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Photodisintegration of “He in the integrodifferential equation approach
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The photodisintegration of *He into n+>He or p+>H is calculated by employing the
integrodifferential equation approach for the determination of the three- and four-body bound states in-
volved, and by incorporating the final state interaction via an optical potential treatment. The results of
this comparatively simple model reproduce the trends found within the integral equation approach, and
are in a rather good agreement with the latest experimental data.

PACS number(s): 25.20. —x, 24.10.Ht, 25.10.+s, 27.10.+h

I. INTRODUCTION

A reliable basis for the theoretical treatment of “He
photodisintegration is provided by the exact set of in-
tegral equations [1-3] derived by Casel and Sandhas on
the basis of the four-nucleon Alt-Grassberger-Sandhas
formalism [4]. First applications of this technique [1,5]
showed a considerable flattening of the apparent low-
energy resonance peak seen in early measurements and
indicated by shell model [6—8] and resonating group cal-
culations [9]. Replacing the separable interactions used
in Refs. [1] and [5] by the semirealistic Malfliet-Tjon (MT
I+III) potential, an even more pronounced flattening
was found in this energy region, consistent with a lower-
ing of the theoretical values at higher energies [10]. Over
the years a similar trend has been encountered experi-
mentally [11] so that the latest data [12—15] are by now
in almost perfect agreement with the theoretical results
obtained for the MT I+1III potential [16].

The complexity of the integral equation approach, on
the other hand, makes its application so cumbersome that
a full solution of the underlying equations could be per-
formed up until now only below the three-fragment
breakup threshold at 26.3 MeV. Beyond this threshold
the plane wave approximation had to be employed, a step
justified at higher energies, say above 50 MeV, but
definitely not allowed in the intermediate region. Some
further approximations, moreover, were used which one
could avoid only by a rather demanding improvement of
the present technique. A further shortcoming of the in-
tegral equation approach is its practical limitation to low
particle numbers.

Under these circumstances it appears quite reasonable
to study, beside the exact formalism, a model based on
two simplifications. Instead of employing homogeneous
integral equations for the determination of the three- and
four-nucleon bound states involved, the much simpler
techniques of the integrodifferential equation approach
(IDEA) [17] are used (as in Ref. [10] the MT I+III po-
tential is employed in these bound state calculations).
The second simplification consists in taking into account
the final state interaction (FSI) via an optical potential
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treatment of the relative movement of the outgoing clus-
ters. In this way we avoid the highly demanding full
solution of the four-body integral equations.

In Sec. II we present our formalism while in Sec. III we
present our results and discussion.

II. FORMALISM

Before going into a more detailed discussion of approx-
imation techniques and numerical results, it appears use-
ful to recall some basic relations of the problem. The
properly antisymmetrized amplitude for the photodisin-
tegration of the “He bound state |¢;y) into a three-body
bound state |#;) and a nucleon of relative momentum q
is given by

MMq)=2""Nq; ¢yl H, ¢ - 1

Here |q; ¢ ) ) denotes the full outgoing scattering state
associated with the channel state

| ¥ =g ¥ (2)

In the plane wave (Born) approximation, the amplitude
(1), therefore, reads

BMq)=2(q|{¢y|HE, |9y . (3)

At low energies the process under consideration should
take place primarily via an electric dipole transition.
Thus, taking into account the exchange currents via
Siegert’s theorem [18,19], we are led to the following
choice of the electromagnetic interaction

4
E, > &-x;(1+7), )
j=1

HY ==2
e 2ifie

where E,, represents the energy and €, the two polariza-
tion directions of the incident photon. This expression
can be written as a sum of three terms, two of them act-
ing within |ty ), the third one depending on the coordi-
nate r canonically conjugate to the relative momentum q
between the nucleon and the center of mass of |¢yy).
Since we employ an s-wave projected (Malfliet-Tjon) po-
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tential, ¥y is an s-wave state in the relative two-body
variable §;; =x; —x; and, belonging to the orbital angular
momentum L=0, it is an s wave also in the other Jacobi
coordinate 7, =x; —(x; +x;)/2. For ¢;y the same holds
true with respect to &;;, but in 7, this state has, in gen-
eral, p-wave contributions, which, however, are not in-
cluded in our IDEA construction. The two internal
terms in the odd-parity operator H2 , thus, vanish be-
tween |4y ) and |¢yy ) so that HY reduces in Eq. (3) to

HY =—°%

em ™ oidic ) (5)

B8t [ rl+ri+rd)—rd

Note that the computation of expression (3) with this in-
teraction is most conveniently done for coordinate space
wave functions as provided by the integrodifferential
equation approach.

We finally recall that the cross section for an unpolar-
ized incident photon beam is given by

2
do __#9 1 5 prq). ©)

Here, u denotes the reduced mass of the two outgoing
fragments and k, is the photon momentum. If only the
protons or the neutrons are counted experimentally, the
above cross section has to be divided by two.

For the calculation of |¢;) and |y ) entering Eq. (3)
and also the approximate full amplitude (13) considered
below, the integrodifferential equation approach (IDEA)
is used. The IDEA employs the potential harmonic basis,
which is complete for two-body correlations generated by
a two-body potential. Consequently, it only requires the
solution of two-variable integrodifferential equations of
the Faddeev type, not only for H, but also for *He and
larger nuclei.

In this method the A-nucleon wave function ¥(x) is
written as a sum of amplitudes

V(x)= 2 F(r,‘j,P)

i<j<4
obeying the Faddeev-type equations

A(A4—1)

T+
2

Volp)—E |F(r;,p)

=—[V;)—Volp)] X Flryp), )

i<j< A

where p is the hyperradius and V,(p) the hypercentral
potential representing the first term of the potential har-
monic expansion of the interaction. The latter takes, to a
good approximation, the correlations stemming from the
coupling of the spectator particle’s relative orbitals to
those of the ij pair into account. T represents the A-
body kinetic energy operator and ¥V (r;;) the two-body po-
tential which we take as the Malfliet-Tjon I-III potential
in this paper. Equation (7) can be solved by projecting it
into the r; space which results—in the case of a spin-
dependent nucleon potential—in two coupled, two-
variable integrodifferential equations:
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# A(A—1
;A%—F—(Z—)Vo(r)—l-E Py(z,p)
V1++V3+
= | Volp) |(zp)
V1+__V3+ ,
+ — ¥(z,p) (8
and
2 - ’
%Ag+i‘”—“‘2JVo(r>+E Py (z,p)
Vl++V3+ ,
= —"2"__V0(P) 3 (z,p)
1+ __ 3+
+ V—Z—V—— Mzp), ©)
where

¥(z,p)=Pi(z,p)+ fjllf(o)(z,z’)Pi(z',p)dz', i=s,s' .
(10)

The Laplacian operator A2 is given by

92 LolLo+1) 4 1 a 9

2— = = —(1—2z2 °
Ao dp? o’ +p2 Woy(z) az( z )WO(Z)BZ ’
(1
where L,=(D—3)/2 and D=3(4—1), while

z=2r/p*—1. The weight function W(z) is given by
Wo(z)=(1—2z)*(1+2)'?, with a=(D —5)/2. The po-
tentials V!t and V3" are the singlet and triplet even
components of the Malfliet-Tjon potential, while
F(ry,p)=p~P~1V/2P(z,p). This definition is employed
to introduce the fully and mixed symmetric wave com-
ponents P(z,p) and P*(z,p) respectively in Egs. (8)—(10).
The projection function f|¢y(z,z"), which is required to
project Eq. (7) on the 7; space, is defined in Ref. [17]
where more details concerning the IDEA can be found.

It has recently been shown that the IDEA produces
better results for “He than the extended shell model, even
in its most sophisticated form, at a minute fraction of the
computational effort [20]. Results obtained via the IDEA
and the exact Faddeev-Yakubovsky equations, with
Malfliet-Tjon forces like the ones we employ here, are in
close agreement [21]. The same was found when compar-
ing the IDEA with calculations based on more realistic
forces and alternatives methods [22]. It is, therefore, not
surprising that employing the IDEA does not lead to any
noticeable deviations from the integral equation results.
This will be verified by comparing the corresponding
Born approximation results at higher energies where the
FSI plays no role.

The most drastic, but particularly simplifying
modification of our model approach consists in taking
into account the FSI by replacing the plane wave |q) in
Egs. (2) or (3) by scattering states |q)‘ ™’ generated by an
optical n->He or p->H potential. In other words, instead
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of solving a four-body integral equation providing us with
the full scattering state |q,¥;)' ™), we use the approxi-
mation

g, ¥y 7~ 1@ ) (12)
and thus
MMq)~2 " ql Yy HA, [y ) . (13)

The results obtained on this basis are, of course, ex-
pected to depend on the choice of the optical potential.
In turn, this means that the present procedure should
represent a sensitive tool for testing the quality of such
potentials. In what follows we choose the conventional
form

Vopt(E’r)= - VO(E)f(r,RO,aO)_iWV(E)f(ryRI’aI)
(14)
with

X

—1
f(f,Rx,ax)=[1+exp H , R,=r A3

(15)

employed successfully by Podmore and Sherif in inter-
preting the n->He and p-3H collisions [23]. For different
sets of parameters proposed by these authors we found
rather large differences in the present photonuclear case
which means that these different choices of ¥V, cannot
be phase equivalent. In fact, calculating the correspond-
ing phase shifts directly, we got quite different results for
01§,, i.e., for the p wave which is the only one relevant in
E1 transitions.

This observation suggested a new fit of the parameters
in Eqgs. (14) and (15). We adjusted the potential depth as
a function of energy, without varying the geometry pa-
rameters, to reproduce the p-wave phase shifts of Tom-
brello [24] over the whole energy region. Note that these
phase shifts are consistent with the ones obtained in other
analysis [25] and in the integral equation calculations by
Tjon [26] and Fonseca [27]. The differences of the fit to
the data are less than 0. 1°.

III. RESULTS AND DISCUSSION

The (y,p) and (y,n) photodisintegration cross sections
obtained within this approach are shown in Fig. 1. The
(v,p) results were obtained by including the Coulomb in-
teraction to the scattering states |q)'~). We also men-
tion that the experimental thresholds have been used in
the calculations. Since for the MT I+III potential em-
ployed the three- and four-nucleon binding energies
(Er=8.54 MeV, E,=29.74 MeV) are close to the exper-
imental values, this is a minor point in our case. The
agreement with most recent *He(y,p)’H data [12,13] is
remarkable. This is not only a rather satisfactory result
in itself, but shows that the elastic n->He or p->H scatter-
ing and the corresponding photodisintegration processes
are treated consistently in our model. We, moreover,
note that the ratio o (y,p)/o(y,n) is of the order of
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FIG. 1. Photodisintegration cross section obtained in our
model for proton ( ) and neutron (— — —). The data are
from Ref. [12] { (p), Ref. [13] M (p), and Ref. [11] I (.

1.05, i.e., no charge symmetry breaking is observed. This
is in agreement with the latest (y,p) data which are close
to the (y,n) data.

It is quite instructive to see how sensitively the situa-
tion depends on the choice of the final state interaction.
Adjusting the parameters in the optical potential [14] to
the p-wave phase shifts of the resonating group method
(RGM) calculations by Reichstein et al. [28], our ap-
proach yields the solid curve shown in Fig. 2, which
agree with the direct RGM calculation by Wachter et al.
[9] (dashed curve). Both these RGM calculations agree
with early measurements (upper shaded area taken over
from the compilation of Ref. [29]) but fail to reproduce
the (y,n) data of Ref. [29] (lower shaded area) and, in
particular, the latest experimental (y,p) results of Refs.
[12] and [13]. It should be mentioned, however, that by
fitting the optical model parameters to the phase shifts of
Furutani et al. [29], obtained by means of the generator

60

E, (MeV)

FIG. 2. Model treatment with optical potential parameters

adjusted to the RGM phase shifts of Ref. [28] ( ). Direct
RGM results of Ref. [9] (— — —). Results for the optical po-
tential adjusted to GCM phase shifts [30] (—-—-—-). The data

are as in Fig. 1. Shaded areas are taken from the compilation of
Ref. [29] and correspond to the (y,p) (upper) and (y,n) (lower)
data.
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coordinate method (GCM), a better agreement with the
new data is achieved (dot-dashed curve).

These quite different results demonstrate most clearly
the sensitivity of low-energy photodisintegration against
the nuclear parameters, a sensitivity less pronounced in
purely nuclear observables. This is due to the fact that
only p waves enter the final state in our calculation of the
photodisintegration amplitude, while a large number of
partial waves play a role in purely nuclear cross sections.

At higher energies, say above 50 MeV, the final state
corrections are found to be negligible. In other words,
the Born approximation (3) appears to be fully justified.
The only approximation in this region, thus, consists in
determining the bound states |iy;) and |¢y) by means
of the integrodifferential equation approach (IDEA).
This approximation is a priori expected to be of minor
importance and indeed, comparing in Fig. 3 the Born re-
sults obtain in Ref. [10] via integral equation (dashed
curve), with the corresponding Born results for the IDEA
(solid curve), we see that both approaches provide practi-
cally identical results. Moreover, the agreement of these
curves with the data of Ref. [14] and, in particular, of
Ref. [15] is remarkable. Let us mention here that a pre-
liminary presentation of these results appears in Refs.
[31,32].

Summarizing, we conclude that both the integral equa-
tion technique and the above model lead to a very good
agreement with recent experimental data, at least when
using instead of simple separable interactions, the semi-
realistic MT I-III potential. In our model this agreement
was achieved by choosing the optical potential parame-
ters in accordance with Tombrello’s p-wave phase shifts,
which in turn are consistent with microscopic Faddeev-
type calculations. In this sense the present approach
leads not only to quite a satisfactory result, but reflects
consistency between our nuclear and photonuclear ob-
servables.

IV. AN ADDITIONAL COMMENT

After submission of the present investigations, a paper
by Unkelbach and Hoffman has appeared [33], in which
the RGM results by Wachter et al. [9] are adjusted to
the new experimental data. This is accomplished by re-
placing the experimental photon energy E,, =E{Y, chosen
in the previous calculations of the Siegert operator [cf.
Eq. (5)], by a model energy E}' consistent with the RGM
binding energies. Due to the large deviations of the
RGM energies from their real values, this replacement
implies, in fact, a considerable modification of the energy
dependence of the amplitude, leading from the former
resonance shape to the recent flat behavior. Alternative-
ly, Unkelbach and Hofmann show that a similar
modification is achieved by changing the electromagnetic
operator, but choosing, as in the previous calculations,
the experimental photon energy EJ instead of EJ’. The

500 T T T : —
400 | —

300

100

I E—T S0 7 80
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FIG. 3. Born results obtained by means of the IDEA ( )
and the integral equation approach (— — —). The data are
from Refs. [14](3z=) and [15] (se3) .

RGM approach of Refs. [9] and [33], thus, displays a
high ambiguity, which has been exploited in these papers
to fit first the old and now the new data.

Let us emphasize that an ambiguity of this type did
occur neither in our previous integral equation treatment
[10] nor in the present integrodifferential equation ap-
proach. Instead of the rather unrealistic Gaussian poten-
tials, to which the RGM calculations of Refs. [9] and [33]
were restricted, the semirealistic MT I+1III potential has
been employed in these investigations, which, as dis-
cussed in Sec. III, provides binding energies close to the
experimental values (note that this well-known fact con-
tradicts the statements in Sec. 4.1 of Ref. [33]). The pho-
ton energy E7' consistent with these theoretical values,
therefore, differs only marginally from EJ. It was just
this important feature which suggested the choice of the
MT I+III potential rather than, in other respects more
realistic, interactions. Proceeding in this way we, there-
fore, had no freedom to adjust the theoretical results to
the data. The integral equation approach and also the
present model, on the contrary, predicted unambiguously
the flat nonresonant behavior found in almost all recent
measurements.
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