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Coupling between rotational and vibrational motions
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A cranking Bohr-Mottelson Hamiltonian is proposed and a formula for the rotational spectrum is de-
rived, showing explicitly the coupling between rotational and vibrational motions. The formula is ap-
plied to the rotational bands of even-even nuclei in the rare-earth and actinide regions. The ground-state
rotational band (below backbending) and the associated P and y bands can be represented by a single for-
mula. Nuclear structure information on the parameters is discussed.

PACS number(s): 21.10.Re, 21.60.Ev, 27.70.+q, 27.90.+b

I. INTRODUCTION

Nuclear rotational spectra have been well studied both
theoretically and experimentally. Spectra up to high spin
values have been measured with high precision for many
nuclei. Since the moments of inertia of the actinide nu-
clei are about twice those of the rare-earth nuclei, the
two-quasiparticle S band does not compete with the
ground-state band until much higher spins [1]. There-
fore, the yrast levels with even spin and parity in the ac-
tinide nuclei may belong to the ground-state bands to
higher spins than those in the rare-earth nuclei. Thus,
the recent data provide an ideal opportunity to test the
applicability of various models for rotational spectra.

Theoretically, both algebraic and geometric methods
have been adopted to analyze the spectra. For the alge-
braic approach, various forms of interacting boson mod-
els [2,3] were applied. The models are good at the gen-
eral representation of the spectra and can be extended to
high spin values with suitable attention to boson num-
bers, but detailed numerical precision is not expected and
it is rather dificult to connect the results of analysis with
nuclear structure information

In the geometrical approach, most detailed studies
have been done by Kumar and co-workers [4—7], with
the Bohr-Mottelson (BM) Hamiltonian. The successes of
his works show that the BM Hamiltonian can give an
adequate description of the collective spectra of all kinds
of even-even nuclei. However, his works also show that
it will be rather di%cult to obtain a quantitative descrip-
tion of the rotational spectra to higher spin values, with
calculated energy surface and mass parameters.

Semiempirical approaches may be more suitable to give
a quantitative description of rotational spectra and to ex-
tract nuclear structure information from the spectra.

With a somewhat artificial potential energy term and oth-
er simplifications, Wu and Zeng [8,9] have derived a
two-parameter formula for the rotational spectra of well-
deformed nuclei. The formula is quite successful in the
quantitative representation of the spectra, but the physi-
cal significances of the parameters are not self-evident.
Even for intimately connected spectra, such as the
ground-state band (g band), the p and y bands of a given
nucleus, the parameters must be determined separately.
Empirical expansion formulas, such as expansions in
powers of co [10] or I(I+1) [11],can be applied to give
a good quantitative account of the rotational spectrum,
but little nuclear structure information can be extracted.

In this work, the interaction between rotational and vi-
brational motions will be studied with the cranking BM
Hamiltonian proposed by us. A brief sketch of the for-
mulation and the physical meaning of various terms will
be given in the next section. Applications of the formula
to rotational spectra of even-even nuclei will be presented
in the third section, with special attention to the unified
presentation of the g, P, and y bands. Numerical applica-
tions will show that the formula in Sec. II gives, for most
cases, a very good quantitative representation of the rota-
tional spectra up to high spin values (below backbending).
In the last section, a brief discussion in connection with
nuclear structure information will be given.

II. FORMULATION

In the cranked shell model [12], the Harniltonian in the
rotational frame of reference is given by

H'=H(aQ a2) —co.J .

The shell-model Hamiltonian with quadrupole deforma-
tion may be written as

N

H(aQ, ap)= y It,. +(v)rf+, ()r[ aye (gQ, , y,. ) ~+y2(2g2, ., y,. ) +ay2/2(g, , y,. )]] (2)

Considering ao and a2 as slowly varying parameters, and treating the problem in the adiabatic approximation, one
obtains
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H(ao, aZ) —c0 J—ZA' ao +aZ
c}ao c}aZ

Let

a . aU= —c -J—ia a, +a,
Bao Ba2

and, treated as perturbation, we have

4=A@ . (3)
In the axisymrnetrically deformed nuclei, we assume

that co is perpendicular to the symmetrical axis, the z
axis. There is no physical signi6cance to distinguish the x
axis and y axis, hence the average values co„=co~=co/&2
are inserted in Eq. (10), which gives, after quantization
of ao and a2, the Hamiltonian of collective motion in the
rotating frame

1H'=— ——8, (3a 0+2a 2 )co
2B0 aao2 4B2 Ba22 2

+=00(ao a2) y E E 0 (ao 2)
n&p

+Eo(ao, aZ) . (12}

For well-deformed nuclei, it is reasonable to assume the
deformation dependent part of Eo(ao, aZ) as [6]

I&@.l&l@ &I'
A=E, (a„a,)+ & y, l UIq, & E„—Eo

(6) V(ao aZ)= —Co(ao ao) +—CZaZ (13)

where g„(ao,aZ) is the solution of the unperturbed
Schrodinger equation

H(ao aZ)y„(ao aZ)=E„(ao aZ)q„(ao aZ)

Hence, the energy in the rotating frame of reference is
given by

E'= (elH'le)

=A+i% 4 ao +a2c} . c}

ap a2

The eigenequation of collective motion is

H'In(3, nr ) =E'(n&, nr )In&, n~),

with the eigenvalue given by
1/2

E'(np, nr )= np+ —
Picots 1 —3

2 Bp COp2

1/2
CO+ n~+ —

ACOy 1—
CO/

Making use of the symmetrical properties of H(ao, aZ)
and the relation a oco

3 -22 B1 CO
1 —3

COp

& q, l(UH HU)l @„)=—(E„—E, ) & q, lUlq„&, (9)

formula (8) can be written in the simplified form

E'=
—,Boao+82aZ+802aoa2 28x(+3ao+v 2aZ) co@

,'8~(v'3ao ——v'—2aZ) co —48,aZco, +Eo(ao, aZ),

(10)

where Bo, B2, BO2, B~, B~, and B, are the mass parame-
ters. In the lowly excited collective states, the values of
ao and a2 are kept near the ground-state deformations ao
and a2. For axisymmetrical nuclei, a2 =0. In the expres-
sions of the mass parameters, we shall use approximately
the axisymmetrical solution of Eq. (7) with ao=ao and
a2=a2=0. Hence, for the axisymmetrically deformed
nuclei, we have

BO2 =0, B =B =81, 8, =B2 .

The three mass parameters B1,Bo, and B2 are now given
by

where

n, }}n&=f.«0«0 ao»f. «—ZaZ»"P nr (16)

ao=ao
B CO

1 —3
2

BOCOp

1/2
BOCOP B1CO

A 0 1 —3
BOCOp

2

282CO& B
~

CO
1/2

u2 1 82 CO&

and f„(ax ) is the normalized eigenvalue wave function
of the one-dimensiona1 harmonic oscillator.

According to the cranked shell model [12), the energy
in the laboratory frame of reference is give by

where co&=QC0/80 and cor=+CZ/282 are the fre-
quencies of P and y vibrations, and nC} and n are the
corresponding quantum numbers. The eigenvalue wave
function can be written as

I(2po(a0, 0)ly; f;(»;)&Zk(&;,q; )l@„(a0,0) ) I'
8k=2' Q

nAO [E„(ao 0)—Eo(ao 0)]'
E=(eIH(a„a, )IC &

=(O'IH'+co. JI@ & . (17)

(k =0, 1,2) . (11} Using formulas (5), (15), and (16), one obtains
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—1/2

+ n&+ —
AN& 1

E=E'(n&, n )+Bien (n&, n 3ao+2a p~n&, nz )
—1/2

1 B1 co
np+ —ANp 1 —3

O Cop

2

+ B 2 2 1+31Q OCO 2
0 Cop

B1 N
1 —3

Bo Cop

(18)

The physical meaning of the above formula is quite transparent, the first two terms give the p and y vibrational ener-
gies, modified by the rotational motion, and the third term is the rotational energy, with moment of inertia

1 N2=3BIao 1+3
BO Cop

B1 CO
1 —3

Bo cop'

—2

(19)

which changes with co due to the coupling with p vibration. In the cranked shell model [12], the average angular
momentum in the direction of co, (J„),is given by

dE'(n&, nz)J
BCO

—1/2
1 1 Co 1 CO

n +—3p 1 —3
2 Bo cop Bo Np

2

—1/2
1 B1 N B1 N2 1 —2 B1 co2+ n +— 1— +—3B1aOco 1 3
2 B2 co B2 N fi Bo N

—2

(20)

(J ) = I/I(I+1) E— (21)

where (J ) is connected to the quantum numbers I and
Eby

investigated in this way. To demonstrate the quality of
fitting, we may define the root mean square (rms) devia-
tion between the calculated and the experimental spec-
trum as

The above derivation remains unchanged if pairing in-
teraction is included in the shell-model Hamiltonian.

1/2

(22)

III. APPLICATION TO THE ROTATIONAL BANDS
OF WELL-DEFORMED EVEN-EVEN NUCLEI

I I i I
l

I I I I
l

I I I I
l

I I I I
l

~~ I I
l

I I I I
l

I I I I

%:Gd Th El: Yb Cm Z:os
Formulas (18) and (20) can be used jointly to determine

the energy spectra of rotational bands. They are most
suitable for application to g, P, and y bands. In this case,
III'co& can be identified as the bandhead energy of the p
band. For the y band, the bandhead energy can be calcu-
lated from Eqs. (18) and (20), and the value of fico~ can be
determined by identifying the empirical y bandhead ener-
gy with the calculated value. In this way, one obtains, to
a good approximation, the value of fico~ equal to the
empirical y bandhead energy minus the expression
II1 /(3Biao) which amounts to a few percent of the y
bandhead energy. We are left with three parameters
Bo/B„Bz/Bi, and B,ao to be determined by fitting ro-
tational spectra. It is found that the quality of the fitting
is insensitive to the value of B2. There are reasons to ex-
pect that, for most of the deformed nuclei, the three B
values are not very difFerent from each other. So, for sim-
plicity, we take B2 =B1, and the two remaining parame-
ters B,ao and Bo/B, are determined by fitting the first
three levels of the ground-state band. The spectra of the
whole g band (below backbending) and the associated P
and y bands are calculated with the parameter values
thus determined.

All well-deformed even-even nuclei in the rare-earth
and actinide regions, with sufBcient empirical data, are

YO
C)

C3

U +:Hf
X:Er Pu

CU
C5

C)

C)

C3

I I I l g I I

150 160 170 180 190 230 240 250

FIG. 1. The rms deviations between the calculated spectra
and the experimental data for the g and y bands of even-even

deformed nuclei. The deviations of the g bands are denoted by
linking isotopes. The deviations of the y bands are not linked.
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TABLE II. The fitted values of the mass parameters B, and

Bo for the nuclei in Table I and the rms deviations for the g
bands of the nuclei.

234U 176Hf 164Er

aao
B, /A (keV ')
Bo/A'2 {keV ')

rms (our cal. )

rms {Harris)

0.2719
0.2996
0.3352
0.0023
0.0177

0.2608
0.2850
0.3733
0.0062
0.0183

0.2953
0.1247
0.2201
0.0013
0.0060

0.3333
0.0934
0.1283
0.0039
0.0159

'Reference [17].

I I I I
I

I

CU

%:Gd

~:DyCG

X:Er

Z:Os
I

oo

oCQ

I I
I

I I I I

I
I I I I

I
~~ I I

I

I I I I
I

I I I I
I

Th El: Yb Cm

U +:Hr
Pu 0:W

where X is the number of the calculated levels. The
values of D for g bands (below backbending) and y bands
(X ~ 3) are plotted in Fig. l. Et can be seen that the rms
deviations for the g bands are less than 0.6%%uo. For clear-
ness of illustration, the rms deviations for P bands are not
marked in the figure. They are usually several times
larger than the corresponding deviations of g or y bands.

Some detailed examples are given in Table I, in which
the calculated energies are compared with the experimen-
tal data. For comparison, a similar fitting for the g bands
with the usual two-parameter Harris parametrization is
also included in the same table. It is obvious that the
fitt' b o r proposed formula is superior to the fittinging y u

or theby the two-parameter Harris formula, especially for t e
levels with higher spin values. Table II lists the values of
parameters determined in our fitting for the nuclei in
Table I, and the rms deviations of the g bands.

I I I I I I I I
I

I I I I
I

I I I I
I

~~ I I
I

I ) I I
I

I I I I

%:Gd Th &:Yb Cm Z -Os

~:Dy U

oo —X:Er Pu

+ Hf'

C:W

o
I

o
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a oCQ

oo

II I ) I I I I I I I I ) ) I I I
PP

I I I I I I ) I

150 160 170 180 190 230 240 250

FIG. 3. The fitted Bo values of the same nuclei as in Fig. 2.
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For most of the studied nuclei, the ground-state quad-
rupole deformations ao are known [17], hence the mass
parameters B

&
and 80 can be calculated from the param-

eters B)a)) and Bo/8). Figures 2 and 3 show the values
of 8, and Bo thus determined. From co&=+Co/Bo, Co
(describing rigidity of nucleus) can be obtained. Figure 4

o
I I ) I I I I ) I I I ) ) « I P I I I I »» ) I ) I I

o
O

o Oo—
)

o
O

I « I I I I )» I g ) I I I « I I I I ) I I

150 160 170 180 190 230 240 250
A

FIG. 2. The fitted B1 values of the same nuclei as in Fig. 1.
The quadrupole defor)nations go [17] of the corresponding nu-
clei are plotted in the bottom part of the figure.

oo

) I ) I ) ) I ) ) t ) I ) I ) I I g I I I I I I I I ) I ) I I

1 50 1 60 '1 70 180 1 90 230 240 250
A

FICx. 4. The calculated Co values of the same nuclei as in

Figs. 1 —3.
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TABLE III. Experimental and calculated energies of the K =3+ and E =2 bands of ' Hf. The
values of the corresponding parameters for the g band are 8

&
a 0/A =0.010 88 keV

fi+Bo/B icos= 1528 keV.

Energies
(keV)

I 3+ 4+ 5+ 6+ (7+) (8+)
Exp.' 1577.5 1675.8 1798.4 1944.3 2116.9 2304.9
Cal. 1577.5 1676.2 1798.9 1945.1 2114.4 2306.2

B,a 0/iri Av'Bo /B, cop

(keV ') (keV)

0.01345

I 2 3 4 5 6 7 (8 ) (9 )

Exp.' 1247.7 1313~ 3 1404.5 1508.6 1652.9 1785.0 1992.5 2137.3
Cal. 1247.7 1315.5 1405.0 1515.5 1646.4 1796.7 1965.5 2152.1 0.01465 1477

'Reference [15].

gives the variation of Co with nuclei.
Formulas (18) and (20) can also be applied to other ro-

tational bands. In such cases, the state of associated vi-
brational motion is unknown. We can, however, use only
the rotational energy part of formulas (18) and (20) with
Biao and QBo/Bicat3 as fitting parameters. Most of the
bands can be fitted successfully in this way. Two exam-
ples are listed in Table III. The fitting is quite satisfacto-
ry, with the parameter values comparable to those deter-
mined from the g band of the same nucleus.

IV. DISCUSSION

From the second section, it can be seen that the collec-
tive motion can be easily treated with the cranking BM
Hamiltonian. In the rotating frame of reference, the
effect of the Coriolis and centrifugal forces of rotational
motion is clearly demonstrated and easily treated. How-
ever, in the cranked shell model, co is not a dynamic
quantity and cannot be quantized. This is the main
difference between the usual BM Hamiltonian and the
cranking BM Hamiltonian proposed in this paper. It can
be seen, from our results, that the error involved in the
semiclassical treatment of angular momentum is not seri-
ous and that the proposed model gives a good representa-
tion of rotation-vibration coupling for the deformed nu-
clei, especially for the g, p, and y bands (below backbend-
ing). Results of applications to other bands are also satis-
factory. It seems, therefore, that reliable nuclear infor-
mation can be derived from this model. Primarily, the
information is embodied in the mass parameters and po-
tential parameter given in Sec. III. As has been
remarked in the above section, for most nuclei the fitting

of the p band is less satisfactory (this can also be seen
from the examples given in Table I). It may be caused by
some deviation of the p vibration from the harmonic
form. Study of such deviation may lead to more detailed
knowledge about the potential energy surface.

From Figs. 2 —4, it can be seen that the variation of 8&
(rotational parameter) is rather smooth, while the varia-
tions of Bo (vibrational parameter) and Co (rigidity) are
pronounced near 2 = 170 and 180 (the neutron number
N =102 and 108) in the rare-earth region and A =238
(N =144) in the actinide region. It may reveal some kind
of shell effect in the deformed nuclei.

As a semiclassical model based on axisymmetrica1 de-
formations with a simple harmonic potential, it is out of
the scope of our present model to deal with the stagger-
ing phenomena [12] of certain y bands. However, since
the general trend of the y band is adequately represented,
our fitting can demonstrate the staggering as is shown in
Table I for the nuclei ' Hf and to less extent ' Er.

The rotational bands of odd 2 nuclei are more compli-
cated because of the interaction between single-particle
motion and collective motion. In some cases, the interac-
tion can be neglected, then the above simple model can be
applied. The rotational bands of odd A nuclei, the transi-
tion probabilities, and other related topics will be dis-
cussed in a future paper.
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