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Comparison of Born-Oppenheimer and hyperspherical adiabatic approximations
in the trinncleon problem
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Ground state energies of the three-nucleon system interacting via standard S-projected potentials are
studied using Born-Oppenheimer and hyperspherical adiabatic approximations. The extreme and the
uncoupled hyperspherical adiabatic approximations, which are the lower and upper bounds for the exact
ground state energy, are found to define a narrow band with the Born-Oppenheimer approximation lying
close to it. While the hyperspherical adiabatic approximation conserves the basic symmetry require-
ments, the other does not. In spite of this, the Born-Oppenheimer approximation is found to be compa-
rable to the other for potentials with a soft core repulsion.

PACS number{s): 21.45.+v

I. INTRODUCTION

The hyperspherical harmonics approach [I] has been
in use since the early 1970s for the treatment of bound
states of nonrelativistic few particle systems and has seen
fairly widespread application in nuclear [2], atomic [3],
and molecular [4] physics. This approach stems from a
generalization of the textbook problem of two particles
interacting via mutual interaction only, for which the
space wave function can be expanded in ordinary spheri-
cal harmonics. The hyperangular functions spanning a
(3N —4)-dimensional angular hyperspace of the relative
coordinate system for a X particle system are called hy-
perspherical harmonics (HH) and constitute a generaliza-
tion of the ordinary spherical harmonics spanning the
two-dimensional angular space of a two-body system
(N =2). Complete analytical expressions for the HH can
be obtained by solving the (3N —3)-dimensional Laplace
equation. The wave function of a N particle system can
be written as a sum of products of space and spin-isospin
wave functions. The Pauli principle demands the imposi-
tion of a specified symmetry for the space wave function
of each component, which depends on the symmetry
character of the corresponding spin-isospin wave func-
tion. By a fairly straightforward procedure, one can con-
struct the HH basis having a specified symmetry charac-
ter. The space wave function of each component can be
expanded in the appropriate HH basis. Substitution of
this into the Schrodinger equation and projection on a
particular HH give rise to an infinite number of coupled
differential eigenvalue equations. A numerical solution
can be realized only after a truncation of this set to a
finite number of coupled equations. However, in many
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situations a truncation without valid physical justification
leads to simplification at the cost of obtaining numerical
results which are far from converged ones.

Recently an adiabatic approximation scheme in the hy-
perspherical harmonics approach, referred to as the hy-
perspherical adiabatic approximation (HAA), has been
suggested [2—4] which allows a reduction in the dimen-
sionality of the coupled set of equations without
sacrificing precision in a completely uncontrolled way as
in direct truncation. Two versions of this approximation,
known as the extreme adiabatic approximation (EAA)
and uncoupled adiabatic approximation (UAA), provide
prescriptions for reducing a set of infinite —usually in
practice a large finite —number of coupled differential
equations to a single differential equation. The EAA and
UAA are specially interesting because they are [5] an
upper and a lower bound of the exact energy. In the
three-nucleon problem, EAA and UAA have been found
to define a very narrow interval which includes the exact
energy [2,5]. In this case, the EAA and UAA produce
results which are very close to the solution of the full set
of equations and provide, respectively, lower and upper
bounds for the exact energy [5].

A commonly employed tool in molecular physics is the
Born-Oppenheimer [6] approximation (BOA), which has
been successfully used over the last fifty years. This ap-
proach has been traditionally applied when some of the
particles of a system are light (e.g. , electrons) compared
to others (nuclei). The motion of the light particles is ex-
pected to be fast compared to that of the heavy ones. As
a result, the two types of motions can be thought of as
approximately decoupled, which is the basic idea of the
BOA. The motion of the light particle system for a fixed
configuration of the heavy particles allows one to con-
struct an effective potential for the heavy particle system.
The Schrodinger equation for the heavy particle system is
then solved with this effective potential. Brattsev has
shown that the BOA provides a lower bound for the ex-
act energy [7].

The EAA and UAA as well as the BOA have been suc-
cessfully used in varied situations, although the reasons
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or conditions for the success have never been clear and
explicit. The purpose of the present work is to study
these approximation schemes and their applicability.

In an earlier work [8] we studied the ground state ener-
gies of a three particle system consisting of a distinct and
two equal mass particles interacting via Gaussian S-wave
potentials and investigated the applicability of the EAA,
UAA, and BOA. Denoting the ratio of equal mass to dis-
tinct mass by m, the nuclear and molecular situations are
simulated by m =1 and I ))1, respectively. It was
found that all the approximations worked surprisingly
well in all situations considered. Also in an earlier work,
Fonseca et al. [19] treated Be as a bound cluster of two
a particles and a neutron and applied the BOA success-
fully. The earlier observations and the success of this
BOA treatment of Be motivates us to investigate how
the BOA (which is normally expected to work for molec-
ular situations only) fares in a typical semirealistic nu-
clear calculation.

In the present work, we obtain the trinucleon binding
energy when the nucleons interact via standard S-
projected potentials with widely varying soft cores. We
have calculated both the EAA and UAA results as well
as the exact binding energy (BE), the truncation in the
number of partial waves being determined by the re-
quirement of convergence in BE to better than 4 keV
(or about 0.05%%uo). For strong soft core potentials
like Afnan- Tang S3 potential [9], Malfiiet- Tjon [10]
MT-I/III or MT-V potentials, we need up to 20 partial
waves to get a converged result for the totally symmetric
S state of the trinucleon. We have also calculated the
BE using the BOA to evaluate the effective potential be-
tween two nucleons kept at a fixed separation, while the
motion of the third nucleon is governed by the chosen
two-body potential between it and each of the fixed nu-
cleons. Since in this case the three nucleons are identical
and interact via the same two-body potential, one does
not expect a priori that the BOA is applicable to this situ-
ation. But to our surprise, the BOA seems to fare reason-
ably well at least for the soft core potentials. This is in
agreement with earlier works of Efimov [18] and Fonseca
et al. [19].

In Sec. II we explain the various approximation
schemes (EAA, UAA, and BOA). In Sec. III we present
the numerical results and finally in Sec. IV we discuss the
results and draw our conclusions.

II. ADIABATIC APPROXIMATIONS

Let us consider a three-body system formed by three
particles of mass m. The Jacobi coordinates constituting
the relative variables of the system are

x=r, —r2,

y=(2/+3)[r3 —
—,'(r, +r2)],

where r„r2, and r3 are position vectors of the particles.
We can eliminate the center of mass (c.m. ) motion in the
Schrodinger equation for the three particles. The result-
ing Schrodinger equation in the relative coordinate sys-
tem is then

[ —(V'„+V'y)+ v(x, y) ]%(x,y) =e%'(x, y),
where

(2)

u(x, y) =
2 V,z(x)+ V, 3$2

x y+
2 Q

+V —+—X

2 Q
(3)

V; is the pairwise interactions between particles i and j,
and a =2/&3. The quantity e is related to the energy, E,
of the system by e=(mls )E. We can now introduce
the hyperspherical adiabatic approximation (HAA) and
the Born-Oppenheimer approximation (BOA) for the
three-body system.

A. The hyperspherical adiabatic approximation

In the hyperspherical formalism [1] one introduces six
hyperspherical variables: a hyperradius, r, defined by
r =x +y, and five hyperangles, concisely denoted here
by Q. They are the four angle variables which are the
spherical polar angles x=(g, y„) of the vector x and
y—:(8,@„)of the vector y, and one hyperspherical angle
O, defined in terms of the lengths of x and y by

x =r cosO, y =r sinO, 0+ O~ ~/2 . (4)

As in the two-body case, the set Q is the argument of hy-
perspherical harmonics [1], Y (0) (for simplicity we
keep the same notation of the two-body problem), defined
below. The hyperradial variable r is invariant under ordi-
nary rotations and all permutations. Equation (2) in hy-
perspherical coordinates is written as

d2

dr
X (0) +u(r, Q) —e $(r, fl)=0,

where K (0) is the Casimir operator of the system [1],
given by

I
K (0)= +4cotg(28)

BO cos O

I 2

sin O

where 1 ~ and I are the angular momentum operators.
Thus the Y (0 ) are eigenfunctions ofX

K Y (0)= K(K+4) Y (Q), — (8)

where E is an integer and cx is the set of quantum num-
bers necessary to specify the system, which can be chosen
as a—:IK,L,M, l„,l~], I.=l„+I is the total orbital an-
gular momentum operator, and M is the quantum num-
ber corresponding to the z component of L. Expanding
g(r, II ) in terms of the complete orthonormal set
IY (A)],

g(r, &)=gq (r)Y (&), (9)

where 4( yx) = r f(r, Q). Notice that (ru, II )
=v(x, y). The operator X is given by

X (Q)=K (0)——", ,
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and multiplying Eq. (5) from the left by Y*(Q) and in-
tegrating over dQ, we obtain the infinite set of coupled
differential equations (SCDE) in terms of a hyperradial
variable r,

(K+2) ——'
z+ z

—E y (r)+gv (r)p, (r)=0,
dr r

(10)
where v (r)=( Y (II)lv(r, Q)lY, (Q)). A well estab-
lished procedure [2—4] to handle the SCDE is the HAA.
Let us summarize it below.

In the HAA procedure, an associated matrix eigenval-
ue equation is constructed as follows:

The potential curves, ui(r), similar to the molecular po-
tential curves, contain essential information about the
structure of the three-body system. When the derivatives
of g & with respect to r are small, we expect to generate
nearly decoupled equations. The coupling term C&&.{r)
turns out to be small in practical situations (as evidenced
by the success of the HAA). If truncation is done in the
still exact system of equations {16),we get the coupled
adiabatic approximation (CAA). Neglecting the coupling
terms in Eq. (16), we have the uncoupled adiabatic ap-
proximation (UAA). In the UAA, the neglect of

leads to the extreme adiabatic approximation
(EAA). The following basic inequalities

U(r, Q)@z(r,A)= — +v(r, Q) @z(r,Q)
EAA —~ —~CAA —~UAA

hold for the ground state energies [5].

(19)

=uz(r)Nz(r, II),
where A, labels the different u(r) for a fixed r We c.an
now expand C&&(r, A) in the complete orthonormal set,
[Y (0)],

B. The Born-Oppenheimer approximation

'I'(x, y)=g qz,"'(y)+z(x), (20)

The usual way to introduce BOA [6] in Eq. (2) is to ex-
pand %'(x, y) in the form

@z(r,0)=g y z(r) Y (II), (12)
where y& satisfies the equation

and obtain a matrix eigenvalue equation from Eq. (11)

g U..(r)X. z.(r) =uz. (r)X.z.(r»
a'

(13)

which is solved to obtain the eigenvalues, u&(r), and the
eigenvectors, y z(r) (column matrix), as parametric func-
tions of r. The matrix elements U (r) are defined as

[ —V +v'"'(y)]gz"'(y)=e (x)g'"'(y), (21)

and v'"'(y)=v, 3(ly/a —x/2 )+vz3(ly/a+x/2l). For
each value of x, e&(x) is obtained as an eigenvalue of Eq.
(21). Substitution of Eq. (20) into Eq. (2) gives, with the
help of Eq. (21),

[
—V„+v, z(x) ]%(x,y)+ g ez(x)gq"'(y)kz(x) =e%(x, y)

U, (r)=( Y (Q)l X /r +—v(r, Q) Y .(0)) . (14)
(22)

The matrix U, (r) is just a real symmetric matrix
(indeed, it has to be Hermitian, as it is the potential ma-
trix). Expanding y (r) in the complete orthonormal set
(X.dr)]

which can be rewritten as

g gz"'(y) [
—V„+ez(x) +v, z(x ) —e]4&(x)

q (r)=ggz(r)y &(r), (15)
=+[@i(x)V„'qq"'(y)+2V„@q"'(y) V„kz(x)] . (23)

using Eq. (9), and substituting into Eq. (5), we finally ob-
tain [2]

Multiplying Eq. (23) by g&,(y)* from the left and integrat-
ing over the y variable, we Anally obtain

d2 dy &(r)+ uz(r)+g
dr dr

Czz (r) =0, (16)
A, '(k'AA, )

[ —V„+Eg(x)+v, z(x) —E']ez(x) —y Czz (x)—0,

where

zz. (x) = [2Pzz. (x)+Qzz, (x) l@z.(x) .

(24)

(25)

where

Cu (r) = [2Pu (r)+ Quiz. (r)]gz.(r) . (17)

The nonadiabatic couplings P&&, and Qi& are given by

(26)

The nonadiabatic couplings Pz&, and Q&&, are given by

d d~«v~«~=(Z«X«
dr dr

d2
Q.d «~= {x. , r')dr

and

Q z.i, ( x ) = '{v'z. l
V

l v'x' ) . (27)

If now the dependence of y&"' on x is neglected, the
terms contained in the sum on A,

' in Eq. (24) drops out,
and we obtain the BOA. It essentially consists in the
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solution of the system of differential equations

[—9~+v'"'(y) —ei(x)]q q"'(y) =0,

[ V +E i(x)+v ip( x) —ea«]@i(x)=0 ~

(28)

(29)

III. NUMERICAL CALCULATIONS

In the BOA, Eqs. (28) and (29) can be rewritten in a
more convenient form for numerical calculations. Let us
choose x along the Z axis and the center of mass of parti-
cles 1 and 2 at the origin. Then the angle between x and

y is 0, resulting

The neglect of the sum in Eq. (24) can be justified physi-
cally from the assumption of smallness of the amplitudes
of the motion in the x direction ( V„gz"'=0 ) in compar-
ison with the motion in the y direction. Formally there
exist certain resemblances between HAA and BOA [for
instance, compare Eq. (16) with Eq. (24) and Eqs. (17) and
(18) with Eqs. (25)—(27)]. Both approximations (HAA
and BOA) are adiabatic in nature [small variations of
y &(r) and p&"'(y)] and thus based on the same physical
ideas [11]. But they are mathematically different. HAA
is developed in a hyperspherical space with O(6) symme-
try while BOA is constructed in Cartesian space with
O(3)XO(3) symmetry. In this work a comparison is
made between HAA and BOA through a numerical cal-
culation for the same model three-nucleon system.

As in the HAA, a basic inequality [7] holds for the
BOA,

1 1—y+ —x
a 2

1/2
1

y +—x+—xypa2 4 a
(31)

where p=cosO.
By expanding y'"'(y) in spherical harmonics, Y& (y ),

and using the fact that there is azimuthal symmetry
about the Z axis for the y motion, we have

jq"'(y)= g '
Y, , (y) .

~=0-
(32)

Notice that m„' is a good quantum number and since
the potential [hence ez(x)] does not depend on m~, we
can choose m ' =0. Substitute Eq. (32) into Eq. (28), mul-
tiply by Y&*0(y) and integrate over dQy, use orthogonali-

ty property of the spherical harmonics, and we obtain

~BOA —~ '( (30)

2

, —~ (x) ii'"'(y)+g (v,", (y))ii", , (y)=0,
dy l

In general, ea«&eE&~, although both are lower bounds
of c. where

(33)

l (l +1)
(v,', ', (y)) = fi, , +[(2l +1)(21'+I)]'~ f P( (p) v, 3~y

1 1——x+ —y +U23
1 1—x+ —y2 a P, , (p)dp .

(34)

Similarly Eq. (29) can be written as

d'
~ +Ei(x)+vip(x) Fao~ (ki(x) —0,

8x
(35)

where we have essentially set 4&(x)=Pi(x) Y& 0(x).
Since in this approximation e&(x) is taken as central, only
l„=0 contributes.

In this paper we restrict ourselves to the space symme-
trical S state (L =M =0 . l =1 =even) which implies
fully antisymmetric spin-isospin states. The S state by it-
self is responsible for nearly 90%%uo of the total probability

For our calculation, we have chosen several standard
S-projected phenomenological potentials, namely Baker
[13],Volkov [14], S4 [15], GPDT [16],and Malfliet-Tjon
(in three versions MT-I/III [10], MT-II/IV [10], and
MT-V [17])potentials. Most of these potentials have ex-
plicit spin dependence while the Baker and MT-V poten-
tials are spin independent. The behavior of these poten-

tials at short distances have a wide variation starting
from a finite attractive core for Baker to strongly repul-
sive core for MT-V and S3 potentials. The choice of
these potentials thus allows us to investigate the effect of
the core (i.e. , the short separation behavior) of the poten-
tial on the applicability of a particular approximation
method. The core behavior of these potentials has been
displayed in Fig. 1. From this we find that in decreasing
order of softness the potentials are MT-II/IV, Baker,
Volkov, GPDT, S4, S3, MT-V, and MT-I/III.

The numerical procedure to handle the HAA can be
found in Ref. [2] and will not be discussed here. The
values of a cutofF radius (r ) and the truncation of hy-

perspherical partial waves (K,„)have been obtained by
the requirement that E,„„,should converge up to a rela-
tive accuracy of 0.05% or better. The BE is nearly in-
sensitive to the value of r & 10 fm, as seen from Table I,
for a few selected potentials. It is seen that the increase
of r from 13 to 15 fm increases E,„„,by less than
0.005%%uo. Hence we fix r„=15 fm for the rest of the cal-
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as the potential parameters used in Ref. [22] were those
of Ref. [10] multiplied by a strength factor 0.9866 (to en-
sure a deuteron BE of 2.23 MeV), while the parameters of
MT-V used by us are those of Ref. [17). From Table III,
it can be seen that the inequality (30) is obeyed by all po-
tentials except the softest ones, viz. , Baker and
MT-II/IV, while the inequality (19) is obeyed by all po-
tentials. The fact that the inequality (30) is not obeyed
for the softest potentials (although the deviation eBoA

—e
is small compared to e in both cases) is puzzling. A pos-
sible explanation may be as follows. In our. treatment of
BOA only I =0 is retained; this gives higher BE com-
pared to that for a nonvanishing effective l value. For
potentials which are not so soft, the effective l value
should be nonvanishing. Thus a chosen value l =0 gives
relatively large overbinding. But for very soft potentials,
the effective l value being close to zero (due to softness
of the potential, the particles can approach each other
without difficulty), the choice l =0 does not give a BE
much different from the exact value. This is the reason
for closer agreement with the exact value for the softer
potentials (Table III). Now zippo~ obtained by solving Eq.
(35) in which eo(x) for each x mesh point is obtained by
solving Eq. (33) with a relative error in e~(x) of about
0.05%. Clearly the error in @BOA is larger. Further-

more, an error in Eq. (35) arises due to the disregard of
angular dependence of eo(x) (the angular dependence is
lost in the process of Born-Oppenheimer separation). In-
clusion of additional degrees of freedom by way of angu-
lar dependence will result in higher BE. Although it is
hard to estimate the magnitude of such errors, if the ac-
cumulated error is about l%%uo, it can well account for the
lack of conformity with Eq. (30), for potentials for which
e~oA

—~ is small. One can notice from Table III that the
BOA produces a good enough result for the softest poten-
tials (namely, Baker, MT-II/IV, Volkov) which are
better than the corresponding EAA and comparable
with the UAA, while the disagreement with exact ener-
gies is worse (10%%uo or more) for the potentials with
stronger repulsive core and weaker binding. Although
from these studies it cannot be said that the strength of
the core repulsion is the only criterion for the validity of
the BOA, it certainly seems to be a dominant deciding
factor. In addition, it appears that the higher the bind-
ing, the closer is the agreement. Qualitatively, it then ap-
pears that the BOA provides a good results for softer
core repulsion and stronger binding.

In contrast, the UAA result is much better than the
BOA result for all the potentials considered. However,
considering the mathematical nature of the BOA treat-
ment, it should be compared with the EAA, as both are
lower bounds for the exact ground state energy. Table I
shows that the BOA result is comparable with the EAA
result in most cases.

In Fig. 2 we plot the effective potential seen by parti-
cles 1 and 2 in the BOA, V,ir(x) = V,z(x)+(m /A' )e'o(x),
for some of the typical cases. Although this is physically
very different from the "lowest eigenpotential, " uo(r) of
Eq. (16), both V,s(x) and uo(r) [for a plot of uo(r), see
Ref. [2]] have similar nature.

IV. CQNCLUSIQNS

From the theoretical arguments justifying the approxi-
mation, one would expect the BOA to be good when two
of the three particles are heavy compared to the third
one. However, Fonseca et al. [19] profitably used the
BOA for the low lying spectrum of Be which was treated
as a cluster of two n particles and a neutron. Thus it
had been demonstrated that the BOA is useful even when
the heavy to light particle mass ratio is =4. In the
present work, we have been able to push this ratio to 1.
Our calculations demonstrate that, at least for potentials
with very soft cores, the BOA is reasonably good even in
nuclear problems, where the three particles are of the
same mass and interact via the same two-body interac-
tions. The UAA, which is expected to be good in nuclear
problems, is of course better, but the BOA is not much
worse than the EAA, which from a mathematical point
of view should be compared with the BOA.

Although EAA and BOA are similar in spirit and
based on adiabatic approximations, they are fundamen-
tally distinct. The EAA (or in general the HAA) is de-
rived in a hyper spherical space, incorporating
0( 3N —3 ) symmetry while BOA is conceived in an
independent-particle coordinate, with O(3)X . . XO(3)
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symmetry. As a result, they lead to different equations
[the final equations have some resemblance; see for in-
stance Eqs. (17), (18), and (25) —(27)j, giving in general

BEAN, Wino~ . The richness of HAA is its simpler
mathematical structure and the possibility to achieve in a
simple and systematic way, higher-order accuracy, such
as obtained from UAA and CAA. It is also important to
mention that in order to obtain EAA and UAA we need
only to solve a simple ordinary differential equation,
while for BOA, we need to solve a coupled system of par-
tial differential equations without necessarily furnishing
better results.

It is important to note that in the BOA, the symmetry
demanded from the physics of the problem is broken.
Thus the total angular momentum is no more conserved
properly. Note that the y equation of the BOA [Eq.
(33)] does not conserve l, while /„has been taken to be
zero. Thus total L=lx+ly is not conserved. Further-
more, in the BOA, the imposition of the Pauli principle
(antisymmetry of the full wave function under exchange
of any pair) has been disregarded. In the HAA approach,
both of these are properly satisfied, since the hyperspheri-
cal expansion basis is chosen appropriately and the adia-
batic approximation is introduced only at a later stage,
without disturbing these symmetries. In the light of this
discussion, it is not surprising then that the HAA gives

such a good agreement with the exact results, but the
more intriguing question is why the BOA, which does not
satisfy symmetry requirements and also lacks the usual
arguments in favor of its applicability for the nuclear
problems, fares not too badly in the nuclear case. A pos-
sible explanation of this phenomenon lies in the fact that
for very soft core potentials, the contribution to the total
wave function of the I =l =0 component is dominant.
This component conserves the total angular momentum
(L =0) and also has the appropriate symmetry.

In conclusion, we note that the BOA, although origi-
nally conceived for molecular problems, produces reason-
ably good results in the trinucleon, when the two-body
interaction has a suKciently soft core and the nuclear sys-
tem has a strong binding. In such cases the BOA might
serve as a valuable starting point for more accurate calcu-
lations.
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