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We propose a nucleon-nucleon potential for which the NN, Nh, and hh channels are coupled by
energy-independent, nonlocal interactions constructed from meson-exchange interactions. The same
vertex couplings that were utilized in earlier studies based on the Bonn single-channel NN potential are
adopted. We arrive at our interaction by applying an extension of the folded diagram expansion to cou-
pled channels. The coupled-channel formalism facilitates studies of the interplay between nucleon and
delta degrees of freedom and bound-state properties of nuclear matter and finite nuclei. It also estab-
lishes a framework that might simplify the treatment of nucleon-nucleon scattering to energies above
pion-production threshold.
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I. INTRODUCTION

Previously we constructed a theoretical nucleon-
nucleon potential suitable for investigating bound-state
properties of nuclear matter and nuclei based on the
folded-diagram expansion [1]. The use of folded dia-
grams permits one to obtain an energy-independent po-
tential, for which the computational problem of evaluat-
ing the many-body theory is simplified compared to the
case of energy-dependent interactions. Furthermore,
many-body theory using folded diagrams is streamlined
in the sense that fewer diagrams appear to be required
and a tendency for some corrections to cancel can be seen
[2]. The reproduction of the nucleon-nucleon (NN)
phase shifts in Ref. [1] is comparable to that obtained us-
ing the full Bonn potential [3] at low energy (below
E»b = 150 MeV}, but at the higher energies we find some
differences that we believe are related to the proximity to
the nucleon-delta (Nb, ) threshold, where the folded-
diagram expansion will begin to break down.

In this paper we want to extend our folded-diagraxn ap-
proach by introducing coupled channels involving the 5
isobar. In such an alternative formulation of the many-
body problem the 5 degrees of freedom are put on an
equal footing with nucleons. This is advantageous be-
cause (1) the b, plays an important role in nuclei, and (2)
Faddeev formulations of few-body systems are naturally
generalized to handle the 6 degrees of freedom. It thus
paves the way for examining the importance of the 5-
nucleon interaction on bound-state properties of nuclei
and nuclear matter. In addition the energy dependence
associated with the Nh [and delta-delta (hA}] channels
is handled exactly when the relativistic Schrodinger equa-
tion is solved. Therefore, the discrepancies found in Ref.
[1] for some phase shifts should now be reduced, which

turns out indeed to be the case.
The paper is organized as follows. In Sec. II we ex-

plain the folded-diagram expansion for the coupled-
channel potentials, and in Sec. III we show the numerical
results. Finally in Sec. IV we present our conclusions.

II. FOLDED-DIAGRAM EXPANSION

The method of folded diagrams as applied to the XX
potential is described in detail in Ref. [4]. There, the 5
states were considered as "passive" degrees of freedom,
meaning that they did not occur as dynamical variables
of the interaction. The folded-diagram interaction was
calculated (perturbatively) in terms of "boxes,"which are
pieces of Feynman diagrams for which the propagators
for the passive states (mesons are also passive) are inter-
nal lines. The lines entering and leaving the box are al-
ways "active" lines, meaning that they are associated
with degrees of freedom that appear explicitly in the
equations of motion. The goal of folded diagrams is to
define the effective instantaneous (but nonlocal) potential
appropriate to the model space (i.e., corresponding to a
particular selection of active and passive degrees of free-
dom), expressed as an expansion in terms of boxes. The
idea leading to the instantaneous potential is to integrate
out all the time variables of the box save one, which is the
time at which the potential acts. The details are straight-
forward but somewhat involved, and the interested
reader may refer to the original papers for a systematic
development of the theory.

Here, as opposed to Ref. [4], the b, lines are to be con-
sidered as included among the set of active degrees of
freedom. Whereas, in Ref. [4] we had only an NN poten-
tial, we now have an Nh and AA potential as we11 as
transition potentials among XX, XA, and AA states.
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We begin our study with the off-diagonal potentials
NN —+NA, NN —+bA, and NAIAD, turning next to the
diagonal potentials.

A. Transition potentials (a)

We will treat the off-diagonal or transition potentials to
leading order, i.e., only through one-meson exchange.
The one-meson-exchange boxes corresponding to the
transition potentials are shown in Figs. 1(a), 1(b), and 1(c)
for the cases NN+-+NA, NN~AA, and NANAK, respec-
tively. The corresponding folded diagrams are shown in
Fig. 2. The horizontal dashed line is the time at which
the potential acts relative to the time of absorption and
emission. Note that this time is chosen differently for the
cases in Figs. 2(a) and 2(c), where the two particles in the
initial or final states are not of the same mass, compared
to Fig. 2(b), where the two particles have the same mass
in both the initial state and in the final state. It turns out
that for Figs. 2(a) and 2(c), the only choice of time base
that avoids a singular potential is to place it at the vertex,
where the baryon mass change occurs. There is more
freedom to place the time base in Fig. 2(b), and the choice
of the midpoint in time between emission and absorption
can be shown to simplify the structure of the expansion in
higher orders of perturbation theory.

The denominator structure for the terms in Figs.
2(a) —2(c) can be read otf from Eq. (19) of Ref. [4]. We
find for the case of NN+-+NA corresponding to A, = —1 of
that equation (q—:p —p')

(b)

(c)

1

[Qp +m& —Qp' +mg, ] —q —p
(2.1)

and for NN~b, b.(A, =O)

(2.2)

FIG. 2. One-meson-exchange folded diagrams for the transi-
tion potentials XX~XA (a), XX~AA (b), and XA~Ah (c).

and for Nh~bh(A, =+1)
1

[Qp'+m', —Qp'+m', ]'—q' —p'
(2.3)

B. Diagonal potentials

The diagonal potentials represent interactions for
NN~NN, NA+-+Nh, and Ah~AA. We will discuss each
of these below, giving the results for one-meson exchange
in all cases. We discuss the two-meson exchange only in
the case of NN —+NN, since we are primarily interested in
this channel. Two-meson exchange potentials for
AA~AA and NA —+NA follow from similar considera-
tions.

1. Nucleon-nucleon potential

The NN potential is slightly different from what it was
in Ref. [1]. The one-meson exchange piece of it is the
same and is given in Fig. 3 (identical to Fig. 1 of Ref. [1]).

FICx. 1. One-meson-exchange boxes contributing to the tran-
sition potentials NX~Xh, %%~Ah, and NA~h4.

FICx. 3. One-meson-exchange folded diagram for the diago-
nal potential XX~X¹
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The time base for the nucleons is placed at the time mid-
way between the absorption and emission vertices, again
as in Ref. [1].

The two-meson-exchange processes consist of diagrams
with XX intermediate states, XA intermediate states, and
AA intermediate states. Each of these has a two-meson-
exchange box and a two-meson-exchange crossed box.
The pieces with XN intermediate states are the same as
before [1],and these are given in Fig. 4 (the same as Fig.
4 of Ref. [1]). There are two contributions, a true-
correcting diagram [Fig. 4(a)] that must be added and a
model-correcting diagram [Fig. 4(b)] that must be sub-
tracted. The former arises because the two-meson ex-
changes cannot be built up from an iteration of the one-
meson-exchange potential in Fig. 3, and the latter be-
cause iteration of Fig. 3 gives unwanted time orderings
(the short-dashed lines are the time bases of the corre-
sponding one-meson-exchange potentials).

The crossed box diagrams for XA and AA intermediate
states are also the same as before, given in Figs. 5(a) and
6(a), respectively (see Figs. 2(b) and 3(b) of Ref. [1]),but
the corresponding two-meson exchange box diagrams are
ditferent, since these are now (partially) constituted from
iterations of the XX~Xh and XX~hA transition po-
tentials (including their Hermitian conjugates). Instead,
we have a set of double-box diagrams shown in Figs. 5(b)
and 6(b). The purpose of the double-box diagrams in
Figs. 5 and 6 is analogous to what it was in Fig. 4, name-
ly, to correct for under- and over-counting of the itera-
tion of the XX+ XA and XN+ LA transition potentials.
The algebraic expressions corresponding to Figs. 3, 4,
5(a), and 6(a) are discussed in detail in Ref. [1]. The alge-
braic expression for the denominator in Fig. 6(b) is the
same as Fig. 4(b), except that the mass of the appropriate
intermediate nucleon in Fig. 4(b) should be replaced by
the Inass of the 6 to obtain the corresponding diagram in
Fig. 6.

The di8'erent treatment of the double-box model-
correcting folded diagrams in Figs. 5(b) and 6(b) is a
consequence of the difFerent choice of time base in the
corresponding one-meson exchange contribution of the
transition potential (for the former it was chosen at the
meson-nucleon-delta vertex and for the latter midway be-
tween the emission and absorption vertices). Discussion

E2

FIG. S. Double-box two-meson-exchange folded diagrams:
(a) is a true-correcting double-box folded diagram, and (b) is a
model-correcting double-box folded diagram. Another set of di-

agrams exists for which the role of nucleons 1 and 2 is reversed.

of Figs. 5 and 6 along with explicit algebraic expressions
for the denominator structure of Fig. 5(b) are found in
Appendix A.

2. Delta-delta potential

The AA potential is not used in the current treatment,
but the folded diagrams for it are constructed in complete
analogy to the XN potential, with the role of the N and 6
being exchanged everywhere. The one-meson-exchange
potential is given in Fig. 7, and the denominator struc-
ture is the same as in Eq. (2.2).

3. Nucleon-delta potential

One should distinguish the direct and exchange contri-
bution to the interaction. By direct (exchange) we mean
that the 5 is on the same (opposite) nucleon line in the in-
itial and the final state in the Xh potential. These two
cases must be treated differently in the potential. We
consider only the one-meson-exchange potentials here,
and these are discussed in Sec. 8 3 a and 8 3 b.

FICi. 4. Double-box two-meson-exchange folded diagrams:
(a) a true-correcting double-box folded diagram, and (b) a
model-correcting double-box folded diagram. Another model-
correcting diagram exists for which the role of nucleons 1 and 2
is reversed.

FIG. 6. Double-box two-meson-exchange folded diagrams:
(a) is a true-correcting double-box folded diagram, and (b) is a
Inodel-correcting double-box folded diagram. Another model-
correcting diagram exists for which the role of nucleons 1 and 2
is reversed.



COUPLED-CHANNEL POTENTIAL FOR NUCLEONS AND DELTAS 2193

FIG. 7. One-meson-exchange folded diagram for the delta-
delta interaction.

a. Direct one m-eson exchange potential for Nh. The
box for the direct one-meson-exchange potential is shown
in Fig. 8(a). In this case, we choose the time base halfway
between times t, and t2, as shown in Fig. 9. We may
then use Eq. (19) (A, =O) of Ref. [1] to obtain for the
denominator

1

[(Qp' +m& —Qp +m& ) —(Qp' +m& —Qp +mg )] —
q

—p
(2.4)

In the case of equal mass baryons, this reduces to the usu-
al "static" form used for the one-meson-exchange NX po-
tential.

b. Exchange one meson -excha-nge potential for Nh.
The Nh exchange diagram shown in Fig. 8(b) bears a
very close relationship to the 5 self-energy shown in Fig.
8(c). For physical b„both have a singularity [Fig. 8(c)
provides a width to the b„ for example] and both need to
be included in this case in order to be consistent with uni-
tarity above pion production threshold. Because of the
close connection between the two implied by unitarity,
we believe that for consistency we should either include
both or exclude both everywhere. Since we are not in-
cluding the self-energy of the 6 explicitly for the present
application, this means that we should also omit the XA
one-meson-exchange potential in Fig. 8(b) in our current
work. Above the threshold, both should be included.

III. CALCULATIONS

We show results here for the XX phase shifts, for the
deuteron properties, and for nuclear-matter properties
using the coupled-channel potential. These results are
based on a particular selection of terms, consisting of the
one-meson-exchange contributions to the transition po-
tential for NN+ Nb and NN~b, h, shown in Figs. 2(a)
and 2(b), mediated by n. +p exchange. In addition, we re-
tain the full XN potential shown in Fig. 3 for one-meson
exchange (m, p, co, cr', 5) and Figs. 4—6 for two-meson ex-
change, including (nm, mp, no. ', neo) .for N. N intermediate
states and (mm, mp) for Nb, and b, A intermediate states
subject to the approximations discussed in the Appendix.
The analytic expressions for the meson-baryon vertex
functions are taken to be precisely the same as in the full
Bonn potential [3]. Although this model is far from com-
plete, it is chosen as our first application because it is
~early identica1 to the single-channel folded diagram po-
tential of Ref. [1]. The difFerences mainly occur. in the
more exact treatment of coupling to the NA (and b, b, )

channel, which becomes increasingly important as the en-
ergy is raised toward pion-production threshold. Also,
by virtue of our coupled-channel treatment, energy-
dependent pp contributions to the Xh and Ah box dia-
grams are now automatically included (as for the NN
case) whereas, in complete consistency with our treat-
ment of the NX channel, the pp contributions of the
crossed-box and folded diagrams are omitted.

In order to obtain the XX scattering phase shifts, we
have to solve for the scattering amplitude T, which in the
folded-diagram expansion is given by

T(z) = V+ V T(z),1

z ho
(3.1)

acting now in the extended model space involving NX,
XA, and Ah intermediate states. The variable z is the
two-nucleon (relativistic) starting energy and ho contains

(c)

FIG. 8. One-meson-exchange boxes contributing to the
direct (a) and exchange (b) Nh potential, and (c) a contribution
to the b self-energy.

FIG. 9. One-meson-exchange folded diagram for the direct
XA potential.
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(3.2)

with

VNN, NN( ~ ) VNN, NN +
a=Xh, Ah

1 .~,xx.
z —h 0

(3.3)

Corresponding equations hold for the deuteron wave
function,

I+(~ ))= (3.4)

1
~+NN(~D ) ) (NN) VNN, NN(ZD ) ~+NN(~D ) )

zD —
ho

(3.S)

The meson-nucleon coupling parameters (coupling
constants, cutoft' masses) obtained from a best fit to the
empirical NN phase shifts, ( 'So and S, ) scattering
lengths and the deuteron binding energy are shown in
Table I and compared with those used in the full Bonn
potential [3]. The corresponding phase shifts are given in
Fig. 1D, where one sees curves corresponding to the full
Bonn potential [3] (dashed curve), the single-channel
folded-diagram potential (FULLF, dash-dotted curve)
[1], and the current coupled-channel potential (CCF,
solid curve). As expected, the coupled-channel folded-
diagram potential gives a substantially better description
compared to the single-channel folded-diagram potential:

corresponding XX, XA, and Ah intermediate states.
Since in the present interaction model diagonal XA and
AA interactions are absent, the coupled-channel equation
in Eq. (3.1) can be transformed into a simpler single-
channel (NN) equation

1
TNN, NN(Z) VNN, NN(Z)+ VNN, NN(Z) (NN) TNN, NN(Z) ~

y
(NN)

There is a dramatic improvement in the 'D2 partial wave,
which is strongly coupled to the Nh channel by the ~+p
exchange XX~Xk transition potential. Also the impor-
tant S waves are now perfectly reproduced. These im-
provements are made possible by the more exact treat-
ment of the analytical structure (especially the energy
dependence) of the scattering amplitude by the coupled-
channel equations. For the other partial waves there is in
some cases a slight improvement ( Po, 'P&, D2) and in
others a slight worsening ( P |, D &, Pz ) of the results.

Although the description of our present model is surely
suKciently quantitative to allow for meaningful nuclear
structure calculations, it still shows some de6ciencies
compared to that of the full Bonn potential, in some P
waves as well as in D&. To some extent, these can be
traced to the (Nh and b, b, ) box diagrams involving 2p ex-
change, which are now automatically included due to the
coupled-channel treatment but have been left out in the
full Bonn potential. On the other hand, correlated ~p ex-
change is, so far, missing in both models and, for various
reasons, should be included. It will be interesting to see
whether this contribution will remove the current
discrepancies.

Table II contains the results for the deuteron and low-
energy parameters, for both the present (CCF) and the
former (FULLF) folded-diagram model as well as for the
full Bonn potential taken from Ref. [3]. In all cases the
deuteron binding energy as well as both scattering
lengths have been fitted, whereas all other quantities are
predictions. The coupled-channel model leads to a hh
probability P& of 1.36%, somewhat larger than the full
Bonn potential. As in Ref. [3], we here ignore "renor-
malization" effects (for CCF and the Bonn potential) and
calculate the deuteron properties from the nucleonic
wave functions normalized to unity. As a consequence,
in those cases the resulting values of A& are somewhat
larger than the experimental value. Note the appreciable
improvement in the value of the singlet e6'ective range r,
in the coupled-channel model CCF compared to FULLF,

TABLE I. Meson parameters applied in our coupled-channel folded-diagram interaction CCF.
Numbers in parentheses denote corresponding values of the full Bonn potential (Ref. [3]), when
different. The nucleon mass m =0.938 926 GeV; the mass of the 5 isobar=1. 232 GeV.

I(J )

of meson

1(0 )

1(1 )

0(1 )

1(0+ )

0(0+)

1(0-)

1(1 )

Meson mass
m (GeV)

0.13803

0.769

0.782 6

0.983

0.550

0.13803

0.769

g'. ~4~; [f.ig. l

0.82[5.8]
(0.84)([6.1])

26.0
(20.0)

2.7252
(2.8173)
6.5413

(5.6893}
0.224

18.31
(20.45)

Cutoff mass
A (GeV)

1.5
(1.3)
1.4

2.0
(1.5)
2.0

1.3
(1.2)
1.2

(1.4)

fl a
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which is, of course, connected to the improvement in the
energy dependence of the 'So phase shift discussed be-
fore.

As a 6rst application of our coupled-channel mode1, we
have calculated the binding energy E of infinite nuclear
matter in lowest-order Brueckner theory. Then, E is

given by (with m, n denoting occupied nucleon states)

Z =y & m ~h,'~"'
) m &

1+—g (mtt ~Gtv~tv~(co)~mn —nm ) .
rn, n

(3.6)

TABLE II. Deuteron and low-energy scattering parameters, predicted by our coupled-coupled
folded-diagram potential CCF, by the single-channel model FULLF [1],and by the full Bonn potential
[3], compared with experiment. Note that for CCF and the Bonn potential the deuteron properties are
calculated from the nucleonic wave functions normalized to unity. The low-energy scattering data are
from Dumbrajs et al. [19].

Binding energy (MeV)
~, (%)
Qd (fm )

(fm '
)

Asymptotic D/S ratio
hh probability (%)

CCF

2.2245
5.58
0.2852
0.8927
0.0267
1.36

FULLF

Deuteron
2.2244
5.22
0.2796
0.8866
0.0264
0.0

Full Bonn

2.2247
4.25
0.2807
0.9046
0.0267
0.50

Expt.

2.224 575'

0.2859+0.0003
0.8846+0.0016'
0.0256+0.0004

Neutron-proton low-energy
So: a (fm) —23.75

r, (fm) 2.743
S&.. a, (fm) 5.429

r, (fm) 1.753

'Reference [15].
"Reference [16].
'Reference [17].
Reference [18].

scattering (scattering length a, e6'ective
—23.76 —23.75

2.812 2.766
5.436 5.427
1.766 1.755

range r)—23.758+0.010
2.75+0.05
5.424+0.004
1.759+0.005
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Here, the first term denotes the (relativistic) kinetic ener-

gy of the nucleons in the Fermi sea; the G matrix depends
on the starting energy co=a' '+e'„' and is obtained from
a solution of the Bethe-Goldstone equation

GAP

CONT

GAP

G(co) = V+ V G(co)
co

(3.7)

acting in the extended model space. As usual Q denotes
the Pauli projector and h describes the single-particle en-
ergies in intermediate states; it contains, in addition to
the (relativistic) free-particle energies E, single-particle
potentials building up the total single-particle energies
e . As before, the coupled-channel equation (3.7) can, in
our case, be transformed into

GNN, NN ( ~ ) ~ NN, N1V( ~ )

with

Q
()vN)

+ ~NN, NN(~) ()vtv) GNN, NN(~) &

co
(3.8)

~ NN, NN(~) ~NN, NA'+ g ~NN, a ~ ~a, NN
a=Nb, hh N

(3.9)

A comparison of Eqs. (3.3) and (3.9) shows that the
coupled-channel treatment leads to a modification of the
(effective) NN interaction in the medium arising from the
different propagator in the second term. Note, however,
that in contrast to former treatments [5], the present
scheme keeps V&z&& as well as Vz& ~ unmodi6ed, mak-
ing the present calculations much simpler than before.

In order to determine the single-particle energies e
we will use two alternative prescriptions. According to
the "continuous" choice, the nucleon energies are 6xed
by

e' '=E' '+g &mnlGQ+, ++(e +e )Imn nm)—
(3.10)

for all momenta k „whereas the "standard" or "gap"
choice uses this formula for occupied nucleon states
(k ~ kz) only, and e' '=E' ' for k ~ kF. In both
cases, we take e' '=E, i.e., introduce no single-particle
potential for the h. This is demanded by the gap choice
and does not imply that the 6 does not interact with oth-
er nucleons.

According to Eq. (3.10), the G matrix has to be deter-
mined self-consistently. Figure 11 shows the resulting en-
ergy per particle, E/A, as a function of the Fermi
momentum kF, for both the continuous and the gap
choice, for the present coupled-channel interaction mod-
el, in comparison to results obtained with our former
single-channel interaction model (FULLF, Ref. [1]). Ob-
viously, there is a strong repulsive effect, shifting the sat-
uration points (E / A, kz ) from (

—16.99 MeV, 1.55
fm ') to ( —6.82 MeV, 1.07 fm ') for the continuous
choice and from ( —13.73 MeV, 1.55 fm ') to (

—4.76
MeV, 1.07 fm ) for the standard choice. It is interesting
to note that in both models the continuous choice leads

—10
I

/
/

./
/

/
/

, 'CONT

—20
0.5 1.0 1.5 2 ' 0

) ~(&m ')

FIG. 11. Energy per nucleon of nuclear matter as a function
of the Fermi momentum k+, for both the continuous and gap
choices of single-particle potential as defined in the text. The
solid curves result from the present coupled-channel model
(CCF), whereas the dash-dotted curves originate from the
single-channel model (FULLF) of Ref. [1]. The dotted curve is
obtained if Pauli and dispersive effects are switched off in CCF
as described in the text. The small box represents the empirical
saturation point.

to precisely the same saturation density as the standard
choice, however, as expected, with a larger binding ener-

gy
If we switch off Pauli and dispersive effects in V z& zz

of our model CCF, i.e., replace Q /(co —h ) by
1/(co —hc ) in Eq. (3.8) we obtain, based on the gap
choice, an almost identical result for the binding energy
as with FULLF, as expected. This is not only true for
the total result but (to a slightly lesser extent) also for the
single partial wave contributions [cf., CCF (NDE) and

'So
3p
'Pi
3p

SI
D)

3D
3p

F
J=3
J=4
5~J~12
Potential

energy
Kinetic

energy
E/A

CCF

—12.52
—4.02

5.56
16.68

—19.53
2.39

—3.43
—5.82
—7.27
—0.88

4.40
—2.52

0.75

—26.21

27.51
1.30

CCF (NDE)

—20.44
—4.43

5.57
14.90

—20.72
2.39

—4.05
—5.81

—10.36
—0.91

4.44
—2.52

0.75

—41.19

27.51
—13.68

FULLF

—19.81
—4.67

5.47
14.93

—21.28
2.38

—3.83
—5.74

—10.35
—0.90

4.46
—2.50

0.76

—41.09

27.51
—13.58

TABLE III. Partial-wave contributions (in MeV) to the bind-
ing energy of nuclear matter, E/A, for our coupled-channel
folded-diagram potential CCF and for FULLF (Ref. [1]) at
kF =1.5 fm '. CCF (NDE) denotes the results when Pauli and
dispersive effects are switched off in CCF, as explained in the
text.
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FULLF in Table III]. Slight discrepancies, which hap-
pen to essentially cancel in the total sum for the potential
energy, can, in general, be traced to differences in the cor-
responding NN scattering phase shifts between CCF and
FULLF. Table III also shows that the dominant shift
occurs in isospin-1 states ('So, P„P2, . . . ) and is there-
fore mainly generated by both Pauli and dispersive effects
on the Nb, (and b.N) states.

IV. DISCUSSION

A coupled-channel approach in which delta and nu-
cleon degrees of freedom are treated on an equal footing
is useful for a variety of reasons. On the one hand, it fa-
cilitates the study of the interplay between the 6 and N
degrees of freedom and the bound-state properties of nu-
clear matter and nuclei. Secondly, it provides a natural
framework for extending models that have been success-
ful for studies of the NN interaction to the case of the Nh
and AA interaction. Such extensions are important, for
example, because of the significant role played by the NA
interaction in pion-nucleus scattering [6]. Finally, for fu-
ture quantitative studies of NN scattering above the
pion-production threshold, a coupled-channel description
with NN, Nh, and hh channels is likely to be required.

In this work we have looked at the calculation of the
interaction for such a coupled-channel approach within
the framework of folded diagrams and meson theory.
Folded diagrams provide a means to calculate an energy-
dependent (but nonlocal) interaction equivalent to
the underlying meson-exchange interaction. We have
chosen the folded-diagram description because energy-
independent interactions are generally easier to work
with than energy-dependent ones. We have found that
we can consistently define an energy-independent interac-
tion using folded diagrams, and we have given explicit ex-
pressions for these cases.

For the numerical results in this paper, we have been
interested only in the NN channel. We have therefore re-
stricted the selection of diagrams that make up the
coupled-channel potential as described in Sec. III. For
future applications, a more complete selection should be
considered. For example, a realistic description of the
Nh interaction (not considered in this paper) might re-
quire inclusion of not only one- but also two-meson-
exchange pieces of the diagonal potential in this sector.
Future studies can also show whether the diagonal AA
potential and the pieces of the transition potentials in-
volving two (and more) meson exchange, which have also
been omitted in this work, play an important role in the
NN problem.

Bearing in mind our limited application of the
coupled-channel approach in this paper, our numerical
studies show nevertheless encouraging results. We have
found that the more exact treatment of the N 6 threshold
improves the overall agreement with the NN phase shifts
compared to the single-channel model [1]. Slight
discrepancies still remain, which might disappear if the

physics of the model is enlarged by including, e.g. , corre-
lated mp exchange. However, as a model constructed for
application in nuclei and nuclear matter, the present
small differences at higher energies are irrelevant, as
shown in Ref. [1].

Apart from applications in nuclear matter, this model
should be especially useful for applications in the triton.
Several interesting results have been obtained recently for
this system based on alternative coupled-channel models
constructed by the Hannover [7] and Argonne [8] groups.
(The NN part of the first model is based on the Paris po-
tential [9].) For both models, Picklesimer, Rice, and
Brandenburg [10] have found that repulsive b, dispersive
effects and attractive three-body force effects tend to can-
cel in the trition binding energy. Furthermore, quantita-
tive calculations require that not only the one-6 but also
hA components are taken into account. However, these
authors also point out that, since hh effects turn out to
be large, Ahh contributions have to be examined, too,
and since there are no AAh dispersive effects, any Eh'
three-body force contribution translates directly into an
increase in the triton binding energy. Moreover, Stadler
and Sauer [11]have found using the Hannover model [7]
that the irreducible part of the Tucson-Melborne three-
body force [12] not mediated by 6-excitation makes a
non-negligible contribution to the triton binding energy.

Compared to the interaction models [7,8], our model
differs in various aspects. First, it is based on nonlocal
meson-baryon vertex functions obtained from field
theory; the only parameters are coupling constants and
cutoff masses chosen consistently in the NN and Nh sec-
tors. Secondly, it includes higher-order diagrams, which
correct for the restrictions to instantaneous interactions
of lowest order, to the level of the full Bonn potential [3],
with the advantage of a simpler application in nuclear
structure. It would be interesting to see if the con-
clusions obtained by the authors of Refs. [10,11] essen-
tially survive if the coupled-channel model presented in
this paper is applied. In any case, some increase of the
triton binding energy is expected from the nucleons—
only part, since (i) the deuteron D-state probability, due
to the nonlocal structure of the interaction, is somewhat
lower in models [7,8], and (ii) our model is fitted to the n

p data. This is suggested already from the (five-channel)
evaluation [1]based on the single-channel folded-diagram
model (FULLF) yielding a triton binding of 7.86 MeV,
compared to 7.3 MeV for the Paris [9] and 7.44 MeV for
the Argonne V14 models [8], respectively, obtained with
the same restrictions in the NN input.
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APPENDIX

1. Evaluation of Fig. 5(b)

As in Ref. [4], we write the value of the folded diagram
in Fig. 5(b) as a vertex contribution (taken from the Bonn

potential [3]) and a propagator contribution, J '"'. The
propagator contribution consists of an internal part,
W ' (t', titzt2), and a part for the external nucleon lines.
The rules for evaluating the diagram are the same as
those given in Sec. III of Ref. [4]. The function W ' '

may be written in the form

4

W""(t',t, t,'t, )=
2m.

dv', dv, dv2dv2e ' 'e ' 'e ' 'e ' '(2m. )5(v', +v, +v2+v~)w ' '(v'ivivpv2), (Al)

where the delta-function expresses invariance with respect to time-translations. The external legs in each case contrib-
ute

1 0 1 1 1 0 2 0 2 2 2 0
—iE (t —t ) —iE (t —t ) —iE (t —t ) —iE (t —t )

where to is the time-base of Fig. 5(b). The time base is fixed at the average time (t i + ti + t2+ t2) l4. The evaluation for
J ' ' is found by integrating over all times subject to this constraint. We then have, following the straightforward calcu-
lation similar to that in Appendix B of Ref. [4],

J ' '=iw '"'(E E,E, —E), —

where

E=(E,+E', )/2=(E +2E' )~/2 . (A4)

It now remains to calculate w ' '(v'„v„v2, v2). The ingredients are the internal nucleon, the ineson propagators, and
the time constraints that maintain the proper time orderings of the time bases represented by the horizontal dashed
lines in Fig. 5(b). The meson propagators are

(1/2m )f dm[e ' /(co eq +inst)] (A5)

where e =(q +p )'~ is the energy of a meson, and the nucleon propagator is given by

e " e(ht) =(1/2~) f dni[e ' '/(co Ek+iv))] . — (A6)

Putting together the various propagators and time restrictions, we 6nd
'4

W""(t',t, t,'t, )= ' fd~, dco2dco3dco42'
~~1(t 1

t
1 ) ~~2(t2 t2 ) 1~3(t2 t1 ) 1~4(t2 t

1 )

co&
—Ei +tg co2 E2 +&g co3 3 &'g co4 e4+&'g

(A7)

If we now change variables in Eq. (A7) as follows,

V) —CO) CO4 ~

V~
—

CO~ CO3,

V2 — CO2+ CO4,
(A8)

V2 —CO2+ CO3,

then we find Eq. (Al) to hold with

5(b) 1
w (viviv2v2) =

2~ (v', +co E", +ivy v2+co+—E~ iv) (v', +—v—, +co) e3+ivi c—o —e„+iv)

We next evaluate Eq. (A9) by closing the contour in the upper 1/2 plane. Thus, we find

(A9)

y5(b)— 1 1 1 1

4e3e4 2E E
& E2 E E] —e3 E+E'j' —e4

1 1

E—E2'+e3 —E —E2'+e4

1 1 1 + 1 1

e3+e4 E E& e3 E Ez +e3 E E1 e4 E E2 +e4
(A 10)
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2. Approximations

Several approximations have been made when evaluat-
ing the diagrams of Figs. 5 and 6.

Concerning the model-correcting diagrams of Fig. 5(b),
we have replaced 2E by 2m& in order to avoid an ap-
parently (in comparison to the Bonn potential) unrealistic
o6'-shell behavior of the folded-diagram interactions.
This was already done in Ref. [1],for the iterative folded
diagram with Nh and hA intermediate states. As point-
ed out there, the occurrence of this o6'-shell behavior in-
dicates that the energy dependence of the Nh box is not
capable of being described completely by a folded dia-
gram. Note that in the present case this approximation is
of much less relevance, since the major contribution of
the XA box is now generated, with its correct energy
dependence, by the iteration of the Nh transition poten-
tial.

Since, for Nh and hh intermediate states, the iterative
structure is excessively complicated for ~p exchange, the

following approximations have been made, in analogy to
Refs. [1,3]: First, in the model-correcting diagrams 5(b)
and 6(b), the noniterative contributions have been omit-
ted for mp exchange; in other words, only the iterative
part [first term in Eq. (A10)] has been kept (with the ap-
proximation described in the foregoing paragraph). For-
tunately, it is the dominant contribution.

Concerning the true-correcting (crossed-box) diagrams
of 5(a) and 6(a), we made an analogous approximation as
in Refs. [1,3], replacing these diagrams by the values of
the rtp folded box diagrams as evaluated in Figs. 2(a) and
3(a) of Ref. [1],with, however, the correct isospin factor,
i.e., reversing the sign of the isospin-dependent ~~ ~ 12
piece. As this procedure strongly overestimates the role
of Xh contributions in the S, D, ch—annel (see Ref.
[3]), we follow the procedure of Ref. [3] and omit this
term in this channel.

Furthermore, as in Ref. [1], singularities in various
propagators have been avoided by replacing E by E ~

and vice versa (see the discussion in connection with Eq.
(2.5) of Ref. [1]).
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