

where o
&

is the semiclassical (or WKB) approximation

d cI1( l )

dk
exp[2re(l„) —ia(l„)+i 5~(l„)],

n =0, 1,2, . . . . (3.17)

The semiclassical formulas (3.15)—(3.17) involve the
three complex turning points a&,cl, and e& and will be re-
ferred to as SC(3) in the following.

An important special case arises when cI and eI are
well separated from each other, so that the phase integral
e(l) is of large modulus. In this case, Stirling s approxi-
mation can be applied to the complex gamma function in
Eq. (3.16). It is then found that the quantization formula
(3.15) simplifies to

c2(l„)=1(n + ,' )2r, n =0, 1,2, . .—. ,

where

(3.18)

(3.19)

and is related to e and e by co=a+i~e. The formula

and is identical to that for potentials not containing a
Coulombic component [26].

The corresponding residues Ir„j are obtained by fol-
lowing the procedure in Ref. [26]. We then obtain
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(3.17) for the residue becomes

d co(l)
dl

exp[2i5~(1„)],
n =0, 1,2, . . . . (3.20)

Equations (3.18)—(3.20) no longer depend on cI, and
could have been obtained directly by application of linear
connection formulas at a1 and e1. The two-turning-point
semiclassical approximations (3.18)—(3.20) will be called
SC(2) in the following.

Equations (3.14)—(3.20) are first-order semiclassical ap-
proximations. It is likely they can be generalized to arbi-
trary order, since this has been achieved in the case of
non-Coulombic scattering [29,30].

E. Comparison with other results

and

e 'A (e)=N( ie),—

where

(2~)'"
N(z) =, exp[z ln(z/e)]I —'+z" 2+

and

)
1/2

N(z) = exp[in. z —z ln(z/e) ],I ( —' —z)2

then Eq. (3.14) can be written in the form

S~( l) = 1+N( ie)e '—
N( ie)+e '—exp[2i5„(l)] . (3.21)

Equation (3.21) is equivalent to Eq. (2.10) of Ref. [43]. If
we set Vc(r)—:0, then Eq. (3.14) becomes equivalent to
the first-order phase integral formula of Arnaha et al'.

[30].
A more general three-turning-point formula for S(l)

with l real has been derived by Crowley [44], which takes
into account the Coulomb component of the effective po-
tential close to the inner turning point a&. Equation (3.8)
can be obtained from Eq. (3.68) of Ref. [44] as a special
case, by setting (in Crowley's notation) g =g and

yWKB

IV. QUANTUM AND SEMICLASSICAL
COMPUTATIONAL METHODS

In this section, we briefly describe the numerical pro-
cedures and computer programs used in our calculations
for the Regge pole positions and residues.

Restricting l to real ualues, we can compare Eq. (3.14)
for Sz(l) with the formula obtained by Brink and Taki-
gawa [43].If we write

e"'A +(e)=N ( i e)—

A. Quantum calculations

The results reported by Takemasa and Tamura (TT)
[18] were obtained using the computer code REDYE de-
scribed by Takemasa, Tamura, and Wolter (TTW) [19].
This computer code is available from the Computer
Physics Communications Program Library (catalogue
number ABNF) and was employed in our calculations.
The TTW code locates the poles and computes the resi-
dues of the nuclear S matrix by direct numerical integra-
tion of the radial Schrodinger equation. The nuclear S
matrix is determined by matching the integrated solution
to Coulomb wave functions of complex order [45]. A
pole position is then located using a Newton-Raphson
iteration in the complex angular momentum plane. In
our calculations with the TTW code, the following prac-
tical points are important.

(a) The values of the residues are particularly sensitive
to numerical factors in the computer codes. In particu-
lar, it is important to ensure that the same fundamental
constants and conversion factors are used when compar-
ing quantum and semiclassical results. We adjusted the
conversion factors in the TTW code so they were con-
sistent with those given by Cohen and Taylor [46]. How-
ever, the new conversion factors only differed from the
original TTW ones by a few units in the fifth significant
figure.

(b) The pole search in the TTW code requires initial es-
tirnates for the pole positions and these are either sup-
plied by the user or generated by the program itself.

In order for the program to generate initial estimates
of the pole positions in a given region of the complex l
plane, the user must manually divide up the specified re-
gion into rectangles, whose coordinates are read into the
program. The code then evaluates a contour integral
around the perimeter of each rectangle; if the modulus of
the integral so obtained is & 5, where 5 is a small positive
number, then the program proceeds to the next rectangle.
Otherwise, it searches that rectangle for Regge poles and
calculates the residue at each pole. The sum of the resi-
dues of the poles in a given rectangle should equal the
value obtained by contour integration around the perime-
ter of the rectangle, thus providing a useful check that no
poles have been missed.

It is evident that the program will not find poles with
residues that satisfy ~r„~ &5. The default value in the
TTW code is 5=10 and this value was used by TT.
However, we will show in Sec. V that there are poles with
~r„~ &10, and these were therefore missed by TT. To
locate these poles, small rectangles and a small integra-
tion step length should be chosen, but this greatly in-
creases the expense of the calculation. The program runs
much faster if good initial estimates can be supplied, for
example, from a semiclassical calculation.

(c) We also examined the stability of the computed pole
positions and residues to the number of points used to in-
tegrate the radial Schrodinger equation. These are con-
trolled by the integer variables NRMIN and NRMAX.
In particular, we systematically varied NRMIN and
NRMAX in the ranges 40—80 and 700—1000, respective-
ly. This showed that some of the results reported by TT
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are not stable with respect to variations in the number of
integration points. In some extreme cases, we were un-
able to reproduce TT's results with the TTW code.

(d) The TTW code has also been used to calculate
Regge poles and residues by Anni and Taff'ara [20] who
describe some modifications to it. They also state (p. 78),
"To save computing time we have not verified the stabili-
ty of all the poles calculated with respect to variation of
the number of the integration points of the radial equa-
tion. We, in fact, limited ourselves to carrying out some
of these checks only at some energies and only for the
poles which significantly contribute to the cross section. "

(e) The TTW source code as supplied by the Computer
Physics Communications Program Library will crash on
certain computer systems because it attempts to use vari-
ables before they have been initialized. In particular, the
complex array UL (used to store the propagating wave
function) in subroutine lNTE contains uninitialized array
elements. This problem can be avoided by filling UL
with zeros at the start of the calculation.

B. Semiclassical calculations

V. RESULTS AND DISCUSSION

Tables II—V contain the Regge pole positions and resi-
dues for the SD, E18, GK, and LC potentials, respective-
ly. The abbreviations used in these tables are TT are the
quantum results of Takemasa and Tamura as reported in
Tables II—V of Ref. [18]; Q are the quantum results ob-
tained using the code REGGE of Takemasa, Tamura, and
Walter (TTW) [19], as described in Sec. IV; SC(2) and
SC(3) are the semiclassical two and three turning point
results. Usually the SC pole positions and residues are
calculated using the two-turning-point formulas (3.18)
and (3.20), except when the turning points c& and e& are
propinquous, in which case the three-turning-point for-
mulas (3.15) and (3.17) are employed. The label n in the
tables is the quantum number from the SC quantization
formula [Eqs. (3.15) or (3.18)]. As explained below, this
number sometimes differs from the label used by TT.

Note that Anni, Renna, and Taffara [47] and Anni and
Renna [48] have used TT's pole positions and residues to
discuss the angular scattering of ' 0 colliding with Si.

The semiclassical computations were carried out using
numerical techniques described earlier [26].Briefly, an in-

itial guess for a pole position I„ is made, which allows the
clasical turning points aI, cI, and e& to be evaluated in

n n n

the complex r plane by Newton-Raphson iteration. The
action integrals a, me, and co are next evaluated by
Gaussian integration along straight line segments con-
necting the turning points. Finally, the initial guess for I„
is improved by Newton-Raphson iteration in the complex
l plane. The corresponding residue is then calculated
directly using Eqs. (3.17) or (3.20), with the infinite in-

tegrals in 5&(1„)truncated at a large finite value.
The procedure just described requires the analytic con-

tinuation of the effective potential into the complex r
plane. This is straightforward for V~(r), the centrifugal
potential and for a pure Coulomb potential. For the
charged sphere potential, we used the following prescrip-
tion

e Z)Z2
Rer )Rc,

Vc(r) =
e Z]Z2

[3 (r IRC) ], Re—r ~Rc .
2Rc

(4.1)

A difficulty arises in the Gaussian integration when the
real parts of the turning points lie on opposite sides of
Rc, because there is then a discontinuity in the integrand
on the straight line path connecting the turning points.
To avoid this difficulty, we used paths of the type

a& ~(Rea&, 0)~(Reci, 0)~c&

along which the integrand is free from discontinuities.
In both the quantum and semiclassical calcula-

tions the masses used were m (' 0)= 15.994 u and
m( Si)=27.977 u. In all cases, E~,b =55 MeV, corre-
sponding to a center-of-mass collision energy of
E =34.994 MeV.

A. Comparison of TT and Q results

TT claim to have located all Regge poles lying in the
rectangle —0.S Rel„544.5 and O~ Iml„~ 7 for all four
potentials. However, inspection of our tables shows that
they missed the following ten poles: SD(n =7),
GK(n =0 and 1), and LC(n =0—6). We first found these
poles using SC techniques and subsequently were able to
locate five of them with the REDUCE code. The exceptions
are LD(n =0—4) which have residues of modulus
(1O '.

As explained in Sec. IV, we examined the stability of
the Q results to variations in the integration parameters
for the radial Schrodinger equation. Where appropriate,
estimated uncertainties in the Q pole positons and resi-
dues are reported in the tables. In general, the accuracy
(i.e., the number of significant figures) of the Q results de-
creases as n increases, with the pole positions more accu-
rate than the residues. Note that for the LC potential
with n ~ 16, stability problems prevented us from obtain-
ing values for the Q residues, and for n =21, the Q pole
position as well.

Next, we compare the TT and Q results for the four
potentials. The tables show that there is generally good
agreement for low values of n, which deteriorates as n in-
creases, in particular for the residues. Note that some of
the Q results are more accurate than the corresponding
TT ones. Thus for LC(n =7), TT report Imr7= —0.001
(one significant figure), whereas the Q result is
Imr7= —0.000531 (three significant figures). In con-
trast, for GK(n = 14), TT have Imr, ~ =221.667 (six
significant figures), while the Q calculations give
Imri4=200+20 (one significant figure). As noted above,
no stable Q values for the residues of LC(n =16—21)
could be obtained.

The E18 potential has just one pole (n =0) within the
rectangle searched by TT. We also located the n =1
pole, which lies just outside this rectangle, and its posi-
tion and residue are given in Table III.
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TABLE II. Positions and residues of the Regge poles for the SD potential. TT are the quantum re-
sults of Takemasa and Tamura as reported in Table III of Ref. [18].Q are the quantum results obtained
using the code REGGE (Ref. [19])-present calculations. SC(3) are the semiclassical three-turning-point
results using Eqs. (3.15) and (3.17). SC(2) are the semiclassical two-turning-point results using Eqs.
(3.18) and (3.20). The numbers in brackets show the estimated uncertainty in the last digit(s) of the Q re-
sults, for example —2.891 (+1)—= —2.892 to —2.890.

Method

SC(3)
SC(2)

Rel„

24.80
24.802
24.683
24.945

1.17
1.166
1.172
0.716

Rer„

0.241
0.241
0.219
0.0981

Irnr„

0.198
0.198
0.201
0.451

TT

SC(3)
SC(2)

22.55
22.554
22.449
22.492

2.27
2.272
2.289
2.322

1.135
1.135
1.102
0.910

1.353
1.353
1.380
1.320

TT

SC(3)
SC(2)

19.11
19.117
19.022
19.022

4.05
4.051
4.052
4.052

2.216
2.217
2.277
2.277

—1.732
—1.732
—1 ~ 517
—1 ~ 517

SC(3)
SC(2)

15.08
15.084
15.007
15.007

5.10
5.096
5.103
5.103

—2.891
—2.891(+1)
—2.821
—2.821

—0.092
—0.093(+1)
—0.258
—0.258

TT

SC(2)

TT

SC(2)

11.13
11.134
11.204

7.51
7.507(+ 1)
7.852

5.44
5.440
5.406

5.36
5.359
5.313

4.067
4.04(+1)
3.709

—7.026
—7.02(+2)
—7.512

1.250
1.22(+1)
0.972

—9.934
—9.96(+2)
—4.831

TT

SC(2)

TT

SC(2)

4.38
4.380
4.921

1.823(+ 1)
2.351

4.89
4.896
5.030

4.370(+1)
4.659

—35.358
—35.44(+ 1)

1.967

—25.3(+2)
157.9

24.621
24.54(+2)
33.53

143.8(+3)
39.84

TT'

SC(2)

—0.36
—0.37(+1)

0.0842

3.89
3.90(+1)
4.264

—55.732
—62(+15)
703.3

369.174
395(+30)

0.378

'Assigned to n =7 by TT in Table III of Ref. [18].

TABLE III. Positions and residues of the Regge poles for the E18 potential. Notation same as Table
II. The TT result is from Table II of Ref. [18].

Method

Q

TT

SC(2)

Rel„

23.79
23.789
23.752

Iml„

4.20
4.200
4.290

Rer„

1.773
1.773
1.594

0.667
0.667
0.653

Q

TT

SC(2)
22.612
22.611

8.272
8.386

0.72(+2)
0.744

—0.68(+3)
—0.627
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TABLE IV. Positions and residues of the Regge poles for the GK potential. Notation is the same as
Table II. The TT results are from Table IV of Ref. [18].

Method

TT

SC(3)

Rel„

34.233
34.178

Iml„

1.886
1.880

Rer„

—0.114X 10
—0.111X 10

Imr„

—0.943(+1)X 10
—0.917X 10

TT

SC(3)

TT'

SC(3)

31.159
31.126

28.39
28.395
28.371

1.645(+ 1)
1.619

1.46
1.462
1.481

—0.127 X 10
0.191X 10

0.2x 10
0.161x10-'
0.165 x10-'

—0.133x 10
—0.136X 10

—p.2 x 1p
—'

—0.192x 1Q
—p. 181x 1p-'

26.00
26.005
25.957

1.29
1.287
1.303

0.125
0.125
0.128

0.029
0.0289
0.0298

TT'

SC(3)
SC(2)

24.17
24.171
24. 138
24.265

1.58
1.580
1.582
1.615

0.312
0.312
0.288
0.0549

0.739
0.739
0.765
0.724

TT'

SC(2)

TT'

SC(2)

TT'

SC(2)

21.94
21.940
21.925

19.41
19.412
19.392

16.78
16.785
16.790

2.39
2.394
2.416

3.06
3.065
3.079

3.56
3.563
3.569

1.089
1.088
0.927

2.691
2.692
2.702

—0.444
—0.439
—0.370

1.234
1.234
1.277

—0.606
—0.604
—0.424

—4.021
—4.022
—3.960

10

TT'

SC(2)

TT'

SC(2)

TT'

SC(2)

14.13
14.132
14.204

11.48
11.486
11.683

8.94
8.942
9.279

3.90
3.902
3 ~ 895

4.07
4.073
4.090

4.07
4.067
4.127

—5 ~ 599
—5.603
—5.147

3.024
3.012(+3)
5.189

9.466
9.47(+1)
3.915

1.272
1.262
1.754

7.524
7.532(+2)
5.773

—5.858
—5.84(+1)

—10.47

TT'

SC(2)

6.55
6.558
6.934

3.98
3.978
4.161

—11.140
—11.056(+2)
—21.69

—13.363
—13.37(+1)
—0.931

12 TT'

SC(2)

4.31
4.303(+1)
4.671

3.87
3.867(+2)
4.141

—28.013
—28.31(+5)
—0.838

18.972
18.8(+1)
52.42

13 TT'

SC(2)

2.14
2.14(+1)
2.486

3.74
3.755(+5)
4.081

0.436
2.6(+5)

140.4

81.375
83(+2)
70.6Q

14 TT'

SC(2)

0.02
0.07(+1}
0.372

3.62

3.65(+3)
3.992

60.961
1oo(+2o)
530.2

221.667
200(+20}

5.547

'The entries for n =2—14 are assigned to n =0—12 by TT in Table IV of Ref. [18].
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TABLE V. Positions and residues of the Regge poles for the LC potential. Notation is the same as
Table II. The TT results are from Table V of Ref. [18].

Method

SC(3)

SC(3)

SC(3)

SC(3)

SC(3)

Rel„

44.925

42.312

39.819

37.430

35.134

Iml„

1.522

1.518

1.510

1.499

1.485

Rer„

—0.105X10-"

—0.233 X 10

—0.870 X 10-"

0.270 X 10

0.181X10-'

Imr„

—0.160X10-"

—0.618 X 10-"

—0.646 X 10

—0.266X10-"

—0.505 X 10-'

TT

SC(3)
32.939
32.921

1.465
1.466

0.314(+1)X 10
0.327 X 10

—0.479(+1)X 10
—0.481 X 10

TT

SC(3)
30.806
30.787

1.441
1.442

0.268 X 10
0.279 X 10

—0.236 X 10
—0.235 X 10

TT'

SC(3)

28.75
28.754
28.735

26.81
26.815
26.796

1.41
1.406
1.407

1.34
1.340
1.340

0.1 X 10
0.125 X 10
0.130X 10

0.032
0.0324
0.0330

—0.1 X 10
—0.531 X 10
—0.518X 10

0.4X ]0-'
0.367 X 10
0.494 X 10

TT'

SC(3)

25.14
25.142
25.125

1.33
1.331
1.334

0.167
0.167
0.158

0.258
0.257
0.267

10 TT'

SC(3)
SC(2)

23.50
23.505
23.466
23.537

1.72
1.722
1.674
1.747

0.175
0.175
0.144

0.726 X 10

0.840
0.839
0.867
0.795

TT'

SC(3)
SC(2)

21.60
21.602
21.598
21.598

2.21
2.206
2.219
2.219

0.992
0.990
0.838
0.838

1.277
1.278
1.328
1.328

12 19.57
19.575(+ 1)
19.564

2.632
2.632
2.640

2.748
2.748
2.709

0.044
0.048(+ 1)

0.261

13 TT'

SC(2)

17.48
17.487(+ 1)
17.473

2.99
2.993(+2)
3.001

1.629
1.63(+1)

1.891

—3.869
—3.85(+2)

—3.731

14 TT'

SC(2)

15.36
15.36(+1)
15.350

3.30
3.30(+1)
3.300

—5.177
—5.10(+15)

—4.879

—3.102
—3.2(+1)
—3.396

15 TT'

SC(2)

13.29
13.26(+ 10)
13.215

3.54
3.6(+1)
3.539

—3.129
—3.8(+12)
—4.425

7.127
7.6(+6)
6.906

TT'

SC(2)

11.17
10.9(+12)
11.083

3.41
3.6(+2)
3.724

6.077
b

10.60

2.780
b

4.735
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TABLE V. (Continued).

17

Method

TT'

SC(2)

Rel„

8.56
7.9(+11)
8.960

Iml„

3.44
3.3(+5)
3.861

Rer„

5.276
b

4.232

Imr„
—3.309

b
—17.31

TT'

SC(2)

6.57
5.7(+8)
6.852

2.64
3.0(+8)
3.957

—0.653
b

—31.19

—2.154
b

—4.011

19 TT'

SC(2)

3.74
2.9(+9)
4.760

2.07
2.2(+4)
4.016

0.064
b

—14.16

—0.901
b

65.77

20 TT'

SC(2)

1.27
0.9(+4)
2.687

1.80
1.8(+2)
4.058

0.314
b

142.7

—0.627
b

110.2

SC(2)
c

0.631
c

4.049
c

577.6
c

52.53

'The entries for n =7—20 are assigned to n =0—13 by TT in Table V of Ref. [18].
The uncertainties in Rel„and Iml„are too large to allow approximate estimates for Rer„and Imr„ to

be made.
The uncertainties in Rel»and Iml» are too large to allow approximate estimates for these quantities,

and hence also for Rer» and Imr».

B. Comparison of Q and SC results

TT labeled the poles n =0, 1,2, . . . , according to the
decreasing value of the real part of the pole position.
Table II—V show this procedure is in one-to-one
correspondence with the SC quantum number n. Thus if
TT had not missed ten poles, their labeling scheme would
have agreed with the SC one.

Table II shows that the Q and SC(3) pole positions for
the SD potential for n =0—3 agree to better than 1%,
with the SC(3) residues being less accurate. Also note the
improvement for n =0 of the SC(3) results compared to
SC(2). As n increases, the accuracy of the SC(2) results
gradually decreases, particularly for n ~ 6.

This decrease in accuracy can be understood by exam-
ining the positions of the turning points a&, cI, and eI in

n n n

the complex r plane. They are plotted in Fig. 2, which re-
veals that cI and e& migrate, as n increases, towards the

Pt n

leading poles of the real part of the SD potential. Since
the SC connection formulas we have used in Sec. II are
not valid close to poles of the potential, this provides a
possible reason for the decrease in accuracy of the SC re-
sults with increasing n. Notice also that, unlike Fig. 1,
e& lies in the first quadrant and ch lies in the fourth qua-

n n

drant of the complex r plane. The turning points for the
E18 potential shown in Fig. 3 are well removed from each
other and from the potential poles and, as expected, the
SC(2) and Q results in Table III are in good agreement.

The SC results for the GK and LC potentials in Tables
IV and V, respectively, follow a similar trend to those for
the SD potential in Table II. Examination of the
turning-point trajectories for the GK potential in Fig. 4

and for the LC potential in Fig. 5 again shows cI and eI
n n

migrating towards the leading potential poles with in-
creasing n, thereby explaining the decrease in accuracy of
the SC results.

The turning points in Figs. 2—5 were obtained as fol-
lows. The SC(3) pole positions were used to calculate a&,

n

cI, and e& directly for those cases in Tables II—V which
n n

report SC(3) results. For the remaining cases, the SC(2)
pole positions were employed to obtain aI and eI, and

n rt

then ci was calculated.
n

An important advantage of the SC method for the LC
potential is that it finds the n =0—4 poles, whose residues
are too small in magnitude ((10 ) for the REGGE code
to detect. Similarly for the n =0 and 1 poles of the GK
potential, the SC results provide initial estimates for the
REGGE code, which would have difficulties otherwise in
locating them (these poles were missed by TT).

Inspection of Figs. 2—5 shows that the real parts of the
turning points sometimes lie on opposite sides of R&, the
Coulomb radius for the charged sphere potential (2.3).
For these cases, the charged sphere potential has been
analytically continued according to the reasonable (but
nevertheless arbitrary) prescription (4.1). We also used
paths along which the action integrals are continuous, as
described in Sec. IV B. The good agreement between the
Q and SC results in the tables (for cases where the turning
points are not close to the potential poles) indicates that
the WKB theory of Sec. II is accurate under conditions
less restrictive than those commonly assumed. The usual
assumption is that the effective potential is analytic in r
(apart from possible poles) in a region close to the Rer
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SD potential GK potential

-2

Vp x

'Wp x

n = 0
n = 0

Wp x
2

Vp x
8

e&n

n = 0

C&n

-2

Vp x
14

Wp x

n =, 0

Wp

Vp x

C&n

-3
0

160 + 28Si ELAB 55 MeV

Re r /fm
10

16P + 28Si ELAB = 55 MeV

4 6
Re r /fm

10 12

FIG. 2. Turning points ai, c&, and ei for n =0—8 in the
n n n

complex r plane for the SD plus charged sphere potential.
Turning points with different values of n have been joined by
straight lines. Rc denotes the radius of the charged sphere.
The locations of the leading potential poles are indicated by
crosses, with the poles from the real part of the Woods-Saxon
potential labeled V0, and those from the imaginary part labeled
Rp.

axis. For example, Brink and Takigawa modified the
charged sphere potential so that it is analytic for all r&0
(Eqs. (4.1) and (4.2) of Ref. [43]). It would be interesting
to repeat the SC calculations of Refs. [43,48,49] using the
prescription Eq. (4.1). Delos and Carlson [25] and
Thylwe [31] have also done WKB calculations with a
piecewise continuous potential.

For the LC potential, Shastry and Parija [8] have com-
pared the poles obtained from N( ie)=0 i—n Eq. (3.21)
with the TT pole positions. The agreement between the

FIG. 4. Same as Fig. 2, except for the GK plus charged
sphere potential and n =0—14.

two sets of results is poor. However, this is not surpris-
ing because N( ie) =—0 does not determine the poles of
S~(l), and the analytic structure of N( ie) a—nd S&(l)
are different [8,48,50].

It is expected that the position of the leading pole from
N( i@)=—0 correlates with the Regge pole closest to the
Rel axis [8,48]. This leading pole is located at (24.436,
1.954) for SD [48], (23.77, 4.28) [48] or (23.73, 4.26) [47]
for E18, (25.363, 2.142) for GK [48], and (25.02, 0.187)
for LC [8]. These values are to be compared with the Q
pole positions of lo=(24. 802, 1.166) for SD, lo=(23. 789,
4.200) for E18, 13 = (26.005, 1.287) for GK, and
l9=(25. 142, 1.331) for LC. It is evident that the error
for the imaginary part of the leading pole position from
N( i e)=0—is much larger than that for the real part.

E18 potential
Vp

Wp x
x e&n

2

LC potential

LCO x

n

21

n = 0

ann

10

ckn

-3

2
CQn:

x
n 0

16O + 28Si ELAB 55 MeV

Re r /fm

X Vp

10

-2

-3

LCp x

16' + 28Si ELAB 55 MeV

6 8
Re r /fm

10 12 14

FIG. 3. Same as Fig. 2, except for the E18 plus charged
sphere potential and n =0—2.

FIG. 5. Same as Fig. 2, except for the I.C plus charged
sphere potential and n =0—21. The leading potential poles are
labeled LC0.



2430 J. N. L. CONNOR AND D. FARRELLY

C. Pure Coulomb potential

The results discussed in Secs. V A and V B have all em-
ployed the charged sphere potential (2.3) and its analytic
continuation, Eq. (4.1). We have examined the effect of
using a pure Coulomb potential for all r

Vc(r)=e Z, Z2lr,

by calculating SC(2) and SC(3) pole positions and residues
for the SD and GK potentials. These results are reported
in Table VI.

When the real parts of all three turning points are

TABLE VI. Semiclassical results for the positions and residues of the Regge poles for the SD and
GK potentials plus a pure Coulomb interaction.

Method Rel„ Iml„ Rer„

SC(3)
SC(2)

SD potential (+ pure Coulomb interaction)
24.683 1.172 0.219
24.945 0.716 0.0981

0.201
0.451

SC(3)
SC(2)

22.449
22.492

2.289
2.322

1.102
0.910

1.380
1.320

SC(2)

SC(2)

SC(2)

19.069

15.072

11.029

4.096

5.539

6.668

2.152

—2.152

1.368

—1.536

0.136

—0.585

SC(2) 7.276 7.844 —0.290 1.165

SC(2) 4.149 9.169 —1.094 —0.741

SC(2)

SC(2)

1.721

—0.311

10.313

11.099

1.775

12.09

—2.164

—2.746

SC(3)
GK potential (+ pure Coulomb interaction)

33.674 1.882 —0.352 X 10 —0.304 X 10

SC{3)

SC(3)

30.486

27.583

1.614

1.469

0.521 X 10-'

0.827 X 10

—0.506 X 10

—0.633 X 10-'

SC(3)
SC(2)

25.228
25.281

1.311
0.652

0.277
0.0421

0.237
0.311

SC(3)
SC(2)

23.210
23.260

2.102
2.141

0.569
0.401

1.149
1.074

SC(2)

SC(2)

SC{2)

SC(2)

SC(2)

20.538

17.537

14.381

11.172

8.002

3.189

4.137

4.951

5.689

6.478

2.155

0.346

—2.637

3.016

—3.374

0.429

—2.905

1.552

—0.307

0.139

10 SC(2) 5.046 7.433 4.855 —1.028

SC(2) 2.527 8.449 —11.83 5.502

SC(2) 0.406 9.275 98.75 —97.11

13 SC(2) —1.507 9.852 8.860X10' —9.109X 10
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greater than Rc, the potentials (4.1) and (5.1) are identi-
cal as far as the SC theory is concerned. This ocurs for
SD(n =0 and 1). Comparing Tables II and IV with
Table VI shows that the pole positions using the charged
sphere potential increasingly diverge from the pure
Coulomb positions as ReaI moves within R&. In partic-

n

ular, for large n, , Iml„ increases monotonically for the
pure Coulomb potential, whereas the poles for the
charged sphere potential start to bend back toward the
Rel axis. There are corresponding changes in the resi-
dues.

Using a pure Coulomb potential, Knoll and Schaeffer
[22] have calculated three SC(2) pole positions (n =0, 1,
and 2) at three energies in order to compare with quan-
tum results of Tamura and Wolter [17]. The SC(2) pole
positions agree well with the quantum ones (see Table II
of Ref. [22]). Knoll and Schaeffer also state (Ref. [22], p.
320, footnote 5): "For simplicity reasons we have taken a
pure Coulomb force even in the interior of the nucleus.
This provides us with an analytical expression for V(r).
Anyhow, the results are not very sensitive to the interior
because of absorption. " However, our results in Tables
II, IV, and VI show that this last sentence is not true, in
general, in particular for large values of n.

VI. CONCLUSIONS

We have reported the first uniform SC calculations of
Regge pole positions and residues for complex optical nu-
clear heavy-ion potentials, by applying (and generalizing)
SC techniques originally developed for atomic and molec-
ular scatterings. We used the SD, GK, E18, and LC po-
tentials, which have been fitted to ' 0+ Si elastic-
scattering data. Our SC computations revealed that TT
had missed ten poles. Using a modified version of the
REGGE code, we were able to locate five of these poles.
We also found that some of the results reported by TT
are unstable with respect to variations in the number of
integration points for the radial Schrodinger equation.

For low values of n, the SC and Q pole positions are in
close agreement, with larger differences for the
residues —this same behavior is found in the atomic and
molecular case [25—34]. However, as n increases, the SC
results became less accurate. This loss of accuracy prob-
ably arises because the outer turning points migrate to-
wards the leading poles of the nuclear potential with in-
creasing n, an effect ignored in the SC analysis.

An advantage of the SC method is the unique assign-
ment of quantum numbers to Regge poles; this labeling
ensures that no poles are missed. We also demonstrated
that the choice for Vc(r) c—harged sphere or pure
Coulomb —can have a significant effect on the propeties
of the Regge pole positions and residues.

Our investigation suggests several topics for future
research:

(a) The Q pole positions and residues in Tables II —V
are the best available quantum results for heavy-ion po-
tentials at the present time. However, the instability
problems in the REGGE code, discussed in Sec. IV, limit
the accuracy of the poles as n increases, as well as for
small n when the residues are very small in magnitude. It
is clearly desirable to discover new numerical algorithms
to overcome these problems.

(b) The SC theory should be extended to allow for the
uniform coalescence of a turning point with a pole of the
nuclear potential.

(c) The SC calculations used a piecewise analytic po-
tential. We found the results remained accurate under
conditions less restrictive than those commonly assumed
in a WKB treatment. It would be interesting to investi-
gate this finding in more detail.
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