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Determination of the Li = a+1 vertex constant (asymptotic coefficient)
from the He+d phase-shift analysis
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The Li(1+0)~ He+d virtual decay vertex constant Go and the respective asymptotic coefficient Co
of the Li wave function in the He+ d channel are found using the analytic continuation of the solution
of a novel energy-dependent phase-shift analysis of elastic d- He scattering to the pole corresponding to
the Li ground state. The reliability and accuracy of the method used have been corroborated indepen-

dently by three other ways: by direct solving the inverse problem for d- He scattering and by two
different methods for finding a solution for the three-body (a+ n +p) problem. The values

60 =0.42+0.02 fm and CO=2. 93+0.15 have been found which seem to be the most accurate and reli-
able among the values obtained so far.

PACS number(s): 23.90.+w

I. INTRODUCTION

The nuclear vertex constants (NVC's) G(a~b+c)
coincide up to kinematical factors with the amplitudes of
virtual or real decay (or fusion) of a nucleus into two
fragments b and c and belong to the fundamental nuclear
constants, like binding energies and magnetic moments.
The NVC's are of great importance in nuclear reaction
theory and define the asymptotical behavior of nuclear
wave functions in appropriate channels, which is deter-
mined in turn by the dynamics of strong interactions (see
the detailed reviews on NVC's, for example [1,2,3]).

Copious NVC data have been accumulated, first of all
for few-nucleon systems and light nuclei. The NVC's for
the deuteron (d ~n +p) [4] and for three-nucleon nuclei
are now well known with a high accuracy. The NVC's
for the He~ He( H)+n(p), and He~d+d vertices
are known now to within a lower accuracy. Among the
NVC's for light nuclei, the S- and D-wave NVC's Gl
(L =0,2) for the Li~ He+d decay are particularly
notable because they are of great importance in the
theory of nuclear reactions induced by Li ions, especially
in view of the future advent of high quality beams of po-
larized Li ions and an extensive use of Li as target nu-
clei.

The NVC's GI (I. =0,2) for Li~ He+ d decay are re-
lated to the dimensionless asymptotic coe%cients CL" of
the Li wave function in the a+d channel [1,2] as

GL = iv'nNe' " [Al—(p dc)]CL "&2tc,

Ic="(r 2p dE d, l. =0,2

where p d is the reduced mass in the He+d channel; c d
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is the Li binding energy relative to breakup into an a
particle and a deuteron; g=2e p d /(A'Ic) is the Coulomb
parameter for the Li~a+d vertex; X is a combinatorial
factor due to the nucleon identity [2] [in the case of the
Li~ He+d vertex % =1 if the three-body (n +p+a)

model wave function is used]. It should be noted that the
dimensional asymptotic coefficients in [1] differ by an ad-
ditional factor of (2tc)'~ from those used here and in [2].

Unfortunately, the values of even the dominant S-wave
NVC Go" found by di6'erent techniques prove to be very
different (see Table I), so that the constant has been
known within a great uncertainty (it should be noted that
the D-wave NVC G2" for the Li~a+d decay is several
orders smaller than Go"). Therefore, we have made an
attempt to determine the NVC Go more thoroughly and
reliably using new methods. The general philosophy of
our approach is partly discussed in the monograph [6]
and in papers [7]; some tentative results are mentioned in
[8 9].

II. SHORT DESCRIPTION OF METHODS USED

In the present work, three methods are used to find the
S-wave NVC Go. The first method is supported by a nov-
el approach to the energy-dependent phase-shift analysis
[6,8, 10] on the basis of the statistical Pade-approximation
technique [6] or, in other words, the type-III Pade ap-
proximation (PA III). The appro—ach yields immediate-
ly the S-matrix representation in such analytic rational
form which can be continued directly to the unphysical
region in energy to find the poles corresponding to bound
states [the Li(1 0) ground state in our case] and to
determine the respective residues through which the
NVC's are expressed.

The second method is based on solving the inverse
scattering problem [11] and makes use of the S matrix
(i.e., the partial phase shifts) to carry out the inversion

0556-2813/93/48(5)/2390(5)/$06. 00 2390 1993 The American Physical Society



DETERMINATION OF THE Li~a+d VERTEX CONSTANT. . .

TABLE I. The NVC ~GO~ values found for the Li(1+0)~ He+I vertex by diff'erent methods (only
the values obtained with the account of the Coulomb d- He interaction are presented}. More detailed
information and the relevant references can be found in the reviews [1—3]. The value in the bottom line
is from [5].

Method for finding NVC

Phenomenological cluster wave function
Fit to the Li charge form factor
Fit to the charge distribution in Li
Forward dispersion relation for He+ d scattering
Method of molecular wave function for a- Li scattering
Peripheral model for d- Li scattering
DWBA, Li(p, He) He reaction
Impulse approximation with cutoff' for Li(p, pd) He reaction
Impulse approximation with cutoff' for Li(d, 2d) He reaction
Peripheral model, Li(a, 2a) H reaction
Peripheral model, Li{d, Li} H reaction

'This value was found in Ref. [5] by averaging over many values with a large spread.

I Go I' (fm)

0.72
0.3—0.4
0.27
0.22+0.01
0.58+0.06
0.83+0.11
0.42
0.18-0.68
0.54—1.41
0.75 —2. 5
0.41+0.06'

gf(E) =p '+'B& [Bc(cot6& i )+2r)H(r)) ]/Bo, —

p +2padE (2)

where 51 is a Coulomb-modified nuclear phase shift, g
is the Coulomb parameter, and B&(i)) is the Coulomb
penetration factor for the Ith partial wave,

H(r))=%(ill)+ ln[ irisgn( —Z, Zz)]—
1

2l 7j

where %(X) is the digamma function [13]. At the real en-
ergies (E)0), the expression for H(i) ) goes to [2,6]

and to construct an effective two-body d- He potential
which would describe the d- He scattering data. After
that, the bound state in the potential [the Li(1+0)
ground state] is determined. Having found the bound
state, the asymptotic coefficient of the respective bound-
state wave function determines, according to (1), the
sought vertex constant.

The third method is based on direct solving the Fad-
deev equation in terms of the o.+p+n model directly for
the vertex function. %'e have attained a very good agree-
ment among the results of the three independent
methods, which indicates a high reliability of the Go
value obtained.

The input data for the first method include the results
of the energy-dependent phase shift analysis for the d- He
scattering [9,10] at incident deuteron energies
Ed =0.8 —5. 5 MeV, supplemented with the data of the re-
cent energy-independent phase shifts analysis [12] at
Ed =6—10 MeV. The Pade approximation and the subse-
quent analytic continuation were made using the
Coulomb-modified scattering function g&(E), which is of
the following form in the case of an arbitrary orbital
momentum 1 [6,7]:

g O' —P~ (E ) /Q~ (E), (3)

where P&(E) and QM(E) are polynomials of degrees N
and M, respectively. The coefficients of PA's (3) in our
case have been found in the course of the energy-
dependent phase-shift analysis [7].

In the case of the S wave, the Coulomb-nuclear scatter-
ing amplitude fo(E) corresponding to (3) is found from
the relation

pBo(n)
fo(E)=

P~(E) /QM (E) 2ipB 0(ri)— (4)

Here, the amplitude f&(E) has been normalized so that
2&~c

—N

f&(E)=(e ' —1)/(2ip) for pure elastic scattering.
The stable pole of the amplitude on the negative

semiaxis E (on the first energy sheet), i.e., the zero of the
denominator which varies little with changing the PA or-
der, corresponds to the bound state of the system, while
the residue at the pole gives the NVC Go and the corre-
sponding asymptotic constant Co. It must be noted that,
in the general case of b +c~b+c elastic scattering with
nonconserved orbital momentum of channel L and with
spin of channel S, the amplitude ( T-matrix) residue at the
pole corresponding to the compound nucleus a ~b+c is
related to the NVC GLs ' and to the asymptotic con-
stant C'-'+'

LS

H(r))= —C — +ii) g [n (n +iri)]
l'g „O

where C=0.5247. . . is the Euler constant; E is kinetic
energy in the c.m. system.

As shown in numerous works (see, for example, [7]),
the scattering function defined by Eq. (2) is analytic in the
upper-half k plane and can, therefore, be represented in
some circle around the origin in the form of the Fade ap-
proximant

Res(L, 'g'~TJ(E)~Lg)
~

=G*,~~, +~~G~~- +'~=;L+ '77~ e'~~~ [g/( e)] 2' C~q-, b+~~C~~-"+'~E = —
E~ L'S' LS

—l 7T be PI~~ ~bc L S' LS
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where pb„~b„g, and Xb, have the same meaning as in
Eq. (1). Here, the amplitude normalization is such that at
I. =I.', S=S'

TABLE II. Binding energy E d, values of squared NVC~ Go ~

and of asymptotic normalization constants Co" for different or-
ders of diagonal Pade approximants in Eq. (3).

Pade approximant
order [N, M]

[1,1]
[2,2]
[3,3]

Values adopted
at present

(Mev)

1.3491
1.4186
1.3884

1.47617

IG. I'«m)

0.3672
0.4055
0.3877

0.2—2.5'

CQd
0

2.83
2.93
2.88

2—7'

'The extremes have been inferred from the review [1].

when absorption effects do not occur. For the S-wave d-
He scattering L =L'=0, 5 =5'= I, gIi'(E) was Pade

parametrized using the diagonal (% =M) Pade approxi-
mants.

Table II presents the values of the constants
~ Go ~

and

of the corresponding binding energies c d obtained by an-

alytic continuation of the elastic d- He S, partial ampli-
tude for different orders of the Pade approximant. The
very good value found by us for the binding energy E d in
the o.-d channel is also a criterion of analytic continua-
tion stability (apart from the Pade-approximant conver-
gence). It should be stressed here that it is in a contrast
with the conventional methods for finding NVC on the
basis of analytic continuation of transfer-reaction
differential cross section to the pole point with respect to
cose (e is the scattering angle) where the position of the
pole is supposed to be known beforehand (and to be set
manually).

We found that our
~ Go values obtained in the extrapo-

lation procedure proved to be linearly dependent on the
corresponding bound-state energy c d to within a high
accuracy. The similar linear dependence of ~Go~ (or Co)
upon the energy was found also by the authors of [14].
Thus, by making linear extrapolation to the experimental
s d value 1.47 MeV, we obtain ~Go~ =0.41 fm and the
respective asymptotic constant Co=2. 93. Then the Go"
value obtained can be compared with the results of mi-
croscopic calculations of the Li nucleus in terms of a
three-body model [15—18] and using the refined resonat-
ing group method (RGM) [19]. In particular, the Go
values which are very close to the present results were ob-
tained in [16,19], making allowance for the correction for
binding energy, thereby yielding a good independent cor-
roboration of the NVC Go values found here.

In the second approach, we found the Go value using
the method for solving the inverse scattering problem
[11] to infer the efFective two-particle d- He interaction
potential Vd (r), including the Coulomb interaction, from
the "experimental" d- He phase shifts. In the approach
we used the same phase-shift analysis results [9,10] as in
the former approach. Generally, the short-range part of

the potential has been found to be complex and energy-
independent, but depends weakly on L; namely, it con-
tains central and spin-orbit components, either of which
is presented as a series expansion in a certain orthonor-
malized basis (in our case we used the convenient har-
monic oscillator basis [11]). The linear coefficients of the
expansion and the scale parameters of the basis are in-
ferred from the requirement that the experimental d- He
phase shifts should be described best in the g sense.
Then, these coefficients (in fact, the interaction potential)
are sought from the very convenient linearized iteration
procedure [11]. The solution for the inverse problem has
to be stabilized using both S& and D partial phase
shifts. In this case four terms in the central and spin-
orbital components each are sufhcient to take in the series
expansion of the potential on harmonic oscillator basis
(see Ref. [11]for the values of the potential parameters).

After that, by solving the Scrhodinger equation with
the d- He interaction potential found, we calculate the
binding energy c d and the Li ground-state wave func-
tion. The asymptotic part of the latter gives Go" and Co
immediately. The Li binding energy c.'hd'" calculated
with the He-d interaction potential was rather close to
its experimental value, z'"d'"=1.55 MeV. And, again, us-

ing the well-established linear extrapolation of ~Go ~
to the

experimental value of 8'"J"—= 1.47 MeV we find the values

Gol =0 42 fm and Cod=2 98

which have proved to be very close to the respective
values obtained in terms of the first approach on the basis
of Pade approximation for the phase-shift solution and
presented above. If the given method disregards the
Coulomb interaction Vd', we obtain Go =0.33 fm (see the
discussion below for the comparison).

We would like to stress that to obtain Co" and Go
within that two-body potential approach we use the Li
ground-state wave function normalized to unity. Qn the
other hand, this wave function is an effective approxima-
tion to the "exact" many-body overlap integral

$6L;), g; being the internal wave function of a
composite system i. This overlap integral is normalized
not to unity but to the so called amount of ad clusteriza-
tion (or spectroscopic factor) S d which, by definition, is
less than unity. Hence the question arises whether the
values of Co and Go obtained by our second (potential)
approach should be multiplied by S'd . The answer to
this question is not trivial. We believe the normalization
of the effective two-body wave function should depend on
the way it is used. For example, if it is used to calculate
vertex parts of a pole graph corresponding to some
transfer reaction, then one should normalize the wave
function to the spectroscopic factor to obtain correct ab-
solute values of the amplitude of this graph. On the oth-
er hand, if the wave function satisfies the two-body
Schrodinger equation with a certain potential (as it does
in the discussed approach) then the general relation be-
tween the asymptotic coefficient and the residue of a
scattering amplitude calculated with the same potential
[Eq. (1)] assumes that the wave function is normalized to
unity. This point of view is supported by Ref. [20] in
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TABLE III. The same as in Table II but obtained from the
Faddeev phase shifts as input (the Coulomb interaction disre-
garded).

Fade approximant
order [1V,M] e( Li~ He+d) (MeV) ~GO~ (fm) Co

which the vertex constant t ~d+ n was correctly calcu-
lated using the two-body triton wave function normalized
to unity.

By the way the spectroscopic factor S d in the Li case
is very close to unity [19] and multiplying Go and Co" by
S '

d practically does not change their values.
Note also that, in contrast to vertex constants and

asymptotic coefficients, spectroscopic factors cannot be
extracted directly from experiment and can only be deter-
mined by calculations involving model assumptions.

To independently test the above-proposed methods for
deriving the S-matrix poles and residues from experimen-
tal data, we calculated the NVC GI ( Li~a+d) using
the Faddeev equations in terms of the three-body
(a+n +p ) model for Li nucleus (see Table III). Use was
made of the same pair interactions as in [15],namely, the
one-term separable potentials in the S, channel of PAN

system and in the S&/2 P3/p and I', /2 channels of Xu
system. The Coulomb p-a interaction was neglected.
The Na potential in S&/2 state was taken to be of two
different forms, namely, (i) in the form of pure repulsiue
potential (version A in [15]); (ii) in the form of attractive
potential leading to the deep-lying Na Os state (version 8
in [15])which corresponds to the (Pauli-forbidden) totally
symmetric five-nucleon configuration

~
s [5 ],L =0 ) and

whose contribution has been excluded from the three-
body solution using the orthogonal projection technique
[21].

To find the NVC's Go and G2, the kernels of the
modified (to account of the Pauli-forbidden states) Fad-
deev integral equations were continued to the unphysical
region of imaginary momenta, and after this the three-
body equations were solved directly for the S- and D-
wave vertex functions. As a result, we found

~ Go ~

=0.325 fm in the case of the Xa interaction in the
form (i). Then the theoretical Go value was found by the
new solution of the inverse scattering problem [11]using
as input the theoretical three-body d- He S-wave phase
shifts and inversion method described above. In this
case, the Coulomb interaction can be conveniently al-
lowed for by adding the d- He Coulomb potential Vd'"'
to the nuclear d- He potential Vd inverted from theoreti-
cal three-body d- He phase shifts. The method of

agree with the well-known assertion that the D-wave
component of the Li ground-state wave function is

TABLE IV. The values of squared NVC
~ Go ~

and of asymp-
totic normalization constants Co" for different methods and
different versions of two-particle potentials: (a) the Coulomb
interaction disregarded; (b) the Coulomb interaction included.

Method

(a)
PA, ' theor. three-body
phase shifts [version (i)]
Solving inverse problem (SIP)
expt. phase shifts
SIP, theor. three-body
phase shifts [version (i)]
SIP, theor. three-body
phase shifts [version (ii)]
Direct solution of Faddeev
equations for the vertex
function [version (i)]

fG, [' (fm)

0.34

0.33

0.32

0.32

0.33

Co

2.34

2.32

2.28

2.27

2.30

effective potentials, disregarding (allowing for) the
Coulomb interaction, leads to

~ Go ~

=0.317 fm (0.413 fm)
in version (i) and to

~ Go ~

=0.321 fm (0.419 fm) in version
(ii).

Tables IV(a) and IV(b) present the NVC Go values ob-
tained by the above mentioned techniques and show also
the respective values of the asymptotic coefficient Co".
From the tables it is evident that the different methods
yield very similar Go values. Indeed, all the results ob-
tained, making allowance for the Coulomb+nuclear d-
He interaction (both by analyzing experimental data and

by using the inverse scattering method), belong to the
range

IGol'=0. 42+0.02 fm

while the theoretical three-body results obtained by
different techniques and for different Xa potentials disre-
garding the Coulomb interaction belong to the range

~ Go ~

=0.33+0.01 fm. It should be noted that the
theoretical Co" values in Table IV(a) are rather close to
the values Co"=2.03—2.25 obtained by Lehman et al.
[18] by solving the Faddeev equations for the a n psy-s--
tem.

We have solved the Faddeev equations to find not only
S-wave NVC Go( Li~a+d), but also the D-wave NVC
Gz( Li —&a+d ) and the respective asymptotic coefficient
C2". The resultant values

~G2~ =0.31X10 fm and Cz =0.022 [in version (i)]

[1,1]
[2,2]
[3,3]

Values obtained
by interpolating to

exact binding energy
Direct solution of
Faddeev equations

for the
vertex function

1.9572
2.4424
2.4729

2.409

2.409

0.1865
0.3381
0.3518

0.323

0.325

1.83
2.34
2.37

2.28

2.29

PA, expt. phase shifts
SIP,' expt. phase shifts
SIP,' theor. phase shifts
[version (i)]
SIP,' theor. phase shifts
[version (ii)]

(b)
0.41
0.42
0.41

0.42

'Pade approximation; the results for PA [2,2] are presented.
"After switching off the Coulomb interaction.
'Solution of He-d inverse scattering problem.

2.93
2.96
2.93

2.96
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small. It should be emphasized that not only the absolute
value but even the sign of Gz( Li~a+d) [with respect
to Go( Li~a+ d ) ] cannot be considered at present as es-
tablished firmly (see [18,22]). It would be of great interest
and importance, therefore, to find Gz (and Cz ) by
analyzing the experimental data on the elastic d- He
scattering using a procedure similar to that applied above
to Go but generalized to two-channel case. To that end,
probably, it is necessary that more accurate phase-shift
analysis data (especially on the mixing parameter E, )

should be obtained and more sophisticated method of
analytical continuation from the data should be used.

III. CONCLUSION

In conclusion, the principal results of the work will be
outlined.

(i) The energy-dependent phase-shift analysis based on
the Pade-approximant representation of the S matrix (or
of the scattering function) makes it possible to obtain a
precise analytic parametrization of the S matrix in not
only the physical but also unphysical regions, thereby

permitting the S-matrix poles corresponding to the bound
state, as well as the residues in the poles (i.e. , NVC's), to
be found by direct analytic continuation.

(ii) Having obtained reliable phase-shift values, one can
construct the accurate efFective two-particle interaction
potential in the given channel from which the NVC
values can be derived. This inverse scattering approach
is a new alternative method for finding the NVC's.

(iii) Our NVC value ~Go( Li~a+d )~ =0.42+0.02 fm
obtained by direct analytic continuation of the S matrix
in the Pade-approximant form has been confirmed by the
results of other approaches and seems to be sufficiently
reliable.

(iv) The allowance for the Coulomb d- He interaction
(made by pure theoretical and semiphenomenological
methods) raised the NVC ~Go~ value by approximately
25%.
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