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Virtual particles versus superconductive vacuum polarixations in interacting systems
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The structure of the reference vacuum state plays a very important role in a theoretical dynamic
description of interacting particles. This structure is generated by the residual interaction acting be-
tween the valence particles and, in systems under extreme high temperature and consequently high pres-
sure, cannot be treated in the framework of the perturbation theory. In this paper we elaborate a non-
perturbative approximation to include the vacuum-polarization e8'ects of superconductive type in the
calculation of the many-body dynamics. In this proposed model, the wave functions of the system are
characterized by the strong coupling of the valence particles with the intrinsic vacuum states. These are
associated with (a) superconductive vacuum polarizations, and (b) superconductive virtual particles
formed coupling the vacuum excitations to the non-normal parity states of the system. The coupling of
the valence particles with the vacuum excitations (a) and (b), in this paper, is generated within the equa-
tions of motion methods which, in the limit of factorization methods defined to compute the matrix ele-
ments of the nuclear Hamiltonian in the resulting complex states, and with the use of energy-dependent
linearization approximations, introduced to generate the superconductive collective modes, are of easy
application in the low-energy domain of the interacting systems. The energy-dependent linearization ap-
proximations define collective modes which are loose and freely moving in this low-energy domain, while
strongly interacting with increasing energy.

PACS number(s): 21.60.—n, 21.30.+y

I. INTRODUCTION

The structure of the vacuum plays a crucial role in the
study of the dynamics of interacting systems. Starting
from a model in which the vacuum is assumed to consist
of pairs of particles and/or particle holes coupled to
J =0, we investigate nonperturbative approximations to
include the structure of the vacuum in the dynamics of
interacting particles. This structure modi6es the valence
particle dynamics generating the coupling of the valence
states with the intrinsic-superconductive-vacuum states
(ISVS's) which are formed by vector coupling of' (a)
valence particles and superconductive vacuum polariza-
tions formed exciting, from the vacuum, particle-particle,
hole-hole, and particle-hole pairs, and (b) valence particle
and vacuum pairs coupled to non-normal parity to repro-
duce mesons in nuclear physics and gluons in the dynam-
ics of quarks. The coupling with the ISVS's, especially in
a system subjected to very high temperatures, is not suit-
able to be treated perturbatively, the perturbation ap-
proximation being poorly convergent.

In this paper we investigate a model to include ISVS
coupling efT'ects in the calculation of the many-body dy-
namics within a nonperturbative approximation. Evi-
dence of the importance of nonperturbative methods in
the study of the nonsuperconductive coupling of the
valence particles with the (particle-hole) vacuum excita-
tions has been already pointed out in Refs. [1—3] in the
investigation of the dynamics of nuclei and in Ref. [4] in
the interacting field dynamics. In Refs. [1,2] we have
treated consistently, within a nonperturbative approxi-
mation, the coupling of the valence to the core degrees of
freedom, under full consideration of the Pauli principle in

the intrinsic vacuum states, which is essential for a good
model reproduction of experimental energies, magnetic
moments, electromagnetic transitions, and Gammow-
Teller strengths of the low-lying states in the 2+1 nuclei
[5,22]. Via equations of motion methods, which, with the
introduction of linearization approximations, generate ei-
genvalue equations, we were able to describe, nonpertur-
batively, the low-energy domain of the interacting sys-
tems. In Ref. [4], on the basis of formal solutions for the
nuclear field in Walecka's eff'ective meson theory [6], a
nonperturbative approximation has been derived, to de-
scribe the propagation of particles correlated to particle-
hole excitations.

New mathematical conditions are, however, necessary
to generalize the model of Refs. [1,2,4] so that the valence
particles could be coupled to the additional breaking of
the (particle-particle) and (hole-hole) pairs from the vacu-
um to form, with the vacuum excitations studied in Refs.
[1,2], the ISVS states. New linearization approximations
are indeed necessary to include this new coupling mecha-
nism in the theory of interacting systems. In terms of
these linearizations, the dynamics of the valence particles
is described by eigenvalue equations in which particle and
antiparticle degrees of freedom, as proposed in Ref. [7]
for the nuclear case, are coupled with the excitations of
the model vacuum to form quasiparticle (q.p.) states.
Two linearization procedures which consist in introduc-
ing the vacuum expectation values (aa) (O~p;h ~0) =5;~
and (bb) (O~p;pj ~O) =5,l are therefore investigated in this
work.

Approximation (aa), introduced by Lane [8], has been
elaborated in Refs. [1,2]. The linearization procedure
(bb) [9] assumes the existence of superconductive vacuum
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structure components. Within this approximation we
generate the Bogoliubov-Valatin [10] quasiparticle trans-
formation in first-order linearization, which is achieved
by neglecting the explicit introduction of the IVSV's in
the model space. The breaking of both vacuum sym-
metries within the higher-order linearization approxima-
tions define the ISVS's of the model.

In the low-energy domain, few quasiparticles charac-
terize the physical properties of the system, so that we
can restore (linearizing of the commutator chain) vacuum
symmetries within the promotion of few q.p. states to
valence level. The resulting eigenvalue equations charac-
terizing the low-energy domain are simply solvable
within a generalization .of the recursive methods intro-
duced to calculate inatrix elements in Refs. [1,2].

In the high-energy part of the spectrum, the resulting
collective states are strongly interacting.

The two types of vacuum-polarization efFects (a) and (b)
(see Ref. [11] for nonsuperconductive virtual particles)
find a unified treatment within these approximations. In
the zero-order (no active vacuum pairs) linearization ap-
proximation, which connects particles to antiparticles, we
recognize the results of Ref. [15] for interacting quarks as
we discuss in Sec. II A. In our higher-order linearization
approximations, however, we are going beyond those re-
sults (Ref. [15]), allowing the interaction of the valence
particles with the polarizations of the reference vacuum,
terms that break the chiral symmetry introducing the
mass matrix.

In Sec. II we remark that the dynamic evolution of the
system introduces in the model the vacuum degrees of
freedom. The linearization approximations (aa) and (bb)
restore the vacuum pair symmetries, generating finite sys-
tems of eigenvalue equations. In Sec. II A the formalism
is applied to describe the closed-shell polarizations in the
(3 +1) systems. We show that the matrix elements of
the many-body interaction in the configuration mixing
wave functions (CMWF's), components of the ISVS's, are
suitable to be calculated within recursive procedures.
Within these recursive procedures, we relate the matrix
elements of the interaction calculated with CMWF's of
the [n ] kind with those of the [n —I] kind being the
kind of complexity equal to the number of particle-hole
and/or particle-particle pairs in the model wave func-
tions. In Sec. IIB the model is applied to describe the
dynamic evolution of the valence quasiquark.

In Sec. III we calculate this functional dependence in-
troducing an expansion for the quasiparticle wave func-
tions of the [n ] th kind.

In Sec. IV we apply the model to the superallowed )33

decay.
In Sec. V we define the collective quasiparticle Hamil-

tonian for the low- and high-energy domains.

II. LINKARIZATION-APPROXIMATION
METHODS

In the Heisenberg picture, the time evolution of a sys-
tem is given in terms of the commutator s of the
Hamilton's operator with the creation operators of the
valence particles. A perturbation approximation can be
derived in terms of the Green's functions method [12],
which is then truncated up to low orders in the most
practical calculations. In systems of particles interacting
via strong forces, this method is, however, purely conver-
gent.

In this paper we overcome this type of approximation
reconsidering the equations of motion methods. With the
introduction of linearization approximations we generate,
from the hierarchy of the commutator equations, systems
of eigenvalue equations which give a powerful nonpertur-
bative description of the dynamics of interacting parti-
cles. The amplitudes of the model modes are associated
to the Green's functions of the dynamic theory. In order
to reduce the dimension of the derived eigenvalue equa-
tions for these modes, we introduce an energy-dependent
parameter which separates the low-energy domain from
the high one.

The low-energy domain is characterized by valence
particles coupled to a few ISVS components and de-
scribed in terms of a degree of linearization with the fol-
lowing characteristics: (i) first-order linearization, where
the symmetries of the vacuum are conserved; (ii) second-
and higher-order linearization, where the commutator
chain is linearized including explicitly in the model space
the vacuum-polarization terms. Within this degree of
linearization, the symmetries of the vacuum are restored
after having promoted the symmetry breaking terms of
high complexity (ISVS's) to valence character.

In this section the linearization approximations of
types (aa) and (bb) and the linearization parameter are
discussed in connection with the dynamic evolution of
the [mp —(m —1)h] system (see the application section
for the definition of the introduced indices). We write for
CMWF's of the [n ] th kind, introducing the superscript
[n ] of the X and the subscript [n ] of the J's to charac-
terize the kind of complexity [number of (particle-hole)
and(particle-particle) pairs]:

~@J)ir[mp —(m —1)h])
n t

NJ (J J )J '''(J J )J JaJ aJ J ) J
J 1J2~3 J2 —2~2 —1 1 2

n 1 2. . . n —2

(2.1)

[the aJ 's and the, —1) a 's are the creation and destruction operators], which in the notations introduced in the
Appendix [see (A2)], takes the form
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IC&J~[mP —(m —1)h])=
a„J,J2

N" J J . . . J Jl A„(a„J,J2. J„;JM)IO) . (2.2)

In the first-order linearization approximation, the model vacuum state IO) consists of pairs of (particle-hole) and
(particle-particle), coupled to the J =0, added to the true vacuum, and bears good symmetries. The evolution of the
system is described by the equation

[H, A„(a„J,J2 . J„;J) ]=
an J1J2 Jn

for the linearization (aa) and by the equations

[H, A„(a„J,J~ J„;J)]
a.JiJ2 J. J)IIHIIP. (E J1J2 J' J)

(2.3)

~„J',J,' ~ ~ ~ J„'

+ &OIIHII A„(a„J,J2 . J„;J)P„(8„J',J~ . . J„';J))P„(6„J',J~. . . J„';J) (2.4)

for the linearizations (aa) and (bb). In Eq. (2.4) we have introduced the operators

P„(E„J',J2 . . J„';J)= [A„(p„J',J2 . J„';J)+G„(p„J',J2 . J„';J)+ . . ]+B„(q„J',J2 . . J„';J)

(, , )J,~[ [a., g(a. , ga. , )
. (a., ga. , ) "]J„

J2m —2J2m —1 n J 1 J2 J3 J2m —2 J2m —1

J1+[at, S(a., Sa., )
' . (a., Sa., )J„']

J2 J2m —1 J2m —2

J1 J„J+[a., (a. , Sa., )
' S(a., Sa., ) "]

J2 J2m —2 J2m —1

J1 J„+[a, (a. , a. , )
' . (a. , Sa., ) "] ]J1 J2 J3 J2m —2 J2m —1

(2.5)

+ the operators B„(g„J',Jz . . J„';J) obtained replacing
in [A„(P„J',Jz . J„';J)+ . . ] the (m —1) destruction
with the corresponding creation operators. The addition-
al commutator [H, A„(p„J,Jz . J„;J)]has been omit-
ted for simplicity.

The P„(8„J',Jz J„';J) are the adjoints of the
P„(e„JiJ„' . . J„';J) operators, obtained replacing the
first single-particle operator in [ A„(a„J',Jz . J„';J)
+ . ] with the corresponding adjoint and the
B„(p,„J',Jz . J„';J) with B„(r)„J',J~ J„';J).

We have to note that Eqs. (2.3) and (2.4) result from
the full calculation of the commutator on the left side of
the equations. No analogous expressions have until now
been reported in the most quoted literature.

The linearization approximations (aa) and (bb), respec-
tively, applied to the nonlinear terms, generate the in-
teraction matrix elements. It is important to remark that
within the linearization conditions (aa) and (bb) the sys-
tem of interacting particles is superconductive also in the
first-order linearization approximation.

The two-body interaction excites one or more pairs of
particles or of (particles holes) which contribute to the
formation of the intrinsic superconductive vacuum states
(ISVS s). In the following we include explicitly this sym-
metries breaking term in the model wave functions
(high-order linearizations).

The evolution of the system is then described, modify-
ing Eqs. (2.3) and (2.4), by the commutator equations

[H, A„(a„JiJ2 J„;J)]

e„J1J2 . . J„

+ &OIIHII A„(a„JiJ~ . . JI'I, J)P„'(6„J',J2 J„';J))P„(8„J',J2 J„';J)

I I I"+1J1J2 J.+1

I I I~.+1J1J2 J.+1

& A.«.JiJ~ ' ' J.'J)lll'IIP. +i(~.+iJ(J2 J +1 J))P +1(e +1J1J2 J +1

&OIII'II A. (a.JiJ2 Jn J)Pn+1(~n+1J1J2 Jn+i J))Pn+1(~ +1J1Jn2 Jn+i



48 VIRTUAL PARTICLES VERSUS SUPERCONDUCTIVE VACUUM. . . 2293

and by the ones involving the commutators
of H with A„(p„J,J2 J„;J), omitted for simpli-
city. The P„+,(e„+,J',Jz J„'+, ', J) and
P„+i(8„+iJ',Jz J„'+i,' J) operators create the intrinsic
vacuum components which are obtained by vector-
coupling selected components of Pt(e„J',J„' . . J„';J) and
P„(B„JiJ2. . J„';J) with one (particle-hole), one (hole-
particle), one (particle-particle), or one (hole-hole) pair.
These terms were linearized in the [n j-order lineariza-
tion approximations.

Higher-order linearization approximations modify Eq.
(2.6) introducing ISVS's of tn +2j, [n +3j, etc. , kind.
Neglecting these terms and taking the expectation values
of the commutator equations between the vacuum and
polarized states, we derive the eigenvalue equations that
describe the coupled system (valence states and polariza-
tion states of the [n + 1 j kind). The resulting eigenvec-
tors obtained from the diagonalization form the basis in
which we expand the wave functions that characterize

I

the symmetry breaking terms of higher order, important
in the high-energy domain.

In Secs. IIA and IIB we apply the formalism to de-
scribe (a) the superconductive polarizations of the closed
shells interacting with a valence nucleon and (b) the dy-
namic evolution of a quark state.

A. Closed-shell polarizations

In this subsection we apply the formal equation (2.6) to
a system characterized by a single nucleon outside a
closed shell. We write, for the wave functions,

(ao) & =X A o(aii,'j,mi )l0&

=x'a' lo&,j1 j1m1

with ao= [j, j.
Within the linearization approximations (aa) and (bb),

the commutator (2.6) is reduced to

IH Ao(ao'J)]= & &gAo(Po J)+&0III IIAo(Po'J)A (po'J) & Ao(po'J)+ g & Ao(ao'J)III II
A i(&iJi'J) & A i(&iJi J)

13p

+ 2 &oIIVIIAo(ao J)Ai(piJ'i J)&Ai(piJi J)+ 2 &Ao«o J)II~IIGi i(k, iJi J)&Gi i«i, iJi J)
g

+ X &0III IIAo(ao'J)Gi, i(pi, iJi'J)&Gi, i(pi, iJi'J) (2.7)

Pl, 1J1

+ 2 & Ai«iJi J)IIHIIPi(&iJi' »&Pi«iJi'J)+ X &0IIHIIAt«iJiJ)Pi(&iJi'J) &Pi(+iJi'J)

where ez is the single-particle energy, po= [j, '
j the coordinates of a hole, and where A, (p,J', ;J) and G»(p»J', ;J)

create the two-particle —one-hole (2p-lh) intrinsic vacuum components formed by vector-coupling one particle to the
one (particle-hole) vacuum pair and the time-reversal ones where the particle is coupled to one (hole-particle) pair. The
caret indicates that the time of the (particle-hole) pair has been reversed, and the [ 1 j has been introduced to classify the
time-reversal (TR) components. The commutator relations (2.7) and those for the Ao(po; J) operator linearized as not
to include in the model the operators of the vacuum structure components (3q.p. ) reproduce the quasiparticle transfor-
mation of Bogoliubov [10]and Valatin [10].

The dynamic evolution introduces in the calculation the three quasiparticle states for which Eq. (2.6) takes the form

IH Ati(ai Ji J)]=X & Ai(aiJi J)III'IIAto(&o J)&Ao'(l4 J)+ g &0III'IIA'(aiJ' J)Ao'(po J)» (pP)
Pp Pp

+ g & A, (a„J', ;J)llVllPz(e2J", Jz', J) &Pz(ezJ", Jz', J)
I / I t

e2J1 J2

+ y &Oll vll A i (a,Ji,J)P2(192J i'J2'; J) &Pz(82J'i'J~; J) .
2J 1'J2

(2.8)

The commutators of the nuclear Harniltonian with the
other operators on the right side of Eq. (2.8) are explicitly
not given.

The expectation value of the linearized commutators
[H, A i(aiJi, J)], [H, A, (p„J', ;J)], . . . , is taken be-
tween the ground and excited modes of the system to
define the energy and wave functions of a single valence
nucleon in a medium in terms of the matrix elements of
the two-body nuclear interaction. These matrix elements,
calculated using the recoupling technique of Ref. [13],
have been considered as the starting point of the recur-

sive expansion we introduce for the five quasiparticle
states.

In the no-coupling limit, this expansion is exactly given
in Fig. 1 for the matrix elements, calculated with direct
components and, in Fig. 2, for those calculated in the ad-
joint components. For the additional matrix elements
that characterize the commutator relations with the TR
components, we elaborate the expansions illustrated in
Fig. 3 and for the matrix elements involving the adjoint
TR operators those of Fig. 4. For the matrix elements of
the nuclear interaction characterizing the new lineariza-
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= 1/3

&3p -2hll v II 3p-2h) &2 p-1h II v II 2p-1h& &5p llvll 5p& &3p II v II 3 p &

+1/3 + 1/3
FIG. 5. Matrix elements of the five particle components.

&2h-1 pll v II 2h-1 p& &3p II v II 3p&

=1/3

&3h - 2p llvll3h-2p& &2h-1p Il vi) 2h-1p&

+1/3 + 1/3

&'2p-1hll vll 2p-1h& & 3h llv II 3h &

FIG. 2. Decomposition of matrix elements calculated with
the adjoint direct components.

FIG. 1. Exact decomposition of the matrix elements of the
second kind in terms of the first kind (direct components).

tion method, we have the expansions of Figs. 5 and 6.
The commutator hierarchy [Eq. (2.2) and (2.8)] is linear-
ized restoring the vacuum symmetries within CMWF's of
the nth kind, components of the (2m+1) quasiparticle
states.

Calculation of the matrix elements of the many-body
Hamiltonian that characterizes the commutators of the
Hamiltonian with the complex creation operators of the
ISVS's is done by generalizing the expansions defined in
the figures for CMWF's of the second kind. To calculate
these expansion coefficients (Sec. III), we introduce the
algebra of projection operators connected with the alge-
bra of unit tensor operators in the work of Racah [14].
The linearization approximations used to restore the
symmetry of the vacuum after the promotion of vacuum
pairs to valence character define collective quasiparticles
and the terms beyond the linearization approximation in-
troduce their four-point, six-point, etc. , interaction sec-
tions (Sec. V). A practical application of this formalism
to light nuclei is presented in Sec. IV.

B. Dynamic evolution of a quark state

&(2p-1h)-(h - p) II vll(2p-1h) -(h - p))

In this section we apply Eq. (2.6) to study the dynamic
evolution of a single-quark state.

We define the many-quark Hamiltonian

H =g t ~a a//+ —,
' g (a/3~ V' ~y5)ata/ttasa, (2.9)

ap apy6

1/2 + 1/2

where the greek letters denote the quark quantum num-
bers Ia] —= Ilsjc] and where

V,' = Vof (r, o; S; )(A,;.A,'), (2.10)

(p-(h- p}llv II p-(h- p)& $2p-1hll v II2p-1h)

FIG. 3. Factorization method used for the TR components.

where f (r/o, /S/), being a fu.nction of the quark relative
distance, spin, and tensor operators, reproduces the
quark-quark interaction. The A,

' are the generators of the

&(2h-1p)-(h- p)llvll (2h-1p) - (h-p) & &4p - 1h II v ll4p -1h&

1/2
JE

+1/2 = 1/2 y1/2

&h-(h- p) Ilvllh-(h-p)& &2h-1pllvll2h-1p& &3pllvll3p& & 2p -1h II v II 2p-1h)

FIG. 4. As in Fig. 3 for the adjoint components. FIG. 6. As in Fig. 5 for the (4p-1h) particle components.
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SU3 color group.
We apply the equations of motion method (2.6) to the

single-quark creation operator a to determine the func-
tional dependence of the quark-quark potential. With the
linearization (aa), the quark and antiquark states are not
connected by the equation of motion method (good chiral
symmetry), and the set of commutator equations

need to introduce the color recoupling algebra. This can
be done using as in Ref. [17] the two SU(2) representa-
tions of the SU, (3) group. To solve in this approxima-
tion the dynamic equation Eq. (2.6), we take the expecta-
tion values between the vacuum, the one quark-q, and the
three quasiquark components and diagonalize the result-
ing matrix.

The quark acquires a Aavor mass and is characterized
by the wave functions

[H, a ]=@a, [H, a ]=@a (2.1 1)

Iq &
= ci lq &+c2lq &+c3lqqq &+c4lqqq &

are disconnected. In this approximation the average po-
tentials, for the quark and antiquark, respectively, can be
approximated in a nonrelativistic limit with two harmon-
ic oscillator potentials, where the energies e and e are
the quark's and antiquark's mean-field energies (Hartree-
Fock) (the definition of the single-particle energies is asso-
ciated with the introduction of a cutoff parameter). Tak-
ing the expectation values of Eq. (2.11) between the mod-
el states, we calculate the wave functions of the quark
and antiquark. These are eigenvalues of a collective
Hamiltonian that can be associated with the Lagrangian
introduced by Nambu —Jona-Lasinio [15].

The corresponding quark wave functions are

a
IC. ) =, lo) .

P .
(2.12)

[Ha ]=ra +:-a, [Ha ]=@a +:- at, (2.13)

and the corresponding quark wave functions take the
form

a~+a
a +a (2.14)

The linearization approximation (bb) breaks the chiral
symmetry, mixing the quark and antiquark degrees of
freedom.

The commutator relations that define the model states
are

+c&lqqq)+c6lq q q), (2.15)

with [q}= [u, s, d}. The eigenvectors defined in (2.15)
are eigenvectors of a collective highly nonlinear Hamil-
tonian.

In Ref. [18] it was already assumed that the pions are
associated with a collective superposition of quark-
antiquark pairs moving in the confining potential under
the additional influence of the pseudoscalar isovector
part of the efFective interaction. In our model, however,
pions are collective states of quark-antiquark coupled
with the intrinsic vacuum structure components. These
components play an important role in the determination
of the magnetic properties of hadrons [19].

To describe the heavier quarks, we use this base and we
introduce the vacuum structure components of higher
complexity such as four-, six-, etc. , point interactions act-
ing between the collective quarks (see Sec. V).

III. TRANSFORMATION COEFFICIENTS

The recursive expansions introduced in the previous
section simplify the calculation of the matrix elements of
the nuclear Hamiltonian in the quasiparticle states that
characterize the dynamical evolution of the valence sys-
tem. In this section the transformation coefficients asso-
ciated with these expansions are calculated connecting
them with matrix elements of unit tensor operators [20]
generators of the SU21+i(n) group (where [n } specifies
the kind of complexity of the CMWF's).

We apply this expansion method to the four main sub-
cases that characterize the main components of the quasi-
particle states of the [n }th kind.

i.e., with both linearization approximations, the two po-
tentials generate a common sector where the quark and
antiquark can coexist. The linearization of the system
with the implicit inclusion of the symmetry breaking
terms, however, does not reproduce the flavor masses. In
order to introduce the quark flavor masses, we have to
linearize the commutators including explicitly in the
model space the vacuum structure components as recog-
nized in Ref. [16],and given in Eq. (2.6). To calculate the
matrix elements of the nuclear interaction in Eq. (2.6), we

A. Transformation coefticients for the direct terms

The matrix elements of the nuclear Hamiltonian, cal-
culated with respect to the direct components of
CMWF's of the [n }th kind, have been expanded, as illus-
trated in Fig. 1 for n =2, in terms of the matrix elements
calculated with respect to the CMWF's of the [n —1 }th
kind.

We introduce, for the direct components of CMWF's
of the [ n }th kind, a linear combination of the form
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yn
1

1 2 n —1

"+'TZ(a„J,J2 J„~ja„,J„a„,J, )[~@J '(a„,Jk Jk . . Jk ))S ~@J(a„,J, ))]M

—1 k k k
1 2 n —1

ZJ(~„JiJ2 . J. l }p. iJp„—iJ )[l+g '(p„ iJk, Jk, Jk, ) & I&,' (p„ iJ, ) ~]M

1 2
Jk J„J

n —1

~J(+n JiJ2. . .J. I j ). iJ ). iJ )[ l&g '( ). iJk) Jk~ Jk )) ~ IMJ ( 7 —1J ) ) ]M

(3.1)

where @z(a„,J, ), Az (p„,J, ), and M~ (g„ iJ, )

denote the (particle-hole), (particle-particle), and (hole-
hole) wave functions, respectively, and 8"„8z,and 83 give
the number of different {a„ i }, {p„ i },and {g„,} ac-
tive combinations we can form with the {a„jcoordi-
nates. In the linear combination (3.1), CMWF's of the
{n } kind characterized by the quantum number {a„}are
defined in terms of CMWF's of the {n —1 } kind charac-
terized by the quantum numbers {u„,}, {p„,}, and

, }, and therefore are obtained projecting from the
total antisymmetry states {a„j a (particle-hole), a
(particle-particle), and a (hole-hole) pair, respectively.
The {a„,},{p„+,}, and {q„,} are complementary
coordinates as defined in Refs. [1,2].

The transformation coeKcients

and

'"+'V,(a„J,J, J„~}g„,J„g„,J, )

are calculated by defining the unit tensor operators [20]

u "(n)=[U (J, )C3 U (J,')] (3.2)

h (n)=[H (J;)H (J )]", (3.3)

p "(n ) = [& (J, )g & (J,') ]", (3.4)

where U (J ), H (J,'), and I' (J ) destroy a (particle-
In

hole), a (hole-hole), and a (particle-particle) pair, respec-
tively, when applied on CMWF's of the {n }th kind and
reducing the SU2J+i(n) [14] representations carried by
the wave functions on the right side of Eq. (3.1).

The "+'T~(a„J,J2 . . J„~ }a„ iJ„a„,J, ) are the ei-
genvalues of the matrix with

(
"+' J(a„J,J2 . J„~ja„,J„a„,J, )) "+'T~(a„J,J2 J„~ja„,J,a„,J, )

kJ,.J,.
J2J3

7 1'

J„J J,J.+J.'+J +J +J +J +& i(2 p

( —1)' ' ' " ' ' k J„J„'J
J J
k

J3
T

X[( TJ (~ —iJk Jk Jk, l }~.—2J'+ —2J )) TJ (+ —iJk Jk Jk, l }~„—~J;~. 2J,')]

'TJ" (13m iJk, Jk, Jk—„,lj&.—2J &.—ZJ,'» '" 'T,"(13m iJk, Jk, ' —' Jk„,~}13.—2J P.—ZJ,')]
1 2 n —1

as matrix elements. The procedure defines the transformation coefficients of the {n }th kind in terms of the transforma-
tion coefficients of the {n —1}th kind. Analogous expressions hold for the "+'ZJ(a„JiJ2 . J„~}p„ iJ„p„ iJ, ) and
the "+'VJ(a„J,J2 . J„~ }e„,J„e„,J, ) transformation coefficients.

B. Hole conjugation

The direct components of the one-hole conjugation states are expanded according to the formula
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—1 k k
1 2 n —1

ZJ(P J1J2 J
l jP —1J P —1J )I. l+J, (Pn —1Jk1Jk2 Jk„1)&+J (Pn —1JS ) & lM

1 2

n2

n —1

TJ(p.J1J2 J —1 l j ~. 1J,~.

X [IC J '(~. 1Jk,Jk, Jk, ) & lMJ' (~.—1J, ) & ]M

where

n3

—1 k k k
1 2 n —1

'"+' J(p. 1J1J2 . J.ljp. 1J,P.—1J,)—

XllMJ", '(j2. 1Jk, Jk—,
'' Jk„,)&l&J, (P. —1J.)&]M (3.6)

('""CJ(P.J1J2 . J.l]I . 1Jr. -1J, ))'=-&+J(P.J1J2 J.)IID-, (J, )II~J", '(P. 1Jk,Jk,- (3.7)

and where 2)1, gz, and 2)3 give the number of different {p„1j,{a„1j,and {p„1j combinations that we can form with
the {p„j coordinates and the

s (n)= [D (J;)D„ (J,')]" = g s" (n —l,p„ 1)
n —1

are the unit tensor operators as defined in Ref. [1]. The transformation coefficients are eigenvalues of a matrix similar
to that of Eq. (3.5).

C. Transformation coefKicients for the time-reversal states

For the time-reversal components, we define the expansion

yn

—1,j k k k
1 2 n —1

J„J

'"+'~i,j«n, 1J1J2 ' ' ' J. l ]ted. —1,jJ.tt. —1,jJ. )

yn
5

'"+'I"', (a„,.J,J, J„lja„,,J„a„,, J, )

1 2 n —1

J„J,

X I. 4; J (an 1,J„1Jk2 ' ' Jk, ) & l@J(t, —1,;J, ) & ]M ~ (3.8)

with i = 1, . . . , n„[number of (h-p)-core pairs]; j=i —1, where 84 and 85 give the number of the different partitions we
can form with the {a„, j coordinates and where

+J,J, '(~. 1,jJk, Jk, ' Jk„, —
,Jk1Jk~ Jk 1) for i = 1,

)=
@jJ (trn —1,Jk Jk

The transformation coefficients are calculated in terms of the matrix elements of the unit tensor operators

Vl (n)=u "(n)+u "(n)=[U (J;) U (J )]"+[U (J;) U (J )]",
n, i n, i a an i7

(3.9)

where U (J,') and U (J ) destroy a (particle-hole) and a (hole-particle) pair, respectively.
n, i an i
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The expressions we get for the transformation coefficients of Eq. (3.8) are of the form given in Eq. (3.5). The same
holds for the transformation coeKcients of adjoint CMWF's.

D. Transformation coefficients for ( n + 1) particles and the (n + 1) holes states coupled with (particle-hole)-core pairs

The CMWF's for ( n + 1) particles or ( n + 1) holes coupled with the (part'cle-hole)-core pairs are expanded according
to the number of active (p-h)-core pairs Im j. We distinguish between three difterent subcases for which we write the
expansions. (a) For the m =0 subcase,

—1 k k k
1 2 n —1

II'J(nnJiJz ' ' Jn ~ jun iJrnn —i~s)[—l&J, (nn A—Jk ' ' ' Jk„)&l&J (n

(3.10)

(b) For the m = 1 subcase,

l&JM(g„JiJ2
~n

6

UJ(1.Ji J2 . J. I j~. iJ,~. iJ )I @& '«. &Jk, Jk, . Jk, ) & AJ (&.
—1 k k

1 2

yn
7

n —1

J.I}A. iJ,q„A)l l&J '(g. iJk, Jk, . Jk, )&l J(g. iJ, )&]M,
&n —i~k Jk

1 2 n —1

(3.11)

where 86 and B7 give the number of the allowed parti-
tions. (c) For the m ~ 2 subcase, the expansion is that of
Eq. (3.1) and is, therefore, not given explicitly.

The expansion coeKcients

'"+'WJ(r)„J,Jg . J„ l j rl. J,g. iJ, )

of subcase (a) are a generalization of the

[ n + 1 j ~ f n —1 j coefficients of fractional percentage
(CFP) elaborated in Ref. [14] for the special case of
In + 1 j particles in the same {j j shell. Analogous ex-
pansions hold for CMWF's with (n +1) holes coupled
with (particle-hole)-core pairs, as well as for CMWF's
with (n+I) particles or (n+I) holes coupled with n

(hole-particle) pairs.

IV. APPLICATION TO SUPERALLOWED BETA DECAY

In this section we apply successively the linearization
approximations (aa) and (bb), which lead to a supercon-
ductive system of linear equations to describe dynamic
valence particle systems, to the calculation of the superal-
lowed beta decay of Li to levels in Be.

In Table I we present a comparison of the experimental
feature of the Gammow-Teller beta decay of the ground
state of Li into the J=—,', T= —,

' state of Be with the
prediction of the calculation done introducing step by
step the linearization approximations (aa) and (bb). The
value of the superallowed Gammow-Teller matrix ele-
ments is strongly increasing with the inclusion in the
model of the superconductive ISVS's. From the value 2.8
obtained coupling of the valence particle with only
(particle-hole) pairs coupled to normal parity states, we
calculate a small increase to 2.99 with the additional con-

TABLE I. Comparison of the experimental Gammow-Teller
beta decay with the theoretical results obtained applying succes-
sively the di6'erent linearization approximations (aa) and (bb).

B(GT)

Expt. [22]

2.80
2.99
4.09

5.6+1.2

pure shell model
shell model+ meson contributions
shell model+ meson contributions
+superconductive diagrams

sideration of pairs coupled to mesons (non-normal parity
states). To approach the experimental value, we have,
however, to include in the model the CMWF components
resulting from the coupling of the valence particle with
pair of particles coupled to JWO. This is the result (3) of
Table I. The experimental value has been performed by
the Isolde collaboration [21].

Three types of two-body matrix elements appear in the
calculation leading to diagonalization of eigenvalue ma-
trices of the order of 300X300: (1) polarization matrix
elements, (2) particle-hole matrix elements, and (3)
particle-particle matrix elements. The analytical form of
the particle-hole matrix elements and their parameters
are those of Ref. [22].

The particle-particle matrix elements are calculated
with the eff'ective interaction of Ref. [23], which contains
a strong tensor component. Matrix elements calculated
with this interaction in the mass-16 system agree remark-
ably well with those quoted in Ref. [24], which we ob-
tained from a solution of the Bethe-Golstone equation us-
ing the Paris potential.
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V. COLLECTIVE QUASIFERMIONS

In the previous sections, the commutator chain for the
dynamic evolution of interacting particles has been re-
duced to a finite system of equations restoring the vacu-
um symmetries within the linearization approximations
(aa) and (bb).

According to Refs. [2,25], the corresponding eigenvec-
I

tors are interpreted as describing collective quasifermion
states, eigenvectors of the collective Hamiltonian

H„i)=g E;F;J(5„JiJ2 . . J„)F;q(5„JiJq . J„),

(5.1)

where the operators

F; ~(5nJi J2 ' J, )lo) =[5 ao(ao~J)+O' 1 sN' J JSi(criJi,'J)+

. J J "J,J g J& (a JiJp'''J J)]lo& (5.2)

and

Ao(ao J)
Oo(o o)J) ~ (

.J)0 PO~

p„(e„J,J2 . J„J)
+n(anJ1J2 n&J) p (p J J ~ ~ ~ J .J)

create quasiparticle states of the nth kind. Considering
that the states created by the F; J(5„J,J2 . J„) opera-
tors form an orthonormal basis, we can prove that their
commutator with the collective Hamiltonian H„&~ gen-
erates a system of equations similar to those linearized.

To extend the validity of the equation of motion
method to the high-energy domain, we define an energy-
dependent linearization approximation (see Sec. II) which
consists in restoring vacuum symmetries within few
ISVS's, and show that the higher-order terms, neglected
by the linearization method, form four-, six-, etc. , point
interactions acting between the (5.2) states. We discuss

the approximation only for the direct components, as-
suming that the model space is dominated by the (3q.p.)

excitations and that the (5q.p. ) states have been linearized
to contribute to the formation of the mean-field potential
for the collective quasifermions. The higher-order (7q.p.)

and (9q.p. ) terms are included in the collective Hamil-
tonian as four- and six-point interactions. This can be
proved by writing the direct components of the (9q.p. )

states in terms of sums with the operator structure

,', (a', Jk )4,'„(a",Jk' )% '„,(p,"Jk" ) .
4 J, 4 J, 4

The (7q.p. ) and the other quasiparticle components also
can be cast as products of CMWF's defined by the linear-
izations.

In general, the terms neglected in linearizing the sys-
tem within the (3q.p. ) generate an interaction of the col-
lective quasifermions, and the collective Hamiltonian
(5.1) takes the form

H„„=g E;F; J(5„J,J~ . J„)F,J(5„J,J2 . J„)

+ —,
' g W,"ki(5„5'„5'„'5'„")F,J(5„JiJq . J„)F~(5'„JiJ2 . J„')F(q(5'„'Ji'J2' J„")Fkq(5'„"J'i"Jq" . J„"') .

ij lk

The validity of the introduced energy-dependent lineari-
zation can now be extended, without further complica-
tion, to components characterized by a higher degree of
complexity.

VI. CONCLUSION

In this paper we investigated the dynamic evolution of
interacting particles under the assumption that vacuum
symmetries are spontaneously broken. Vacuum symme-
try breaking terms of superconductive character are ex-
plicitly included in the model space. The symmetries are
restored within the n-pair vacuum excitations within the
energy-dependent linearization approximations (aa) and

(bb), which define systems of eigenvalue equations. The
low-energy spectrum is characterized by free moving col-
lective quasifermions, eigenvalues of the derived collec-
tive Hamiltonian. The model eigenvalue equations are
solvable in terms of recursive expansions that relate the
matrix elements of the one- and two-body operators in
CMWF's of the [n]th kind to those of the [n —1]th
kind. The transformation properties of CMWF's under
special unitary groups enable us to derive the transforma-
tion coefficients of the recursive expansions. In the high-
energy spectrum, the collective quasifermions interact via
a four- and six-point interactions. The formalism is valid
for a realistic two-body potential.

The breaking of pair symmetries corresponds to the in-
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troduction of the massive Golstone bosons in a "fully"
linearized theory (first-order linearization).

I thank Dr. A. Gobbi, Professor E. Kankeleit, Dr. J.
Ryabov, Professor J. Theobald, and Professor L. Zamik
for their kind interest.

with

e +01
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e +01
Pp

X

Yo =0,

APPENDIX

ISVS's for one valence particle. (1) First-order lineari-
zation of types (aa) and (bb):

0,= & Ao(ao j, )IIHII A()(ao, j, ) &,

&1=& Ao(poA')IIHIIAo(po'ji) &

I
4. (j, ) &

= [X a .+ + Y' a. ] I
0 &

=[X a++Y a ]I0& . (A I)

:-,= &Oil Vll Ao(ao j, )Ao(po j, ) &,

:1=& Ao(po'ji ) Ao«o j)'II I'110&

The amplitudes X and Y are the eigenvectors of the
p Pp

secular equation
(2) Second-order linearization of types (aa) and (bb)

without the (Al) terms:

Ji J 1I+j(j,(jzj3)J,;JM) &= Xj' j. j j j[aj (aj. (8aj ) '] +XI J j j j j[aj I3(aj I81a,. ) ']

=[X' j JA, (a,J,J)+XI j JG, , (a, ,J,J)

+ Yp j AJ, (p,J,J)+PI j JG, , (p, ,J,J)+Z„' j JB,(rI,J,J)+ W„' j BJ, (p,J J1)]10& . (A2)

The amplitudesX' J j XI j j Yp J j PI j j Z~ J j and W~ J J are the eigenvectorsof thesecular equation
~P11 1

E2p 1h+1

2p-1h ++1 2

E2h-1p +2

lewd 3

X3

E2h-1p+ &2

E3 +03 S5

E3h+ Q3

1

Xa&J&J
1

+l, al 1J1

1

Yp)J) J
1

1 J j
1

ZYIJ J

=0, (A3)

where

0,= & A, (a', J', ;J)IIH'll A, (a,J,J) &,

p', J'„J)IIH II A, (p

Q3= &B1(vy',J', ;J)IIHIIB, (vy, J, ;J) &,

~I1= & G1, 1(a1,1J'1 J)IIHIIG 1, 1(a1,1J1J) &

+2 & G 1, 1 (p1, 1Jl J)IIHIIG1, 1(S 1, 1J1 J) &

are the diagonal matrix elements and where =;, =;, X;, X;, S;, and S; are the corresponding off-diagonals. With the di-
agonalization of the matrix (A3), we define the superconductive collective fermions which, interacting, describe the
higher part of the spectrum.
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