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We study pion-induced single- and double-charge exchange reactions in nuclei at energies above the
A(3/2, 3/2) resonance using a microscopic, parameter-free Glauber approach. We introduce corrections
in the amplitudes due to the medium polarization from an isospin-Rip spin-nonAip source which dom-
inates the reaction in the transitions studied and which has not previously been identified. Using an
effective force derived from the study of electromagnetic transitions we obtained sizable reductions of
the cross sections in both single- and double-charge exchanges, which bring the results of both reactions
into close agreement with experiment. Predictions for angular distributions for both reactions on ' C,
"0, and Ca targets are made which should serve as guidelines for experiments planned in this region
and as further tests of the proposed isovector renormalization.

PACS number(s): 25.80.Gn, 24.30.Gd

I. INTRODUCTION

The study of pion-nucleus reactions above the region of
the delta resonance has begun with experiments of elastic
and inelastic scattering [1],single-charge-exchange (SCX)
[2]and double-charge-exchange reactions (DCX). [3]
Simultaneously, theoretical work on these higher energies
has been initiated on elastic or inelastic scattering [4—8],
single-charge exchange [2,9,10], and double-charge ex-
change [7,11,12]. For .elastic scattering the agreement
among the theoretical approaches and with experiment is
fairly good. The discrepancies are at the level of 10%.
For the charge-exchange reactions the agreement is less
good. For SCX reactions the results of Refs. [2,10]
overestimate the experiment while that of Ref. [9] is
closer to experiment. For DCX reactions the work of
Ref. [12] (without the isovector correction) overestimates
the experimental cross section while that of Ref. [7] un-
derestimates it. Additional work on the charge-exchange
reactions along the lines of Refs. [7,9] is now in progress
[13]. The work of Refs. [10,12] employed a Glauber
model that used experimental ~X experimental phase
shifts and in which there were no free parameters; thus,
the discrepancy with data seen at these higher energies is
particularly troubling.

One of the motivations behind the study of these reac-
tions at higher energies is the belief that the reaction
mechanisms are simpler at higher energies than at reso-
nance or at low energies. If this is the case, one should
be able to look in a cleaner way at other aspects of the
problem, such as nuclear structure details, polarization
phenomena, etc. In support of the idea of a simpler re-
action mechanism at higher incident pion energies is the
fact that elastic scattering is fairly well reproduced at
these energies with both a Glauber approach [4,5] and an
optical potential approach [7] and that the pion absorp-
tion mechanisms in both SCX and DCX reactions [10,12]
play a minor role.

From studies of the electromagnetic transitions in nu-
clei, it is known that the operators that describe such
processes in nuclei are modified from their free space
values. In the present paper we investigate how a nucleus
is polarized when a pion source excites the nucleus and
induces an isospin transition. We further investigate how
the SCX and DCX cross sections are modified when this
polarization is taken into account. One of the findings of
the paper is that the consideration of this new phenome-
na is very important in charge-exchange reactions and
one finds a fair agreement with experiment when the po-
larization is taken into account.
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II. GLAUBER FORMALISM FOR SCX AND DCX REACTIONS

The Glauber formula for pion-nucleus reactions is given by

J,T;M;)),

where b is the impact parameter, k the incident pion
momentum, q= 4 —k' is the momentum transfer, and I .

is the profile function defined as

I (b —s )= . fd qe 'h(q) (2)

(3)

I

with s the projection of r onto the impact parameter
plane. The momentum variables in Eq. (1) are laborato-
ry variables while those in Eq. (2) are in the ~N center-
of-mass frame. The quantity h (q) is the ~N elementary
amplitude

h(q)=f"(q)+0 rf"(q)
+ i [g"(q)+e.rg "(q)]cr n,

I

which contains an isoscalar (s) and isovector part (v) and
a spin-independent and a spin-fIip part. The operators 0
and ~ are the isospin operators for the pion and the nu-
cleon, respectively, and 8'=(kXk')/~kXk'~. Details on
the construction of the elementary amplitude from exper-
imental phase shifts, and questions concerning time or-
dering in the Glauber formula and other technical details
are discussed in Ref. [10]. The plane shifts and inelastici-
ty parameters are those of 1987 analysis of Amdt [14].
The ~X amplitudes were calculated including partial
waves up to an l of 5. Effects of spin Aip are included.

The formulas which arise for the SCX and DCX am-
plitude for (sr+, n ) and (n+, vr ) reactions are

F (q)= '" f d'b qe'(g ~g &ZI '"'r+ Q (1—I ")~q )

F (q)= f d be' (P ~

—2 + I "I"r+r+ Q (1—I ")g )
i(j 1&ij

where 1 "and I'"' are obtained from Eq. (2) by replacing
h (q) by the corresponding isoscalar and isovector pieces
of Eq. (3). The factors I"r+ induce the charge-
exchange transition while the factor Q(1 —I")accounts
for the distortion of the pion waves.

Since the operator in Eqs. (4) and (5) is a sum of the
product of 3 one-body operators, if the shell-model wave
functions are determinants, then the evaluation of Eqs.
(4) and (5) reduces to the evaluation of a sum of A X A

determinants. By using the Glasgow shell-model code
[15], the wave functions are naturally expressed as a sum
of Slater determinants, and hence, antisymmetry is ex-
plicitly included. The nuclear wave functions for ' 0 and
' Ne were obtained using matrix elements obtained by
Kuo [16]. The wave functions for mass 14 were obtained
using the matrix elements of Cohen and Kurath [17]. Os-
cillator parameters obtained from electron scattering of
~ =0.39 fm for C and 0.319 fm for 0 were u.sed.
Thus, this calculation has no free parameters.

In this paper we study transitions to the isobaric ana-
log state in SCX reactions and to the double isobaric ana-
log state in DCX reactions, as well as transitions to
selected excited levels. A single-step charge-exchange
transition is depicted diagrammatically in Fig. 1(a).
However, in the case of closed-shell nuclei plus additiona1
particles in the valence shell, only the latter particles par-
ticipate directly in the charge-exchange process because
of Pauli blocking in the core. In the case when one has
multiple elastic steps in addition to charge exchange, as is
the case in strongly interacting particles, the core parti-
cles can also participate in the charge-exchange process if
fully antisymmetric 3-body wave functions are used.
These effects are important around the b, resonance [18]

III. MEDIUM POLARIZATION
IN THE CHARGE-EXCHANGE TRANSITIONS

The nucleon-nucleon residual interaction is con-
veniently parametrized in the Landau-Migdal form [19]

7t g 1t
/
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FIG. 1. Diagrammatic expression of the medium polariza-
tion in the isospin channel through ph excitation iterated in a
random phase approximation form.

since there are many multiple scattering steps, but are
less relevant at energies above the 6 resonance where the
pion-nucleon cross section is appreciably reduced and the
pion mean free path is larger.

There is, however, another way to allow the core parti-
cles to participate in the charge-exchange reaction. This
is through the polarization of the medium by the pion
source. This is depicted diagrammatically in Figs. 1(b),
1(c), and 1(d). The pion scatters from particle-hole com-
ponents different than the final one. These particle-hole
components then propagate through the nucleus by
means of the residual nuclear interactions and finally
couple to the desired final state in our chosen space of
wave functions. We shall include these effects through
the methods discussed in the next section.
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V(r„rz) =(fo+foui'r2+ go~ i'o z

+goer i crzr, .~z)5(r, r2); (6)

the values of the parameters have been deduced from a
systematic study of electromagnetic transitions in elec-
tron scattering and described in the work of Speth,
Werner, and Wild of Ref. [20].

The spin-Aip terms in the ~X interaction play a negligi-
ble role unless specific transitions that are sensitive to
these components are chosen. In our study of transitions
to isobaric analog states in this paper they are not impor-
tant. As a consequence, the go term of the effective in-
teraction, Eq. (6), plays little role in the polarization. The

I

term fo~, rz is primarily responsible for the propagation
of the neutron hole-proton particle excitation induced by
the charge-exchange steps in Fig. 1.

In an infinite nuclear medium of constant density p,
this polarization of the medium leads to an isovector re-
normalization of the charge-exchange amplitude. This
isovector renormalization is given by

f (v)(q) f (U)(

1 —foU(q =O, q, p)

where U(q, q, p) is the Lindhard function for a particle-
hole (ph) excitation of Ref. [21]. An extra factor of 2
must be included with respect to Ref. [21] to account for
the isospin factor coming from the v] ~z operator. The
Lindhard function in Eq. (7) is defined as

d'k n(k)[1 —n (k+q)]U q, q, p =4
(2~) q +e(k) —e(k+q)+i@

n(k)[1 —n(k —q)]
—

q +e(k) —e(k —q)+ie
(8)

where e(k) is the kinetic energy of the nucleon and n(k)
stands for the occupation number of the Fermi sea.

One may get a rough idea of the isovector renormaliza-
tion effects in finite nuclei by choosing the density most
likely probed in the process and substituting it into the
Lindhard function in Eq. (8). However, while this would
be fair for processes in which values of q are large com-
pared to the ordinary nuclear excitation energies, in the
present case there is either no transfer of energy, (q =0),
or the transfer is very small, and one must be more cau-
tious. Indeed, the function U(q =O, q, p) has a finite
limit as q ~0. (Note that in Eq. (8) one gets an indeter-
minate result of the type 0/0 in this case, but which has a
finite limit when the formula of Ref. [21] is evaluated. ) In
a finite closed-shell nucleus there is no transition with
q=0 allowed from the core to excited states. This is be-
cause the matrix element

equivalently the new Lindhard function for 6=0. As we
can see, the main effect of the gap is to force the Lin-
dhard function to go to zero as q~0. As a consequence
of this, the differences between the new Lindhard func-
tion and the ordinary one, for small values of q, are quite
large. At large values of q the two Lindhard functions
coincide independent of the value of the gap. We also ob-
serve that the differences between the Lindhard function
with 6=3 or 5 MeV are small and hence the uncertain-
ties induced in the results by our approximation should
also be small once we choose a reasonable value for the
gap corresponding to a realistic case. We have chosen
6=5 MeV for our calculations.

The parameter fo in the Landau-Migdal parametriza-
tion of the nucleon-nucleon interaction, Eq. (6), is taken
from Ref. [20]. A smooth density dependence, also tak-

I 1
]

I I I

I
I I I

[
I I I

&ph

involved in the calculation of the ph excitation is zero.
The reason for the vanishing of Eq. (9) is that the
numerator vanishes while the particle-hole excitation en-
ergy e h has a minimum value different than zero. This is
a source of difference between the infinite medium
case —where this minimum excitation energy is zero as
one can see in Eq. (8)—and the finite nucleus case.

A more realistic evaluation of the Lindhard function in
the limit of q =0 must take into account this minimum
excitation energy 5; this will automatically bring
U(q =O, q) to zero in the limit q —+0. We have done
this and the results appear in the Appendix.

In Fig. 2 we plot the Lindhard function at q =0 with
gaps of 5 and 3 MeV for two different densities. The two
upper curves correspond to p= —,'po (po being normal nu-

clear matter density) with a gap of b, =5 and 3 MeV, re-
spectively. The next two lower curves correspond to the
same values of 6 but for p=po. Finally, the lowest curve
is the ordinary Lindhard function at q =0 and p =po, or

-1.5
1 2 3

q (fm')

FIG. 2. Modified Lindhard function U(q, q, A, 6), with a gap
6 for a minimum ph excitation energy, calculated at q =0 for
different densities and different values of b.. The two upper
curves for p=po/2(0. 08 frn ') and two values of the gap b =5
and 3 MeV. The two middle curves correspond to the same
values of the gap but p=po (0.17 fm '). The lower curve corre-
sponds to po with no gap which is the ordinary Lindhard func-
tion [21].
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en from Ref. [20], is assumed for this parameter:

fo(p)=co

r

P(") f ~(in) + 1
P(" fI(ex)

p(0) p(0)
(10)

where fo'"' =0.33 and fo'"' =0.45 describe the internal
and external regions of the nucleus, and co =380
MeV fm . We have used a three-parameter Fermi distri-
bution for the form of the density distribution p(r); the

I

parameters were taken from de Vries, de Jager, and de
Vries [22].

Assuming a local density p=p(r), Eq. (7) produces a
renormalization of the isovector amplitude depending on
both q and p(r). This renormalization is particularly
easy to implement in the framework of Glauber theory
since the profile function is constructed from an in-
tegral involving both spatial and momentum coordinates.
Hence, the isovector renormalization due to polarization
is implemented here with the change

I z'(b —s )~1 "(b—s., r )= d q e ' f'"'(q)
—iq (b —s. ) 1

2mik 1 fo(p(r,—))U(q =0,q, &,p(r, ))

This integral must be performed numerically.
In the absence of multiple scattering the Glauber ap-

proach reproduces the impulse approximation. In this
case, if we look at SCX in the forward direction, q =0,
and there is no renormalization since U(q =O, q=0,
b, ,p) will be zero. Hence any renormalization appearing
in SCX at forward angles must be a consequence of mul-
tiple scattering in which the charge-exchange reaction re-
sults in a pion momentum of finite angle and some previ-
ous or posterior elastic collision brings the total scatter-
ing angle back to zero.

In contrast a double-charge exchange can result in a
scattering at zero degrees as it can arise from situations
where there have been two charge exchange steps with
finite and opposite angles (this is assuming no additional
elastic steps). With extra elastic steps there can be fur-
ther contributions from larger scattering angles, or
equivalently larger values of q. As a consequence, one
might expect at forward angles in DCX a renormaliza-
tion factor larger than the square of the renormalization
factor in SCX at the same angles.

'l4(
(

+ Ojt4g
1

no absorption

6
CQ

IV. RESULTS AND DISCUSSION

We have performed calculations both for SCX and
DCX reactions on two nuclei, '"C and ' 0 where there
are some experimental data. We compare with the exper-
imental results and make predictions for angular distribu-
tions which are not yet measured.

In Fig. 3 we show the results for a SCX reaction to the
isobaric analog state (IAS) in ' C at zero angle and com-
pare the results with the experimental ones of Ref. [2]. In
the absence of the medium isovector renormalization the
theoretical results overestimate the experiment by about
30—35%. This was already noticed in Ref. [10] where it
was shown that inclusion of pion absorption made only
minor modifications at the level of 10%%uo. When the iso-
vector polarization effects are included we find an appre-
ciable decrease of the cross sections of about 25 —30%,
which brings our results into close agreement with the ex-
perimental data.

In Table I we show similar results for DCX to the dou-
ble isobaric analog state in ' C and ' O. The results are
at 5' where the experiments were done [3]. The
discrepancies between the theoretical results without po-
larization and the experiment are about a factor of 3 —4
and are rather independent of the energy in the energy
range of the table. When the isovector polarization is in-
cluded there is a sizeable decrease of the cross section
which brings the results into close agreement with the ex-
perimental data. As we discussed in Sec. III, with zero-
momentum transfer there is no renormalization of the

4—
II

o obi(

250 450
[Mev)

450

T. (MeV)

14C 18O

Experiment TH THP Experiment TH THP

TABLE I. The center-of-mass differential cross section in
JMb/sr at 5 for the (~+,~ ) reaction leading to the ground state
of the resultant nucleus. The experimental results are from Wil-
liams et al. [3]. The column TH are the results without polar-
ization and the column headed THP are the results including
the effects of the isovector medium polarization.

FICi. 3. Calculated differential cross section at zero degrees
in the laboratory system for a SCX reaction on ' C to the IAS in
' N. The upper curves correspond to the results without polar-
ization with or without inclusion of pion absorption [5]. The
lower curve corresponds to the results obtained including ab-
sorption and the effects of isovector polarization. The experi-
mental data are from Ref. [2].

300
350
400
450
500
525

3.84+0.54 11.9
4.15+0.42 14.8
3.24+0.39 15.1

14.2
3.62+0.65 13.7

13.5

3.0
3.6
3.8
3.7
3.8
3.7

2.68+0.37
3.00+0.27
3.06+0.29
2.94+0.33
2.69+0.35
2.65+0.80

8.9
9.4
8.9
8.1

7.7
7.5

3.0
3.0
2.8
2.6
2.6
2.6



48 CORE POLARIZATION PHENOMENA IN PION-NUCLEUS. . . 2399

elementary amplitude. Hence, the distortion, or multiple
scattering, must be responsible for the renormalization of
the SCX at zero degrees. In the case of DCX one could
have two sequential charge-exchange processes with op-
posite angles contributing to the forward cross section.
This would introduce renormalization effects even in the
absence of distortion. We would hence anticipate the re-
normalization factor in DCX to be larger than the square
of the factor found in SCX, and this is indeed the case as
an inspection of Fig. 3 and Table I shows.

According to the same arguments, if we look at the an-
gular distribution in SCX reactions the renormalization
effects should be larger at finite angles, at least up to
around q=1 fm ', where according to Fig. 2 the Lind-
hard function has its maximum absolute value. At
T„=500 MeV this means angles around 10'. In Fig. 4 we
plot the differential cross section for SCX on ' C at
T =500 MeV, both with and without the isovector re-
normalization and compare the results with the data of
Ref. [2]. There are only three pieces of data up to 6'.
The agreement of our results with these data is fine. On
the other hand, as we have anticipated, the results with
the isovector renormalization have a stronger falloff' as a
function of the angle than do the unrenormalized results.
Indeed, at zero degrees the isovector renormalization
reduces the cross section by about 30% while from 10 to
15 the effect of the renormalization is a decrease of the
cross section by a factor of 2.5 —3. More data at larger
angles would be welcome as a further test of the isovector
renormalization.

In Fig. 5 we show the differential cross section for a
SCX reaction on ' C at T =400 MeV for the excitation
of the IAS and two excited states. The excitation of the
IAS dominates the cross section at small angles, while the
2+ dominates at angles around 30. The 1+ gives only a
small contribution.

In Fig. 6 we show the results for the differential cross
section for the DCX reaction ' O(sr+, vr )' Ne for the ex-

400 MeV

10

10

10 20 40

CM

Q(~,7T) Ne 400 MeV

10

FIG. 5 ~ Differential cross section at T =400 MeV for SCX
on ' C to the IAS and two excited states as a function of the
c.m. angle.

' C(7T+~ j" N 500 MeV

with isovector renormalization 10 20 40

-3

0 20 40
CM

lab

FIG. 4. Differential cross section at T =500 MeV for SCX
on ' C to the IAS as a function of the angle in laboratory vari-
ables. The upper curve shows the results obtained without iso-
vector renormalization while the lower curve includes the polar-
ization correction. The data are from Ref. [2].

FIG. 6. Differential cross section for DCX on "0 to the dou-
ble isobaric analog state and two excited states in ' N as a
function of the c.m. angle. The sum of the 0+ and 2+ excitation
is also shown in order to compare with the data of Ref. [3].
Squares: results of Ref. [3] for the sum of the cross section. Cir-
cles: excitation of the cross section to the double isobaric analog
state [3] {see text).



E. OSET, D. STROTTMAN, H. TOKI, AND J. NAVARRO 48

citation of the double isobaric analog state, the ground
state of ' Ne, and for the excitation of the first excited
state, the 2+ state at 1.89 MeV. Results for the excita-
tion of the 4+ state at 3.56 MeV are also shown. For the
double isobaric analog state, which provides the dom-
inant contribution, we have used accurate 1d»22s&&2
wave functions, while only 1d5&2 wave functions are used
for the excited states. The inclusion of the 1d»22s, &z

components increases the cross section for the double iso-
baric analog state by about 20% here, a moderate
amount compared with the effects found at resonance
where an increase of about a factor of 2 in the cross sec-
tion was found [18]. We compare our results with those
of Ref. [3]. In this latter work the combined contribution
of the ground state and the 2+ state was given since the
energy resolution was not sufhcient to separate the states
[23].

As we can see from the theoretical results, the two
states give rise to very different structures. The double
isobaric analog state excitation gives rise to a pattern
typical of elastic scattering with a diffraction minimum
around 20 and a second maximum around 26'. The exci-
tation of the 2+ state gives rise to a different pattern
which comes primarily from the addition of the AM=0
and +2 contributions (M is the third component of the
total angular momentum). The AM=+I contribution
which must arise through spin-fIip processes is very
small. The cross section is Oat at small angles where the
AM=0 transition dominates and rises at higher angles
where the AM=+2 transition takes over. While at small
angles the strength for the excitation of the double iso-
baric analog state is about 20 times bigger than the cor-
responding one for the 2+ state, at 22' where the excita-
tion of the 2+ state has a maximum, the strength of this
latter state is about 6 times bigger than the corresponding
one for the double isobaric analog state (DIAS). In fact,
the peak of the 2+ state is approximately at the same an-
gle at which the double isobaric analog state distribution
has a minimum.

The results for the sum of the two cross sections com-
pare fairly well with those of Ref. [3]. In Ref. [3] the au-
thors also made an analysis in order to extract the angu-
lar distribution for the excitation of the double isobaric
analog state by assuming the total angular distribution to
be made up of two peaks and performing a best fit to
the data. The values extracted for the double isobaric
analog state distribution are in qualitative agreement
with our results. Obviously, with the assumption in Ref.
[3] of two states, each with a diff'raction structure allow-
ing only one maximum, one necessarily misses the struc-
ture which we found for the double isobaric analog state
and the excited 2+. One has in this latter case three
peaks. The clean separation of these states with an im-
proved resolution in the experiments would be most
desirable for a better comparison with the theoretical re-
sults. Some thoughts along this direction are presently
underway [23].

Finally, in Fig. 7 we show the results for do. /dA for
DCX in Ca. We show again the results for the excita-
tion of the DIAS and the erst excited state. The features
are very similar to those found in ' C or ' O, only the

10
Ca(~,~ j Ti 400 MeV

10

10

10 20

lab

FIG. 7. Differential cross sections for DCX on Ca to the
ground state and first excited state of Ti. The upper curves for
each angular momentum correspond to the results obtained
without polarization and the lower ones to the corresponding
ones obtained including polarization. Partial waves through
l = 5 were included in the calculation.

minimum of the distribution for the ground state moves
to smaller angles, as a consequence of the increased nu-
clear size. The effect of the polarization is similar to the
one found for the lighter nuclei.

As we indicated, we have considered pion-nucleon
partial waves up to I =5 where good convergence was
found. If one retains only s and p waves one gets a cross
section for Ca smaller by about a factor 2.3 than the
cross section retaining all the necessary partial waves. As
we can see in the figure the effect of the polarization is a
decrease of the cross section by about a factor of 4, simi-
lar to what was also found for the cases of '"C and ' O.

V. CONCLUSIONS

We have studied SCX and DCX reactions at energies
above the (3,3) resonance where the Glauber approach
becomes increasingly reliable. While the elastic scatter-
ing was fairly well reproduced in this approach, the
charge-exchange processes were overestimated by about
30%%uo in SCX and by more than a factor of three in DCX.
The new feature introduced in this paper is that the
isovector-spin nonAip amplitude, the leading piece in our
approach for the transitions studied, is appreciably renor-
malized inside the nuclear medium. The pion acts as an
external source of excitation which polarizes the isospin
distribution in the nucleus and this reverts into an
effective renormalization of the isospin-Hip amplitude.
For the effective nuclear interaction in the relevant iso-
spin channel we took the same one that results from the
analysis of electron-induced transitions in nuclei. Our
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calculation hence does not have any free parameters.
However, it should be noted that the penetration of the
pion into the nucleus changes as a function of energy.
Thus, the interaction may be a function of energy. Fur-
ther, the density dependence may be quite different for an
electron and our choice, although producing excellent
agreement for 2 = 14 and 18 may not be appropriate for
heavier nuclei such as Ca. Experiments for heavier nu-
clei are greatly desired.

The resulting medium isovector renormalization result-
ed in appreciable decreases of both the SCX and DCX
calculated cross sections which are then compatible with
experiment for the nuclei studied. The angular distribu-
tions are poorly known experimentally, either because
there are few data as in SCX, or because the separation
of the double isobaric analog state and the excited states
contributions is only done in an approximate way as in
DCX. The agreement so far is good within the approxi-
mations done to extract the experimental numbers; more
precise data on angular distributions in different nuclei
are needed. From the physical point of view our findings
seem to indicate that, as the energy of the pion in-
creases, the complicated many-body reaction mechanisms
that one had at low energies and around resonance fade
away and the pions come to see more the individual nu-

cleons. As a consequence nuclear structure details such
as the polarizability of the nuclei in different channels can
show up more clearly as already observed in the electron
scattering experiments. The richness of the pion-nucleon
interaction with respect to the electromagnetic interac-
tion allows the direct exploration of many nuclear prop-
erties unreachable or only indirectly reachable with elec-
tromagnetic probes, pointing at the pion-nucleon reac-
tions at those energies as a rich and complementary
source of information of nuclear structure details.

The results given in this paper provide a strong indica-
tion for a renormalization of the isovector non-spin-Hip
operator. However, additional and more accurate data
will be required to provide an accurate estimate of the
magnitude of this renormalization. We hope such data
will be forthcoming from both LAMPF and particularly
KEK experiments.
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APPENDIX: THE LINDHARD FUNCTION W'ITH A GAP IN THE PARTICLE-HOLE EXCITATION ENERGY

We define

d k n(k)[1 —n(k+q)] n(k)[1 —n (k —q)]U(q, q, b„p) =4 +
(2vr) q +e(k) e(k+q—) b+ie ——

, q +e(k) —e(k —q) —b, +i@
(A 1)

The modifications to the ordinary Lindhard function come from substituting q ~ [second term in Eq. (Al)]. However,
one cannot simply make this replacement in the two terms of the ordinary I.indhard function because there are terms
which cancel there and do not cancel now with those substitutions. We have performed a direct evaluation and find for
x 2;

v —5+x2 —2xReU(q, q, b, ,p) = — x+ —5+—(v —5)ln
2x 2 2 v —5

1 +51 v+5 —x +2x

1 1 v —5+— 1 ——
2 4 x

1 v+5+— 1 —— +x
2 4 x

2v —6 —x —2x
ln

v —6+x —2x
2

v+ 5+x +2x
ln

v+5 —x +2x
(A2)

and for x ~2:

ReU(q, q, b„p)=—
T

2MkF
-- ~ x+ —+— 1 ——

2x x 2 4

1 [ 1 v+5+- +x
2

[
4 x

2

x
2

2v —5 —x —2x
ln

v —5—x +2x

(A3)

where
2Mq q 2M'

kF kF kF
3= 2P= kF .

3m2

In the case q =0, which we have here, the imaginary
part is zero. In any case, since Im U comes either from
the direct or the crossed term we can use the same ex-
pression as in Fetter and Walecka [21] (multiplying by a
factor of 2) and we have
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ImU(q b—, , q, p) for q )5,
ImU(q, q, b„p)= 0 for b, ) q )0,

ImU( —q, q, b, ,p) for q &0,

where U(q, q, p) can be expressed in a compact form as
[24]

ImU(q', q, p) = —~—p [(1—z )e(1—IzI)4 qkF

—(1 —z' )8(1—Iz'I)]
Iq'I

'

where (9 is the Heaviside step function and
3 M 1 2 z+1ReU(q, q, p) =—p z+ —(1 —z )ln +z'
2 qkF 2 z —1

+—(1 —z' )ln
1,2 z'+ 1

2 z —1

r

MZ= o q
qkF 2M

MZ'=
qkF

2

q
o (A8)

(A6)
For the particular case where q =0 we have for q =0,

x 2,

ReU(q =O, q, b„p)=—

for q =O, x ~2,

2MkF 5—x +2x 1x+ —5—51n + 1 ———+x
2x 2 6 4 x

2
6+x +2x

ln
5—x +2x

2MkF
ReU(q =O, q, b„p)=-

2x
6 1 5x+ —+ 1 ———+x
X 4 x

2
5+x +2x

ln
6+x —2x

ImU(q =O, q, b, ,p)=0 for q =0. An interesting limiting case is when x «1 and x/5«1 in which case

2
2MkF x 4

U(q =O, q, b,p)= —
z
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