Reply to "Comment on 'Evidence for superdeformed shape isomeric states in ^{28}Si at excitations above 40 MeV through observations of selective particle decays
of ${}^{16}O + {}^{12}C$ resonances in ${}^{8}Be$ and alpha channels'" of ${}^{16}O + {}^{12}C$ resonances in ${}^{8}Be$ and alpha channels'"

M. A. Eswaran and Suresh Kumar

nuclear Physics Division, Bhabha Atomic Reserch Centre, Bombay 400085, India

(Received 15 June 1993)

Our recent study of the ¹²C(¹⁶O,⁸Be)²⁰Ne and ¹²C(¹⁶O, α)²⁴Mg reactions has led to the identification of two superdeformed shape isomeric states in ^{28}Si at excitation energies of 43.7 and 46.2 MeV. We conjectured from this study that these resonances have structures which correspond to the secondary minimum with deformation parameters $\epsilon = 1.35$ and $\gamma = 60^{\circ}$ according to Nilsson-Strutinsky calculations. We give arguments to show that this conjecture is more appropriate and consistent with the presently available evidence.

PACS number(s): 25.70.Ef, 25.70.Gh, 27.30.+^t

We recently reported in Ref. $[1]$ (to be referred to hereafter as I) the identification of two intermediate structure resonances in ²⁸Si at excitation energies of $E_r = 43.7$ and 46.2 MeV. In this work we measured decays to various states of the final nuclei in the reactions ${}^{12}C({}^{16}O, {}^{8}Be)^{20}Ne$
and ${}^{12}C({}^{16}O, \alpha)^{24}Mg$ in the energy range and ¹²C(¹⁶O, α)²⁴Mg in the energy range
 $E_{c.m.} = 25.7-38.6$ MeV. The angular distribution for

¹²C(¹⁶O, α)²⁴Mg_{g,s,} at $E_{c.m.} = 26.9$ MeV allowed an assignment of the spin-parity J^{π} =14⁺ to the E_x =43.7 MeV resonance.

The $E_x = 43.7$ MeV resonance decays preferentially to the 0^+ (7.20 MeV) and $4^+(9.04 \text{ MeV})$ stages of ²⁰Ne, and to the 20.2 and 21.4 MeV states of ²⁴Mg. The $E_x = 46.2$ MeV resonance is also observed to decay to the $0^+(7.20)$ MeV) state of 20 Ne and to the 20.2 MeV state of 24 Mg. Combining these decay preferences with the experimenta studies of the 0_3 band in ²⁰Ne made by Middleton *et al.* $[2]$ and by Hindi *et al.* [3], we conjectured that the two Si resonances observed in our experiment have structures which correspond to the secondary minimum with deformation parameters ϵ = 1.35 and γ = 60° in the potential energy surface mapped out in the Nilsson-Strutinsky(NS) calculations of Leander and Larsson for ^{28}Si [4]. We have also drawn attention to the studies by Voit et al. [5] and by Fulton et al. [6] of the near Coulomb barrier ${}^{12}C+{}^{12}C$ resonances in ${}^{24}Mg$. In the Comment on our work by Zhang, Merchant, and Rae, they propose an alternative explanation of our data based on cranked cluster model calculations [7] and on the experimental studies of the ${}^{12}C({}^{12}C,\alpha\alpha)$ ¹⁶O reactions $\begin{bmatrix} 8 \end{bmatrix}$ of $^{12}C + ^{12}C$ scattering $\begin{bmatrix} 6,9 \end{bmatrix}$ and of the ${}^{12}C(^{20}Ne, {}^{12}C^{12}C)^{8}Be$ transfer reaction [10].

Their alternative explanation is mainly based on their two viewpoints. Their first viewpoint is that the band built on the 0^+ 7.2 MeV state of ²⁰Ne is based on the ground-state ${}^{16}O + \alpha$ configuration.

Their second viewpoint is that the 20.2 MeV state of ²⁴Mg strongly fed from the decay of the two resonances in 28 Si in our work [I] is the same as the 20.25 MeV state of ²⁴Mg which is observed as near barrier ¹²C+¹²C resonance [5].

We do not agree with both of the above viewpoints since the presently available experimental evidence are not consistent with them as explained below.

The experimental evidence from the studies of Middleton et al. [2] on ¹²C(¹²C, α)²⁰Ne clearly brings out that the 7.2 MeV, 0^+ and 7.83, 2^+ states are fed strongly in the reaction compared to ground-state band. From this they conclude that the ground-state is of ${}^{16}O + \alpha$ character while 7.2 MeV, 0^+ state is of $^{12}C + 2\alpha$ character. This view is also supported by the smaller alpha decay width of 7.2 MeV, 0^+ state, than for the adjacent 6.72 MeV, 0^+ state. In fact 7.2 MeV, 0^+ and 7.83 MeV, 2^+ states are weakly populated in alpha transfer reactions and strongly populated in 2α transfer while the tions and strongly populated in 2α transfer time and ground-state band of 20 Ne is strongly populated in alpha transfer reactions [2]. The 7.2 MeV state is also popuated strongly in 8 Be transfer on ¹²C in the reaction ${}^{12}C({}^{9}Be,n) {}^{20}Ne$ [11].

In addition, even in our present work [I] the resonances at 43.7 and 46.2 MeV in ^{28}Si decay to the 7.2 MeV state of 20 Ne and not to the ground state of 20 Ne even though purely from penetrability considerations, decay to ground state of 20 Ne will be favored. Hence all available experimental evidence support the view that 7.2 MeV, 0^+ state of ²⁰Ne is of ¹²C+2 α character and not of ¹⁶O+ α character as the ground state of 20 Ne. Hence the possibilities of it being bandhead of 8p-4h $K^{\pi}=0^{+}$ rotational band [3] is well supported by experimental observations.
The 12.44 MeV, 0^+ state of ²⁰Ne may also be of 8p-4h character as pointed out by Zhang, Merchant, and Rae. This state had enough energy to decay to $4p-4h^{16}O(6.05)$ MeV) + α while the 7.2 MeV, 0⁺ state which do not have enough energy to decay to the ${}^{16}O(6.05 \text{ MeV})$ state, shows its character to be different from ${}^{16}O + \alpha$ by having much smaller alpha decay width of (4 keV) compared to 19 keV for the adjacent 6.72 MeV, 0^+ state of ²⁰Ne [2] for decay to the ground state of ${}^{16}O$.

Owing to these arguments we associate the 7.2 MeV, 0^+ state of ${}^{12}C+2\alpha$ character with the $(0p)^{-4}(sd)^8$ configuration having deformation parameters of $\epsilon = 1.17$ and $\gamma = 50^{\circ}$ according to the Nilsson-Strutinsky calcula-

Coming to their second viewpoint at the outset we wish to point out that there is no experimental evidence to associate the 20.2 MeV state strongly fed from the decay of the two resonances in ^{28}Si in our work [I] with the near Coulomb barrier ${}^{12}C+{}^{12}C$ resonance observed at 20.25 MeV [5]. In fact in our recent alpha-alpha coincidence studies [12] on ¹²C(¹⁶O, α)²⁴Mg $\rightarrow \alpha + ^{20}$ Ne at the 43.7 MeV resonance, the measurements indicate that spins of the 20.2 and 21.4 MeV states of 24 Mg strongly fed at this resonance are in the region of 8 to 12 and not 4 to 6 expected [6] for ${}^{12}C+{}^{12}C$ resonances in this region. These states at 20.2 and 21.4 MeV were also found to decay preferentially to 7.2 MeV, 0^+ state of ²⁰Ne rather than to the ground state of 20 Ne [12].

Zhang, Merchant, and Rae assumed without definite evidence that the 20.2 MeV state of 24 Mg fed strongly in our work is the same as the 20.25 MeV near Coulomb barrier resonance in ${}^{12}C+{}^{12}C$ system known in literature for a long time as in the studies of Voit et al. [5]. Based on this assumption they further refer to the other experimental studies connected with ${}^{12}C+{}^{12}C$ resonance structures referred in Refs. [8—10]. They also associate the band built on the 20.25 MeV, ${}^{12}C+{}^{12}C$ resonance state of ²⁴Mg with the D1 band of the alpha cluster model based on the calculation of Marsh and Rae [7]. This corresponds to the secondary minimum at $\epsilon = 1.0$, $\epsilon_3 = 0.3$, and $\gamma = 0^\circ$ in the potential energy surface of the NS calculations of Leander and Larsson for ^{24}Mg [4]. We argue

our work [I] from the 43.7 and 46.2 MeV resonances in 28 Si may not be associated with the 12 C + 12 C resonance states. We associate these 20.2 and 21.4 MeV states of ^{24}Mg with the E1 band of alpha cluster model with $2C+3\alpha$ structure based on the same calculations of Marsh and Rae [7]. This band corresponds to $\epsilon = 1.2$, $y = 60^\circ$ in the potential energy surface of the NS calculations of Leander and Larsson $[4]$ of ²⁴Mg, with the configurations of $(0p)^{-4} (sd)^{12}$. These states are fed from the resonances at 43.7 and 46.2 MeV in 28 Si which decay also to the 7.2 MeV, 0^+ state of ²⁰Ne (which is discussed earlier to have ${}^{12}C+2\alpha$ character) by ⁸Be emission. Hence our association of these states of ²⁴Mg with the E1 band of ${}^{12}C+3\alpha$ structure is consistent with these decay modes, consequently, we associate the two 28 Si resonances under discussion with the potential energy minimum at $\epsilon = 1.35$ and $\gamma = 60^{\circ}$ in NS calculations of Leander and Larsson [4]. According to these calculations, the configurations expected at this minimum is of 6p-4h character with $(0p)^{-4}(sd)^{12}(fp)^4$. This may correspond to ${}^{12}C+4\alpha$ configurations, but alpha cluster model calculations relating to these configurations are not available at present for ²⁸Si.

that the 20.2 and 21.4 MeV states of ²⁴Mg strongly fed in

Hence we summarize that our assignment of ϵ =1.35 and $\gamma = 60^{\circ}$ oblate structure to the two resonances observed in our work [I] is consistent with all the presently available evidence.

- [1]M. A. Eswaran, Suresh Kumar, E. T. Mirgule, D. R. Chakrabarty, V. M. Datar, N. L. Ragoowansi, and U. K. Pal, Phys. Rev. C 47, 1418 (1993).
- [2] R. Middleton, J. D. Garrett, and H. T. Fortune, Phys. Rev. Lett. 27, 950 (1971).
- [3]M. M. Hindi, J. H. Thomas, D. C. Radford, and P. D. Parker, Phys. Lett. 99B, 33 (1981); Phys. Rev. C 27, 2902 (1983).
- [4] G. Leander and S. E. Larsson, Nucl. Phys. A239, 93 (1975).
- [5] H. Voit, G. Ischenko, and F. Siller, Phys. Rev. Lett. 30, 564 (1973).
- [6] B.R. Fulton, S.J. Bennett, M. Freer, J.T. Murgatroyd, G. J. Gyapong, N. S.Jarvis, C. D. Jones, D. L. Watson, J. D. Brown, W. D. M. Rae, A. E. Smith, and J. S. Lilley, Phys.

Lett. B267, 325 (1991).

- [7] S. Marsh and W. D. M. Rae, Phys. Lett. B 180, 185 (1986).
- [8] W. D. M. Rae, P. R. Keeling, and S. C. Allcock, Phys. Lett. B 184, 133 (1987).
- [9]W. D. M. Rae, P. R. Keeling, and A. E. Smith, Phys. Lett. B 198, 49 (1987).
- [10] B. R. Fulton, S. J. Bennett, J. T. Murgatroyd, N. S. Jarvis, D. L. Watson, W. D. M. Rae, Y. Chan, D. DiGregorio, J. Scarpaci, J. Suro Perez, and R. G. Stokstad (unpublished).
- [11] E. Sugarbaker, R. N. Boyd, D. Elmore, and H. E. Gove, Nucl. Phys. A351, 481 (1981).
- [12] Suresh Kumar, M. A. Eswaran, E. T. Mirgule, D. R. Chakrabarty, V. M. Datar, and N. L. Ragoowansi, Nucl. Phys. Symp. (DAE) Bombay, 35B, 182 (1992); (to be published).