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Boson-fermion mappings for odd systems from supercoherent states
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We extend the formalism whereby boson mappings can be derived from generalized coherent states
to boson-fermion mappings for systems with an odd number of fermions. This is accomplished by
constructing supercoherent states in terms of both complex and Grassmann variables. In addition
to a known mapping for the full so(2N+1) algebra, we also uncover some other formal mappings,
together with mappings relevant to collective subspaces.

PACS number(s): 21.60.—n, 21.60.Fw

I. INTRODUCTION

Phenomenological models of collective states in odd
fermion systems (mostly nuclei in the present context)
usually assume that these states can be approximated by
states in the product Hilbert space

+ = +even (3 +s.p. 1

where 'R,„denotes the Hilbert space of collective states
in the neighboring even-even system, and 'R, p the
Hilbert space of single-particle states. The particle-plus-
rotor model [1] constitutes a classical example of a model
constructed in such a way. The Hilbert space 'R,„ is
constructed in this case as a model space of a rotor with-
out any explicit reference to a microscopic description of
states in an even-even core. The Pauli correlations be-
tween the odd fermion and the fermions comprising the
even-even core are thus simply neglected. A similar ap-
proximation is also made in the quasiparticle-plus-core
model [2], where pairing correlations are taken into ac-
count by considering in Q, p quasiparticles instead of
particles, and in 'R, ,„both neighboring even-even cores.

In the phenomenological models of such odd fermion
systems the Hamiltonian is assumed to be of the form

H =II,„+0, +0;„„ (1.2)

[where P is a permutation of indices, P(1, . . . , A)
iq, . . . , iA, with (—1) its parity], cannot be presented
as a simple product of a single Slater determinant of the
core and of a single odd-fermion wave function,

where the three components describe the even-even core,
the single-particle states, and the interaction between
them, respectively. Although the interaction mixes the
eigenstates of H „+H, p, it is usually introduced to de-
scribe dynamical eKects rather than corrections induced

by the neglect of Pauli correlations in the basis states of
the full 'R.

It is worthwhile to recall here that even a Slater-
determinant wave function of an odd nucleus,

(1.4)

[where P'(1, . . . , A —1) = iq, . . . , iA q]. However, the Slater determinant of Eq. (1.3) belongs to the product Hilbert
space (1.1), because it can be presented as a linear combination of states (1.4):

(1 5)

where the set of indices jq, . . . , j~ q comprises 1, . . . , A
with the index j excluded.

In principle, we can therefore think about restoring
Pauli correlations by constructing an interaction H;„t
which would enforce or assure the mixing of states (1.4)

*Permanent address: Institute of Theoretical Physics, War-
saw University, Hoza 69, 00-681 Warsaw, Poland.

in such a way as to obtain states (1.5). This task is vir-
tually hopeless when the even states are described by a
model which does not explicitly use fermion degrees of
&eedom. In the present study we consider and present
relevant constructions when the core states are described
by bosons which result from a rigorous boson (or boson-
fermion) mapping. In this case it becomes possible to
address Pauli correlations between a chosen core and sur-
plus fermions in a systematic way.
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A model for which such an analysis is of direct rele-
vance is the interacting boson-fermion model (IBFM) [3],
where Pauli correlations are at least partially accommo-
dated on the phenomenological level through an exchange
term which mimics the microscopic exchange of fermions
between a single fermion and a fermion pair. (There is
microscopic evidence that the fermion quadrupole pair-
ing interaction may be largely responsible for such an
exchange term in the IBFM; see Ref. [4] and references
therein. )

The general formalism of boson and boson-fermion
mappings or realizations of Lie algebras (from a nuclear
physics point of view) and their present status have re-
cently been reviewed extensively by Klein and Marshalek
[5]. Among the open problems identified in that review
is the one discussed above, phrased in the terminology of
generalized quantized Bogoliubov-Valatin (QBV) trans-
formations, with a further systematization of such trans-
formations envisaged. This refers precisely to an ap-
proach where only some collective pair degrees of free-
dom are earmarked for bosonization, while the remain-
ing degrees of freedom are to be treated as ideal fermions,
kinematically independent from the bosons.

QBV results which have so far been obtained per-
tain first to the full so(2N+1) algebra where all fermion
pairs are bosonized and only states with at most one odd
fermion subsequently need to be considered in the prod-
uct space (1.1) (Ref. [5] and references cited therein. )
When bosons are associated with correlated fermion pairs
defined by some collective subalgebra [and the product
space (1.1) is naturally expected to contain states with
more than one odd fermion], QBV-type results have so
far only been obtained for a limited number of low rank
subalgebras, namely, su(2) [6, 7], su(3) [8], so(4) [9],
and so(5) [10]. Furthermore these results have been ob-
tained exclusively from algebraic considerations, as op-
posed to derivation via coherent states the two main
avenues which have been explored for the mapping of
even fermion systems.

In review [5] algebraic considerations are mostly
stressed, although it is appreciated that the coherent
state approach has been instrumental in the historical
development, while also appealing for the economy and
elegance with which it leads to boson mappings and the
rigorous systematization of various mappings and results.
As an example of the utility of the coherent state ap-
proach, one may quote the natural appearance of the 'R

projection which plays an important role in the identi-
fication of spurious states as has been known for some
time [ll] and also vividly demonstrated recently [12].

It is therefore to be expected that a coherent state
approach to boson-fermion mappings of odd systems, and
ultimately generalizations of the QBV transformation,
will play an important complementary role to present
results and endeavors which exploit algebraic methods.

In this paper we present the proper framework to ad-
dress the above program, namely, introduce the appropri-
ate coherent states (supercoherent states) and report on
some first results. We also comment briefly on some pos-
sible further developments and hurdles which will have
to be overcome. The organization of the paper is then as

follows: In Sec. II we give a resume of the background to
generalized QBV mappings, stressing the restrictions on
states which are to be included in the physical subspace
of the ideal space. We discuss the distinction between
ideal fermions and ideal quasifermions which becomes im-
portant for a discussion of properties of the ideal space.
Supercoherent states are introduced in Sec. III for the
so(2N) algebra. We also present there various similarity
transformations and define the mapping projected onto
the space with at most one ideal fermion. In Sec. IV we
obtain mappings induced by supercoherent states defined
in the collective space, and give some examples for this
case in Sec. V. Section VI contains a discussion of what
has been achieved and where future eKort should be di-
rected to obtain QBV-type mappings from supercoherent
states for collective spaces.

II. QUANTIZED BOGOLIUBOV-VALATIN
MAPPING AND STRUCTURE

OF THE IDEAL SPACE

A" = a"a" = (A„„)+, (2.2)

generates the orthogonal algebra so(2N). If supple-
mented by all the commutators of single and bifermion
operators and the commutator of the single fermion oper-
ators themselves, the corresponding algebra is so(2N+1).

We remark here that as an alternative to supplement-
ing the so(2N) algebra in the above fashion, one could
of course replace the commutators of single fermion op-
erators by the perhaps more natural anticommutators,
leading to an equivalent algebraic structure which, how-
ever, will then not be an algebra any more, but rather
a superalgebra. (This superalgebra has a rather simple
structure as it can be obtained by supplementing the al-
gebra with its trivial center, the identity. ) To the extent
that supercoherent states will be used to induce the above
algebraic (or equivalently superalgebraic) structure in an
ideal space, these induced relations will typically hold
on the whole ideal space, whereas other relations in the
original fermion space, such as, e.g. , the trivial operator
equivalence between a bifermion operator and the prod-
uct of two single fermion operators, will only hold on the
physical subspace of the ideal space (see also Sec. III).

A mapping for the full so(2N+1) would entail the in-
troduction of a boson (associated operators B" = Bt„
and B„) for each fermion pair with indices p,v, to-
gether with kinematically independent ideal fermions or
ideal quasifermions (associated operators a"—:nt and
n„) (The disti. nction between ideal fermions and ideal
quasifermions is linked to the algebraic structure associ-

We introduce the concept of a boson-fermion map-
ping and its specialization to the quantized Bogoliubov-
Valatin (QBV) transformation (and possible generaliza-
tions) in the simple setting of a single j shell. Suppressing
the index j, we introduce fermion creation and annihila-
tion operators a~ = a+ and a„, respectively, where p can
take on % = 2j + 1 values.

The algebra of products

(2 1)



48 BOSON-FERMION MAPPINGS FOR ODD SYSTEMS FROM. . . 2315

ated with the corresponding operators, as elaborated be-
low. ) Kinematic independence dictates that boson and
ideal (quasi) fermion operators commute,

[B",n ] = [B",ng] = 0 (2.3)

with similar results for the conjugate combinations. Fur-
thermore, the physical subspace in the so(2N+1) case
contains states with one ideal fermion at most, since the
bosons B above had been introduced to represent fermion
pair degrees of freedom.

In the physically interesting case where a collective
subalgebra of so(2N+1) exists, one is really only inter-
ested in bosonizing the corresponding collective fermion
pair(s), while treating all remaining degrees of freedom
as fermions. In this case the ideal space should there-
fore not be limited with respect to the number of ideal
fermions.

In the familiar example of pairing in a single j shell
where a single collective boson, Bt (say), sufIices to repre-
sent the collective fermion pair, one would naturally aim
at a product space description in terms of basis states
of the type (Bt) n"'n~' . . ~0), where the operators n
represent ideal (quasi) fermions.

We recall here that our approach to boson-fermion
mappings can be classified under what has broadly been
termed [5] the Beliaev-Zelevinsky-Marshalek method in
which a mapping of operators precedes a mapping of
states. States are then mapped after an association of ex-
treme weight states has been made, usually in the form
~0); ', ~0), as we also do here. The fermion vacuum
~0) is annihilated by all fermion annihilation operators,
a~~0) = 0, while the ideal space vacuum is annihilated by
all ideal (quasi) fermion and all boson annihilation oper-
ators, namely, n„~O) = B„~O) = 0.

We now turn to the difference between ideal fermions
and ideal quasifermions, the latter also often referred to
simply as quasifermions [5]. This difference resides in
the way in which single fermion degrees of freedom in
the ideal space take into account information about the
existing or prechosen fermion pair-boson association [13,
5]. It is instructive to illustrate this in the su{2) case
where in the ideal space the single boson degree of free-
dom Bt represents the original correlated fermion pair
A+. Clearly a similar configuration of fermions in the
ideal space will be redundant. To take this into account,
the algebra of ideal space fermions may be modified by
imposing the operator constraint [5]

plicitly [13] in the case of mappings for so(2N+1), ideal
fermions and quasifermions may be related on an opera-
tor level by showing that the ideal quasifermion operators
have the form of the corresponding ideal fermion opera-
tor times a projection operator. We emphasize, however,
that a similar relationship has not yet been identified in
detail for any of the cases where a collective subalgebra
dictates the bosons that appear in the ideal space.

We note here that in the standard phenomenological
IBFM it is indeed ideal fermions (and not quasifermions)
that enter the description. In microscopic analyses which
address the link between phenomenological IBFM param-
eters and those of an underlying shell model, present dis-
crepancies [14] between results obtained from a mapping
in terms of ideal fermions [4, 15] and one constructed
in terms of quasifermions [14], must at least partially
be ascribed to the different algebraic properties of ideal
fermions and quasifermions.

In the sequel we develop our formalism only for ideal
fermions which seem not only to be more naturally suited
for incorporation into coherent states, but also closer to
the spirit in which odd fermions (with unaltered algebra)
are introduced phenomenologically, as discussed above
and in Sec. I.

To conclude this section we briefly mention an al-
ternative approach to the same problem, albeit one
which mainly focuses on different or complementary as-
pects, namely, vector coherent state theory {VCS) [16,
17]. Although this approach also uses "intrinsic" de-
grees of freedom to account for the odd fermions [ideal
(quasi)fermions above], these degrees of freedom are uti-
lized much more indirectly than ideal (quasi)fermions
and are only defined in terms of their (left) action on the
vector coherent states, rather than through an explicit
algebraic structure. Furthermore this approach has so
far mostly been utilized in the context of explicit con-
struction of matrices for irreducible representations. It
has also proven to be a valuable formalism for identify-
ing physical subspaces through what is termed K-matrix
theory (see Ref. [17] and references therein).

Aspects of the relationship between the QBV and VCS
approaches have recently been studied by Klein, Walet,
Geyer, and Hahne [10].

III. THE so(21V) BOSON-FERMION MAPPINGS

) n"n" = 0.
~)0

(2 4)

This results in a modification of the fermion algebra
in the ideal space [5], in which case the corresponding
fermionlike operators are referred to as (ideal) quasi-
fermion operators.

Alternatively to this procedure it is possible to retain
the usual algebra for the ideal fermions (hence the cor-
responding terminology) and to incorporate the implica-
tions of a prechosen fermion pair-boson association into
the ideal space images of the original single fermion op-
erators [13,7].

As may be expected intuitively and has been shown ex-

fa", a„) = h„", (3.1)

determine the commutation relations between the single-
fermion and bifermion operators, as well as the so(2N)
commutation relations between the bifermion operators.

The so(2N) algebra consists of all bifermion operators
in a fermion Fock space built of N single-particle states,
i.e., a"a, a a„, and 2b" —a"a„, where a" and a„de-
note fermion creation and annihilation operators, respec-
tively, a"=(a„)+. The so(2N) superalgebra is obtained
by adding to the so(2N) algebra the single-fermion oper-
ators themselves. Their anticommutation relations,
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A. The so(2N) supercoherent states

The so(2N) supercoherent states can be defined as [18] (c,Ol~) =—(c 41~) (3 9)

IC, P) = exp (2C„„a"a + P„a") 10) (3 2)

(C, gl = (01 exp (2C" a„a„+P"a„)), (3.3)

facilitates the construction of a functional representation
of the fermion Fock space. To every many-fermion state
14) one, namely, associates a function of variables C"
and P~ according to the simple prescription

l~)::f.(c, &) = (c, &l~) (3.4)

Let us now consider the superalgebra composed of N(N
1)/2 boson creation and annihilation operators, B" and
B„,B" = B""= (—B„)t,and of N ideal fermion cre-
ation and annihilation operators n" and n„, n~=(n„)+,
1.e. )

B„., B'~ = b„'b~ —b'. b~,

Bpv) A Bpv) 0'p 0

(n", o.„$= 8",

(a",n ) = 0.

(3.5)

We refer to o.~ as ideal fermions to distinguish them from
real fermions a". The appellation "ideal" serves as a
reminder that; the creation operators o.~ commute with
the boson annihilation operators B~„, cf. Eq. (2.3), as
opposed to the real fermion creation operators a" which
do not commute with pair annihilation operators a~a

The supercoherent state for the superalgebra (3.5),

with the usual summation convention applied, and 10) de-
noting the fermion vacuum. These supercoherent states
depend on N(N —1)/2 complex numbers, C„„=—C„„=
(C"")*, and on N complex Grassmann variables,

(P„,P )=(P~, gP)=0, P„=(P")*, which anticommute

with the fermion operators, (P„,a„)=(P„,a")=0. The
"bra" supercoherent state,

B. The so(2N) Usui operator

All subsequent constructions of mappings between
fermion operators and functions of boson and ideal
fermion operators can be carried out as indicated above.
One can, however, avoid the functional representation as
an intermediate step in the mapping procedure by al-
ternatively considering the supercoherent-state-inspired
generalized Usui operator (Ref. [20], see also [23])

U = (01 exp (2 B""a a„+o."a„)10). (3.10)

This operator transforms a real fermion state into an
ideal boson-fermion state

) = Ul@) (3.11)

OU= UO, (3.12)

we say that 0 is mapped to 0, i.e., 0 is the boson-
fermion image of 0 under the mapping:

in such a way that, Eq. (3.9) holds automatically. Note
that in defining the generalized Usui operator as in Eq.
(3.10) we imply that the ideal fermion operators o." and
o,~ anticommute with the real fermion operators a and
a . By using the Usui operator one effectively avoids
dealing with Grassmann variables which have rather un-
conventional properties, especially when one concerns
derivatives with respect to Grassmann variables. How-
ever, reference to the supercoherent state (3.6) and the
functional images remains useful, as also becomes clear
from the subsequent discussion. (In Appendix C we also
give an explicit example of how functional images are
utilized to derive operator mappings. )

The mapping between operators acting in the real and
ideal spaces can thus be realized by exploiting the Usui
operator (3.10). If for a real fermion operator 0 one can
find an operator 0 acting in the ideal space such that

IC, P) = exp (2C„B" + P„n") 10), (3.6) 0;;O. (3.13)

where 10) denotes the ideal boson-fermion vacuum,
B~„IO)=n„lO)=0, gives rise to a functional representa-
tion of the ideal boson-fermion states:

I+): : f (c &) = (c,41+) (3.7)

(3 8)

We apply the usual notation by denoting the real fermion
states and the ideal boson-fermion states by angled and
rounded brackets, respectively. Hy comparing Eqs. (3.4)
and (3.7) we see that both real and ideal states are
now represented as functions of variables C"" and P",
which provides us with a powerful method of mapping
real fermion states into the ideal boson-fermion states
(cf. Ref. [19]). Indeed, we may define the boson-fermion
image of a fermion state by requiring that their functional
images are equal, i.e.,

a"a

a"a

GvQ~

a

; B"v —B"~B Bpg
—B"~n np+ B ~n"np+ o."a,

; B" B 0+ o."o. ,

; B„,
+B o.

iGv ~ ~ Qv

(3.14a)

(3.14b)
(3.14c)
(3.14d)

(3.14e)

Such a definition does not determine properties of 0 in
the full ideal space, but only those pertinent to the so-
called physical subspace which consists of images U14')
of all real fermion states 14). Therefore, in the full ideal
space the boson-fermion image of a fermion operator is
not unique.

In Appendix A we derive the following boson-fermion
mapping of fermion and bifermion operators as deter-
mined by the Usui operator of Eq. (3.10):
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It should be stressed. that once the Usui operator is de-
fined, the mapping of operators is also uniquely defined
through Eq. (3.12), and the mappings (3.14a)—(3.14e) re-
sult from a simple calculation.

The images of superalgebra generators, obtained by
using the Usui operator (3.10), are by construction guar-
anteed to fulfill the (anti)cominutation relations only in
the physical space. However, in the functional repre-
sentation, these images have a particularly simple form
containing only first-order differential operators. In the
ideal space, this means that only a single boson (or a
single fermion) annihilation operator appears in any of
the images in Eqs. (3.14a)—(3.14e). Together with the
fact that the single-boson and single-ideal-fermion states
are indeed physical, this ensures that the mapped opera-
tors fulfill (anti)commutation relations in the entire ideal
space (cf. discussion in Sec. 2 of Ref. [11]).Of course, this
fact can also be checked a posteriori by explicitly verify-
ing the so(2X) superalgebra (anti)cominutation relations
of the operators in Eqs. (3.14a)—(3.14e).

The latter fact ensures that the boson-fermion images
of real fermion states do not depend on the way we group
fermion operators before we construct ideal states by con-
secutively acting with operator images in the ideal space.
For example, one may obtain the boson-fermion image of
the state a"a IO) either by acting with the image of a"a",
Eq. (3.14a), on the boson-fermion vacuum IO), or by act-
ing twice with images of single-fermion operators, Eq.
(3.14d). The final result is the same in both cases, and a
similar conclusion also holds in more complicated cases.

On the other hand, there is no guarantee that the im-
age of a product of real fermion operators is equal to
the product of their images. In general, this equality
does not hold in the operator sense, but of course it does
when action on a physical state is considered.

One notes the appearance of the ideal fermion pair
n"n in the mapping of the real fermion pair a~a,
Eq. (3.14a). Therefore, the zero-, one-, and two-fermion
states have the following ideal boson-fermion images:

I»::Io), (3.15a)
a"Io)::n" Io) (3.15b)

a"a IO)::[B""+ n~n ] I0). (3.15c)
The real fermion pairs are thus mapped onto linear com-
binations of ideal bosons and ideal ferrnion pairs. The
mapping faithfully reproduces the structure of the real
fermion space, i.e., only the symmetric combinations,
B~ + a"a, appear in the physical space, while the an-
tisymmetric ones, B~ —n~n", belong to the unphysical
space.

As discussed in Sec. I, the mapping of fermion states
onto the ideal boson-fermion space aims at such a de-
scription of Pauli correlations between an even core and
an odd particle which avoids explicit antisymmetrization.
From this point of view, the mapping in Eqs. (3.14a)—
(3.14e) does not represent any gain with respect to the
original fermion space. Images of even fermion states,
obtained by acting on the vacuum with the images of
a"a, Eq. (3.14a), contain the ideal fermion pair n"n",
cf. Eq. (3.15c), and an explicit antisymmetrization with
any odd ideal fermion is still required. This is not a sat-

isfactory solution, because one would like to achieve a
complete bosonization of the real even-fermion-number
states, similarly as is the case for the usual Dyson map-
ping, where ideal fermions are not used. In the following
sections we discuss methods of addressing this deficiency.

C. Similarity-transforined so(21V)
boson-fermion mappings

( 1)k=).
k=0

(3.16)

where the multiple commutator has to be taken A: times.
The series is infinite unless the multiple commutator van-
ishes at some order. Since we would like to preserve the
finiteness of the boson mapping, we will consider only
such operators 7 which lead to finite series in Eq. (3.16).
Below we present results for two specific operators 7,
while some details of the derivation are given in Appendix
B.

Let us first discuss the similarity transformation (3.16)
with 7 given by

7 = 28""n n„, (3.17)

which, when applied to mapping (3.14a)—(3.].4e), yields

a"a
a"a

GVG~

a

Qv i

' A A

' A A

va
r' Q

r Av.

—B"~B"Bpg,
+B"Bg,
+ Bpv)

(3.18a)

(3.18b)
(3.18c)
(3.18d)
(3.18e)

One can see that the effect obtained is exactly the oppo-
site to the desired one. Namely, the boson-ferrnion image
of the real fermion pair operator a"a", Eq. (3.18a), cre-
ates solely the ideal fermion pairs n~n when acting on
the ideal vacuum, and the bosons do not at all appear in
the physical space. The mapping in Eqs. (3.18a)—(3.18e)
simply replaces real fermions by the ideal ones, and is
therefore useless for practical applications.

By applying a similarity transformation W to all iin-
ages of superalgebra generators, G' = W D~, one ob-
tains another possible mapping of the superalgebra in
the ideal space. This corresponds to using a new Usui
operator, U' = WU, and the new physical space is then
equal to the similarity transform of the original physical
space, I4')' = U'I@) = WI4). A suitable choice of the
similarity transformation may therefore change the com-
position and properties of the physical space, and lead
to mappings with a structure closer to the structures en-
visaged in Sec. I. In what follows we particularly aim at
removing the unwelcome term o.~n through an appro-
priate similarity transformation.

The similarity transformation 34 can always be pre-
sented in the form of an exponent, W = e+, and evalu-
ated by applying the Baker-Campbell-Hausdorf formula

Q~ = e TQe+
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On the other hand, mapping (3.18a)—(3.18e) may serve
for an explicit check of some properties of other similarity
transformed images. For example, it trivially fulfills the
so(2%) superalgebra (anti)commutation relations in the
whole ideal space. Also trivially, the image of any many-
fermion state a~a a~l0) is always n"n n~l0), no
matter in which way we group (or do not group) the
fermion operators in pairs to use either the image of c&a,
Eq. (3.18a), or that of a, Eq. (3.18d). Therefore, any
similarity transformed mapping will also have these prop-
erties.

From the above result one can guess that the desired
goal may be met by using the Hermitian conjugate of the
operator in Eq. (3.17) to construct the similarity trans-
formation. In Appendix B we show that by transforming
the mapping (3.14a)—(3.14e) with

7 = 7 (E) for Z = n"n"B—„ (3.19)

one obtains

7 ' = 1 —
s n"n B„„+is (n"n"B„) (3.26)

The functions of A' are in principle infinite power series.
However, convergence problems for these functions never
appear if one considers their action on ideal states with
a given number of bosons. Indeed, an nth power of A'

annihilates all boson states which have a boson number
smaller than n. Therefore, the infinite power series can
be cut off at the nth term, whenever only such ideal states
are considered.

From Eq. (3.20a) one sees that the even-fermion-
number states are now entirely bosonized. This is so
because the last three terms in this equation give a con-
tribution only if an ideal fermion is already present, while
they can be disregarded in a pure boson subspace. There-
fore, the images of the even fermion states reduce to those
given by the standard Dyson mapping [22], for which the
mapping of the one- to four-fermion states has now the
following explicit form:

a"a,' ', B" B g+ o."o.

IL0'uGp ~ ~ Bpv ~

(3.20b)

(3.20c)

P, v i i BPv BPPB
PO

—B" n n + B n"n —2n"n 7'A, (3.20a) a I0):
a"a"I0);

a"a"a I0):

: 10),
:n 10)
B" Io)

[
ABy, P. BA + BAy,

] I0)
—2n n"n I0),

(3.27a)

(3.27b)

(3.27c)

(3.27d)

.7-'(1 —X) — '7'B'B,.+ B" „
a„', ', n +n B 7'

(3.20d)

(3.20e)

y, v I0), , [BrcAByv BrcPBAv

+B" B"")I0) (3.27e)

In these equations, JV is the ideal fermion number oper-
ator,

(3.21)

while 7 is an analytical function of X,

7 =) A„Z",
k=0

(3.22)

whose first derivative 7 ' obeys the Ricatti equation [21I,

2L(7" +7' )+7' —1=0. (3.23)

This particular Ricatti equation can be solved in a closed
form, and one obtains

r = (tanh v'2 z) /v'2z,

7 = ln cosh /2X,
which gives the similarity transformation

W = cosh gnl'n B„

(3.24)

(3.25)

The square roots of operators, which appear in the above
expressions, only serve as a shorthand notation to de-
scribe the power series. In fact, all these series con-
tain only even powers of the argument, and therefore are
the series of powers of the A'=zn~o; B„operator itself
(without the square root). For example, the lowest-order
terms of the operator 7 ', which enters mapping (3.20a)—
(3.20e), read

When an odd fermion is added to an even fermion
state, the last term in Eq. (3.20d) does not contribute and
the first two terms create an odd ideal fermion. However,
this odd ideal fermion is accompanied by a whole series of
terms created by the operator 7 '. Therefore, the image
of an odd real fermion state is a mixture of one-, three-,
five-, etc. , ideal fermion states. More precisely, the series
continues until the number of ideal fermions reaches the
number of real fermions in the odd state being mapped.

This is exemplified in the image of the three-fermion
state, Eq. (3.27d), which contains a three-ideal-fermion
component. On the other hand, the one-ideal-fermion
component of this image is built as an antisymmetrized
product of the ideal fermion and of the boson represent-
ing the even core. The structure of odd states with more
particles is similar.

When a second odd fermion is added to an odd state,
all ideal fermions disappear by automatically recombining
to bosons. This is not at all evident when looking at the
rather involved structure of the single-fermion image, Eq.
(3.20d), which contains an infinite series of terms creating
ideal fermions. However, the odd state is itself built as
a series of terms with different ideal-fermion numbers.
Both series conspire in such a way that the recombination
mechanism is perfectly realized and the Pauli correlations
exactly preserved.

The operator 7 ' can thus be regarded as an opera-
tor responsible for the necessary antisymmetrization be-
tween ideal fermions and bosons. An approximate an-
tisymmetrization can be achieved by neglecting higher
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order terms in the series expansion (3.26). When keep-
ing terms up to the nth order one assures a correct anti-
symmetrization of states with the number of bosons not
greater then n.

The exact preservation of Pauli correlations have been
achieved here at the expense of complicated images of
operators. When the mapped operators (3.20a) —(3.20e)
are, e.g. , applied to a (real) fermion Hamiltonian, one
obtains its boson-fermion image which acquires many-
body terms. One may then separate terms into the
boson-boson, fermion-fermion, and boson-fermion parts
and therefore split the Hamiltonian into three parts, as
in Eq. (1.2). The boson-fermion part then represents
an interaction which enforces correct antisymmetrization
between the even core and odd fermions.

The exact images of odd states, obtained in this sec-
tion, are probably too complicated to be efI'ectively used
in practical calculations. Our ultimate goal which, in
the context of the full so(2%+1) algebra, was to describe
odd states in a product space of a single ideal fermion
and bosons, has not yet been met. On the other hand,
we may split the boson-fermion images of odd states into
components having diff'erent ideal-fermion numbers, and
consider them separately. Since these components are all
orthogonal one to another, the antisymmetry properties
must be valid for every one of them. In this way we
may consider the images of odd states projected on the
single-ideal-fermion subspace as the result of the map-
ping. Such a projection is not, of course, a similarity
transformation and some properties of the mapping may
therefore be modified. We analyze these questions in the
next section.

D. Projected so(2N) boson-fermion mapping

= (0~ exp (2B" a„a„)(1+n~a„) ~0), (3.28)

where 'Poi = 'Po+ Pi~ and Po=(0) (0( and Pi n" [0)(0(ni, ——
are projection operators on the vacuum and on the one-
fermion ideal states, respectively. Such an Usui operator
maps real fermion operators according to the prescription

oo1Uo1 = Uo1O (3.29)

where the image of 0 is denoted by C701. Hence, the
mapping of the so(2N) superalgebra reads

a"a

a"a
ava

:B" —B"~B Bpg
—B"~o. o.p+ B ~e"np,

; B" B g+ o."o. ,

~ Bpv)
: (n —npB" Bpg) Q + B ~np,

(3.30a)

(3.30b)
(3.30c)

(3.30d)

Apart from the term n"n in Eq. (3.14a), the mapping
of bifermion operators, Eqs. (3.14a)—(3.14c), is identical
to that derived by Donau and Janssen [23]. They have
used the Usui operator which is a projection of that of Eq.
(3.10) on the ideal space with at most one ideal fermion,
1.e.)

Uo1 = 'P01U

a~ i 'rn~+n B~pQ. (3.30e)

Here Q denotes an arbitrary operator which conserves the
vacuum and annihilates one-ideal-fermion states, i.e. ,

Q = Po + Q'(1 —'Po)(1 —'Pi), (3.31)

where Q' is arbitrary.
The images of the so(2N) generators, Eqs. (3.30a)—

(3.30e) can be derived in two ways. First, one may follow
a direct and standard way (see Appendix t ) of explicitly
considering the projected Usui operator, Eq. (3.28). Sec-
ond, one may perform a kind of projection of the similar-
ity images 0, Eqs. (3.20a)—(3.20e), by using the equation

P01+ —01 Po 1 )

to find 001.
Equation (3.32) results from the definitions of boson-

fermion images, Eqs. (3.12) and (3.29), and the relation-
ship between the corresponding Usui operators (3.28). In
particular, it has the following solutions for ideal fermions
in the similarity mapping:

Pp 1O'

P01O'v

PP1 0! 0!v
Po1~
Pp 1 7
pp1n~n

Q Pol
O'v+01 )

O."O. 7 P1,
JV Pp1'

Pp1 )0.

IV. BOSON-FERMION MAPPING
OF COLLECTIVE SPACE

In this section we concentrate our discussion on the col-
lective subalgebra based on using the collective fermion-

The mapping of the single-fermion operators, Eqs.
(3.30d) and (3.30e), is the same as obtained by Geyer
and Hahne [13],who have used for Q simply the vacuum
projection operator, Q='Pp. Another possible choice is
Q=1 —JV, where JV is the ideal-fermion-number operator,
Eq. (3.21). That Q is not unique, simply illustrates the
fact that images of fermion operators in the ideal space
are undetermined outside the physical space, which here
consists only of zero- and one-ideal-fermion states. By
the same token, the superalgebra (anti)commutation re-
lations of the generator images in the ideal space, Eqs.
(3.30a)—(3.30e), are fulfilled only in the physical space.

The mapping given in Eqs. (3.30a)—(3.30e) presents a
satisfactory solution to the bosonization program pre-
sented in Sec. I. Starting from the vacuum ~0) the even
fermion states are obtained by using the image of a~a,
Eq. (3.30a), and therefore are mapped on purely bosonic
states. Then, the odd fermion is simply added on top
of the bosonic state by using the image of single-fermion
creation operator, Eq. (3.30d).

On the other hand, when an additional fermion is
added to an odd-fermion state by acting again with the
image of Eq. (3.30d), the presence of the projection op-
erator Q assures that the odd fermion is annihilated and
a boson created. This is a concrete realization of the
recombination mechanism described in the previous sec-
tion.
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pair creation operators

~P~V
2 PV )

numbered by the collective index i=1, . . . , M, where M is
supposed to be much smaller than the number of all pos-
sible pairs [N(N —1)/2]. Together with the corresponding
collective fermion-pair annihilation operators, A;=(A')+,
all linearly independent commutators A, , A~, and the
single-fermion operators, a and a, they are assumed to
form a closed collective superalgebra. The closure condi-
tions read

; gB&—

A;, A~;; gh~ —c',qB"B( —y'„y," n"n„, (4.8b)

Ag 4 / Bg)

G i rA +g BA'p)

(4.8c)

(4.8d)

The mapping of operators can be obtained from the
equation OU=UO, which gives the following mapping of
the collective superalgebra (4.2):

[[A;, A~], Ag] = c',.„A(,
QV ~ AV. (4.8e)

De6ning the collective pairs of ideal fermions,

A' a =0) ) (4 2) n"npv ) (4.9)

(a~, a.) = b~,

(a",a j =0,
A~ =(A~)t, one can present the above mapping in a form
in which the pair amplitudes y„„do not appear explic-
itly:

where c,.&
are structure constants and the implicit sum-

mation over the repeated collective index l is assumed.
The corresponding physical subspace of the ideal space

is now envisaged to be comprised of ideal states with an
arbitrary number of ideal fermions, of course still sub-
ject to reigning space limitations. Physically this re-
flects a description where only collective fermion pairs
are bosonized, while all other fermion degrees of freedom
are simply accommodated as ideal fermions.

Following Ref. [12], we assume that the collective pairs
are orthogonal and normalized to a common number g,

A;, A~: ~ A, , A' —c,'I', B"Bi,

A~;; B~)

; n +B'lA, , n"',

J
GV i o.'V.

; A' — c' B'B"-Bt + B' A, A" (4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

s.e. ,

(O~A;A'~0) —= -'g,"")t'„=gS,' (4.3)

[A', [A, , A']] = c',.„'A" (4 4)

and the symmetry properties of structure constants

(y,""=(y'„)*)which gives the commutation relation

Similarly as in the so(2%) case, the image of the col-
lective pair operator A*, Eq. (4.10a), contains the cor-
responding ideal collective pair operator A', and there-
fore the above mapping does not present any simpli6-
cation in the description of Pauli correlations. In par-
ticular, the collective one-pair states are not bosonized,
A*~0) = (A' + B') [0). In the following section we again
use a similarity transformation to remove the intruding
term A' from the image of A'.

~t: = c'~ = ~i* —(c~i ) (4.5)

A. Collective supercoherent states

The collective supercoherent state is defined as

~C, P) = exp (C,A'+ P„a") ~0), (4 6)

B. Similarity transformation of collective space

7= B'A; (4.11)

We begin the discussion of the similarity transforma-
tion (3.16) by showing that the 7 operator given by

where C;=(C')* are complex numbers and P~=(P")*
complex Grassmann variables, as described in Sec. III A.
This supercoherent state suggests the collective Usui op-
erator

U = (0~ exp (B'A, + n"a„) ~0) (4.7)

which transforms collective even- fermion states, and
collective states with added individual fermions, into
an ideal space composed of collective bosons, B'=B, ,
[B',B~]=h', and of ideal fermions n".

:A& —'2„'B'B"R, -

IA, , A'j; ; IA;, A'] —c,'„B"B),

A,. ::A,+B,,

a

i
QV 3 I CIV)

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

leads to the mapping in which bosons and ideal fermions
are entirely decoupled:
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in analogy to the results obtained for the so(2N) super-
algebra, Eqs. (3.18a)—(3.18e). However, the similarity
transformation which is now responsible for removing the
collective fermion pair A~ from the mapping of A~, Eq.
(4.10a), is more complicated than in the corresponding
case of the so(2N) superalgebra. One has to consider the
similarity transformation for

7= t*' *"A" . A&" B . . B
)& '''gk &k &

k=1
(4.13)

where t""'" is a totally symmetric tensor (in upper, as
well as in lower indices) built from the structure constants
c,.&. This results in the mapping

(4.14a)

[A, , A~

A~:

k:n — A, a B7„,

(4.14b)

(4.14c)

(4.14d)

(4.14e)

provided the operators 7". and 7"'„,

7I —g gt~~~'"~& —~ A2i. . . Aja —xB
2 / ~ 221" 2k-1 ~k —1~

k=1
(4.15a)

fulfill equations

7" + —' 7" "+7' 7'" c" A 8 A'B. =0.
(4.16a)

Ckl rn Ck

(4.16b)

Equations (4.16a) and (4.16b) represent recurrence re-
lations for tensors t". '.",which can be solved for particu-$1 ''gk

lar structure constants c,.&. Since the structure constants
are not arbitrary matrices, but obey stringent conditions
resulting from the Jacobi identities for the collective al-
gebra, the recurrence relations cannot be solved unless
these conditions are properly taken into account. This
is dificult without specifying a particular collective alge-
braic structure. Below we solve the recurrence relations
for the unitary collective algebras.

The intruding term A' is now absent from the map-
ping of A', Eq. (4.14a), and the even-fermion-number
collective states are in fact entirely bosonized. This is so
because the last term in (4.14a) vanishes when acting on
a state where no ideal fermions exist,

gb~ —,~ 0 = 0, (4.17)

cf. Eq. (4.3).
Similarly as for the so(2N) superalgebra, when an odd

fermion is added to a collective even state, a series of

7",*„=) k(k —1)t,*„,",","-'A" " A'" 'B;, . B-,„„
k=1

(4.15b)

I

terms appears in the ideal space. These terms have one,
three, five, etc. , ideal bosons added to purely bosonic
components.

When the next fermion is added. to an odd state the
ideal fermions will not in general disappear from the cor-
responding boson-fermion image. This reBects the fact
that when two real arbitrary fermions are added to a
collective even state, this state will not in general be-
long to the collective space of the next even nucleus.
The collective superalgebra closure relations (4.2) do not
ensure that the corresponding supergenerators leave the
collective space invariant. This is obvious for the single-
ferrnion creation operators a~, which create the complete
fermion Fock space and therefore cannot conserve the col-
lective space.

On the other hand, when two fermions are added to
a collective even state, and the appropriate linear com-
bination is then taken as in Eq. (4.1), so as to form a
collective pair, the resulting state does belong to the col-
lective space of the next even nucleus. If an analogous
operation is performed in the ideal space, one observes
the desired mechanism of a recombination of odd ideal
fermions into bosons. More precisely, by acting on the se-
ries of terms which represents an odd ideal state with the
series of terms (5.3d) which represents a single fermion
operator, and next forming a collective pair (4.1), one
sees that the two series conspire in such a way that ideal
fermions disappear from the resulting expression.

The similarity mapping of the collective superalgebra
faithfully represents properties of the underlying collec-
tive space. One obtains an exact description of Pauli
correlations between bosons representing collective even
states and an odd fermion and repeated application of
the images Eqs. (4.12d) and (4.12a) onto the ideal space
vacuum will yield the physical subspace described below
Eqs. (4.2).

V. EXAMPLES OF MAPPINGS
FOR COLLECTIVE SPACES

A. Similarity mapping far unitary superalgebra
Let us suppose that the collective operators form an

(0+ 1)-dimensional symmetric representation of the uni-
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tary algebra su(l+1), i.e. , one has l collective pairs A;.
The simplest example is provided by the well-known
quasispin su(2) algebra. By normalizing the collective
pairs so that g=O one obtains B-independent structure
constants:

ing that tensors t,
""". are proportional to symmetrized$1 '2k

products of the Kronecker delta's. This is equivalent to
postulating the operator 7 to be a function of the oper-
ator E, r = r(Z), where

(5.i)

The recurrence relations can now be fulfilled by requir-

X=A'B;

and leads to the following mapping:

(5 2)

:a (n —~ ) —(a —~ r )(nb',' —[&,A ), (5.3a)

A;, A~ ':

; n — A', n„B;7',

&, ~~!),

A', A;, n" B,7'),

(5.3b)

(5.3c)

(5.3d)

(5.3e)

where N~=B"BA. is the boson-number operator.
In these equations, the operator 7 ' obeys the Ricatti

equation [21]

z(r" + r' ) —Br'+1 = 0. (5 4)

0
7 =) (5.5)

Recalling that the number of bosons in the physical space
is limited to 0 we have that (X) + =0 and the solution
can be postulated in the form of a polynomial,

(5.9a)
(5.9b)
(5.9c)
(5.9d)

(5.9e)Gp i r Q~.

quasispin su(2) algebra composed of the single pair-
creation operator A+=+ sa"a", its Hermitian conju-
gate A which is the pair-annihilation operator, and of the
fermion-number operator ¹ The boson-fermion map-
ping of Eqs. (4.10a)—(4.10e) then reads

A+::OBi —BiBiB—B)JV + Ai,N::2BiB+JV,
A' 'B,

a" ', ' o."+B~o.-

0—1
7-'= P ~'„Z", (5.6)

The similarity transformation e +Qe+, for 7 given
Eqs. (5.6) and (5.7) and X=A)B, removes the ideal

fermion pair from the physical space of an even system:

with the coefficient A'k ——(k+1)Ak+q determined from the
recurrence relation

k

~0 g ~ ~k fi k Q ~na 1~k m'— —
,

m=1
(5.7)

We see that coefBcients A& and %~+1 become singular,
but this of course does not influence solutions (5.5) and
(5.6). One also notes that for large 0 the series (5.6) is
rapidly converging,

A+:
N;

; BBi —BtBiB—(Bi —7 'Ai) JV,

:2BiB+A',
:B,
; r'(n- B))B+ (Bi - r'Ai)
; n~+7 n B.

(5.10a)

(5.10b)
(5.10c)
(5.1od)

(5.10e)

Boson-fermion images of even and odd collective states
have the following form:

X 2X'
0 H~ (0 —1) Os (0 —1)(0 —2)

(5 g)

(A+)"lo)::,(B')"lo

0!
a&(A+) lo);; n"7 '(Bi)"lo),(0 —N —1)!

(5.iia)

(5.lib)

B. Similarity mapping for the guasispin
su(2) superalgebra

where we see specifically that the single ideal fermion
states [K = 0 in Eq. (5.lib)] are correctly normalized:

We conclude this section by specifying Eqs. (4.10a)—
(4.10e) and (5.3a)—(5.3e) for the simplest case of the

I

a"l0)::n"lo) .

For the even noncollective states one finds, e.g. ,

(5.12)

(A+)"lo):: (Bi)"+'lo) + [(fi —BiB)r" + 7'I [~i " " —&'],(B')"lo)
(0 —N —1)! (0 —K)! (5.i3)



48 BOSON-FERMION MAPPINGS FOR ODD SYSTEMS FROM. . . 2323

When 0 noncollective pairs a"a+ are summed together to
form the collective pair A.+, the second term in the image
(5.13) vanishes because At = +„0n"n&. The resulting
image of the even collective state reduces to the state
with %+1 collective bosons, as it should.

The images (5.9) bear a strong resemblance to similar
results obtained in Ref. [7] and the two sets must in fact
be related by a further similarity transformation which
we have so far not been able to find.
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VI. DISCUSSION AND OUTLOOK

We have presented a framework which extends the con-
struction of boson mappings through coherent states to
the domain of boson-fermion mappings. This is accom-
plished by the introduction of Grassmann variables into
supercoherent states. Calculations were facilitated by the
identification and further use of the associated Usui op-
erators.

The formalism allowed us to construct a known Dyson-
type mapping for the full so(21V+1) algebra, together
with some other formal mappings not previously con-
sidered. We also obtained some first results for boson-
fermion mappings relevant to collective subspaces. How-
ever, additional eA'ort will have to be directed at this
aspect on two levels.

On the formal level one make think in terms of solv-
ing the recurrence relations in Eqs. (4.16a) and (4.16b)
for other examples than unitary algebras. Since low
rank orthogonal algebras have played a prominent role in
fermion models with dynamical symmetry, these seem to
be of most immediate interest. Alternatively, or addition-
ally, one may need innovation in either the construction
of novel supercoherent states or appropriate similarity
transformations. Furthermore, utilization of the results
to make further contact between microscopic models and
(semi-) phenomenological models such as the IBFM, is
also called for.

The notion of approximate mappings has recently re-
ceived attention[14] in this last context and requires fur-
ther investigation. In our framework such approximate
mappings are of course associated with a truncation of
series solutions to similarity transformations such as Eqs.
(5.5) and (5.6). As the specific example of Sec. V shows,
the small parameter of the series is related to the size of
the collective space. This quantitatively sets a clear con-
nection between collectivity and the importance of Pauli
correlations. Also from this point of view further explo-
ration of classes of similarity transformations therefore
seems worthwhile.

In this respect the typical seniority-type coeKcients
which appear in Refs. [7, 14, 15] (see also the correspond-
ing discussions in Ref. [5]) with a rather simple depen-
dence on boson and ideal fermion number operators only,
may suggest that it could be worthwhile to generalize
expressions like (5.5) and (5.6) to incorporate expansiori
coefficients which depend on number operators [24]. This
is one of the possibilities currently under investigation in
order to extend the applicability of our formalism and to
make further contact with approximate mappings which
have realistic truncation possibilities.

APPENDIX A: BOSON-FERMION MAPPING
OF THE SO(2N) SUPERALGEBRA

In order to drive the boson-fermion mapping of the
so(2%) superalgebra, Eqs. (3.14a)—(3.14e), we use the
standard method [19] of commuting real and ideal oper-
ators with the Usui operator (3.10). Let us denote by
t" the exponent appearing in the definition of the Usui
operator,

M = exp (C) = exp (2B" a a„+a"a„), (A1)

which acts in the product space of real and ideal states.
We will apply to Eq. (3.12) two forms of the Baker-
Campbell-Hausdorf (BCH) formula (3.16),

QP =P) [C[C . [C, O] . .]]i„(A2a)1)k

k=0

UO = ) —[C[C . . [C, O]. ]]gU,k.

remembering that after the calculation of multiple com-
rnutators, M acts on the ideal (real) vacuum to the right
(left).

We first consider the ideal fermion annihilation opera-
tor and Eq. (A2a),

(A2b)

n 0 = 0 (a„—[a"a„,n ]) . (A3)

The first term gives zero when acting to the right on the
ideal vacuum, while the commutator reads

cI a~) A~ = —a~ (A4)

(recall that ideal fermions anticommute with real
fermions), whence the higher-order multiple commuta-
tors vanish. Therefore, one obtains

a U=Ua, (A5)

Ua" = (a" + —[B"~a~a„,a"
] + [n"a„,a"])U. (A6)

Again, the first term vanishes when acting to the left on
the real vacuum, and the commutators read

2[B~ apa~, a ]+ [a~a„,a ] = B ap+n", (A7)

where both terms commute with C and U. Using the
previously derived equation (A5) one finally has that

(B Pap+ a ) U = Ua, (A8)

i.e. , the mapping (3.14e) is proved.
Second, we consider the real fermion creation operator

and Eq. (A2b),
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i.e. , the mapping (3.14d) is proved.
Continuing similar derivations, one may consider B„U

to prove mapping (3.14c), then Ua" a„ to prove (3.14b),
and finally Ua" a to prove (3.14a).

APPENDIX B: SIMILARITY
TRANSFORMATIONS IN THE IDEAL

BOSON-FERMION SPACE

n one obtains

a":,n" [1—7'A' —(7"+ 7' )n~n B ]

n—7

'B"~Bshe

+ B"~np.

The term with second derivative 7 "appears as a result of
commuting B ~ and 7 '. After using the Ricatti equation
(3.23) one obtains mapping (3.20d).

In order to derive the similarity-transformed boson-
fermion images Eqs. (3.18a)—(3.18e) and Eqs. (3.20a)—
(3.20e), one first considers the multiple commutators in
the BCH formula, Eq. (3.16), where the operator 7 is
given as a power series (3.22) of X. We will only consider
such operators X and 0 that

APPENDIX C: BOSON-FERMION MAPPING
OF THE so(2%) SUPKRALGEBRA USING
PROJECTED SUPERCOHERENT STATES

Similarly as in Eq. (Al), we define the projected Usui
operator in the product space as

[X, [Z, O]] = 0. (B1) Uoi = exp(C)(1 + n"a„) = (1 + n"a~) exp(C) (Cl)

In this case the commutator acts on a power series like a
differentiation, i.e., (C2)

and

[x",o] = kz"-'[x, v] Then we use the BCH formula to show that(B2!

a„a„exp(C) = B „exp(C).
[7,0] = 7 '[X, 0].

Moreover, the multiple commutators vanish,

[7, [r, ~]] =o,
and the BCH formula reduces to

DW = Q —7 '[A', C7].

(B3)

(B5)

Considering the fermion annihilation operator one has

up, a. = (a + n"a„a ) exp(C)

and the pair of fermions in the second term can be re-
placed by a boson as in Eq. (C3), while the first term,
when acting on the ideal vacuum, can be replaced by an
ideal fermion, i.e. ,

For the operator 7 given by Eq. (3.17) one therefore
obtains the following similarity transformations:

VV B" A'= B""
Bpv~ = Bpv + nvnp)

n ~=n —B n Pf
n &=a,

(B6)

which applied to the boson-fermion images in Eqs.
(3.14a)—(3.14e) give those in Eqs. (3.18a)—(3.18e). Note
that some products of ideal operators, like n~a for ex-
ample, do not fulfill condition (Bl). Their similarity
transformation can, however, be calculated as products
of transformations of separate factors, which do fulfill

(Bl).
When 7 is given as a power series in Z, Eq. (3.19),

one has

Mp, a ~0) = n (1+n"a„) expC~O) + n"B„„expC~O).

(C5)

Upi a~ = (n. + n"B,Q) Upi,

and mapping (3.30e) is proved.
Similarly, we use the BCH formula to show that

(c6)

exp(C)a = (a + B ~ap) exp(C).

Considering the fermion creation operator one therefore
has

In order to obtain U0q in the second term on the right-
hand side, we need to use the projection operator Q, Eq.
(3.31), which conserves the ideal vacuum and annihilates
one-ideal-fermion states. Then one obtains

W 'B""W= B" —7 'n" n
B'„W= B„„,n'~=n
'n„VV = n —7'B„„n",

(B7)
opia" = (1 + n+a&) (a" + B ~a&) exp(C) (C8)

and the mapping in Eqs. (3.20a) —(3.20e) is obtained
by inserting these similarity transformations in Eqs.
(3.14a)—(3.14e). For example, the similarity image of the
single-fermion creation operator reads

(0~Naia = (O~n exp(C) + B" (0~Upi (C9)

Equation (C6) can now be used to transform the second
term, while the Q operator is again necessary to obtain
Uqq in the first term. Finally one obtains

: n" + (B"~—7 'n n~) (np —7 'Bgpn ) . (B8)

After normal ordering and grouping together terms with

Uoia = n" QUoi + (B"~np+ B"~n"B „Q)Uoi,

and mapping (3.30d) is proved.

(c10)
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One notes that the possibility to replace in Eq. (C4) an
arbitrary fermion-pair annihilation operator by a boson-
annihilation operator is the key element of the derivation.
When considering collective algebras such a replacement
is not possible, and therefore a projected mapping cannot
be similarly derived in the collective space.

We conclude this appendix with an example of how
functional images are directly utilized to derive operator
mappings. The mapping (3.30e) is derived in this manner
by defining a supercoherent state projected to a space
with zero or one ideal fermions

(t, P[:= (0[(1+ P a ) exp( —C„„a a„)

—:(Ol(1+ P a )e

similar to the state (3.3), except for the projection.
The image of a„relevant to the above space is now

constructed as follows:

(&, /[a„= (Ol(1+ P a„)a„e
= (0l(a~ + 4-a-a~) e

= (0](a~+ 4-~,-)e
= ~.(0[(I+~.-.) '+ (0[~.~..)

'
= (&„+Q„O„„Q)(Ol(1+ y„a„)e
= (~. + &-~.-Q) X' 4 I. (C12)

In the second to last line it is clear that the projec-
tor Q must enter in order to extract the supercoherent
state required for the final operator association. This as-
sociation is the standard one, namely, that a Grassmann
variable and its derivative are associated with, respec-
tively, a (ideal) fermion creation and a (ideal) fermion
annihilation operator, while the usual Bargmann rep-
resentation for complex variables is used. From the
(over)completeness of coherent states one can now clearly
extract &om the result (C12) the operator equivalence
(mapping) (3.30e).
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