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Nuclear shell effects at high temperatures
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In discussing the disappearance of nuclear shell effects at high temperatures, it is important to
distinguish between the "smearing out" of the single-particle spectrum with increasing temperature
and the vanishing of shell related structures in many-body quantities such as the excitation energy
per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature
required to smooth the single-particle spectrum, and point out that shell e8'ects in many-body
parameters may persist above this temperature. We find that the temperature required to smear
out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A & 150) and about
3—4 MeV for light nuclei (A & 50), in reasonable agreement with the estimate of 41/vrA obtained
from calculations with harmonic oscillator potentials. These temperatures correspond to many-body
excitation energies of approximately 20 and 60 MeV, respectively.

PACS number(s): 21.10.Ma, 21.10.Dr

pw, z(E) = 2' 0
exp (E —Eo)/r,

where 0. is the spin-dependence parameter and 7 and Eo
are parameters to be fitted. At higher excitation energies,
p~ z(E) can be satisfactorily fitted by the usual first-
order approximation for the many-body level density of
a back-shifted Fermi gas:

One of the interesting questions of nuclei at finite tem-
peratures relates to the well-known phenomenon of shell
structure. As the temperature (or the excitation energy)
of the nucleus increases, it is believed that the visible
effects of this structure will decrease, and finally disap-
pear. However, it is important to distinguish between
two cases, namely the disappearance of shell effects in
a single nucleus, which we shall refer to as local shell
effects, and the vanishing of effects across the entire pe-
riodic table (global efFects). The purpose of the present
paper is first to point out how the vanishing of local shell
effects can be examined in a semiempirical manner, and
second to highlight the problems associated with trying
to quantify the disappearance of global effects.

The vanishing of local efFects can be interpreted as the
process by which the many-body spectrum of a particu-
lar nucleus becomes compatible with that generated by
a single-particle spectrum which does not display shell
structure. In the extreme example of an independent
particle model, one might expect these shell effects to
vanish when the temperature becomes comparable with
the average shell spacing in the single-particle spectrum,
since from this point on it is possible to (relatively) easily
excite across the shell gaps.

To examine this more closely, a description of the
many-body level density of nuclei is required. The low-
energy portion of nuclear spectra are characterised by
the presence of collective states (either rotational or vi-
brational) which are rather broadly spaced in energy. It
is possible to obtain a reasonable fit to the many-body
level density p~ z(E) of most such spectra by the use of
function of the form [1]

&A, z T2
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&~,z

~~ exp 2V a~ zU
p~, z(E) =

12 (2)
A, z

Here the level density parameter a~ z = (7r /6)g(e~)
with g(e~) the single-particle density of states at the
Fermi surface and U = E —P(N) —P(Z), where P(N)
and P(Z) are the pairing corrections for neutron num-
ber N and proton number Z, respectively [1]. The Fermi
gas model reflects the single-particle nature of nuclear
excitation spectra at high energies, and does not include
collective effects. In addition, the single-particle spec-
trum g(e) is smooth, and therefore does not contain any
shell structure.

It is this latter property of the Fermi gas which sug-
gests a possible way to determine, in a semiempirical
manner, an upper limit for the point at which local shell
effects are "washed out". The excitation energy for the
nucleus is calculated as a function of temperature and
compared with the excitation energy of a pure Fermi gas
spectrum with the same level density parameter as the
nucleus in question. At some temperature, T„ the two
functions will coalesce due to the dominance of the single-
particle levels in the nuclear spectrum at high energies.
Thus, for temperatures above T„neither collective nor
shell effects will be observed, and T, may be considered
as an upper bound for the vanishing of shell effects in the
particular nucleus under investigation. The question is,
of course, how to obtain a realistic estimate of the many-
body excitation energy of a nucleus in a semiempirical
manner; this will be discussed below.

The vanishing of local shell efFects, however, does not
imply the disappearance of global effects. The level
density parameter a& z, obtained from fits to low and
medium energy neutron resonance data, shows distinct
shell effects, with marked decreases near shell closures
[1,2]. These efFects can clearly be seen in the excitation
energy per nucleon, which, for a Fermi gas at tempera-
tures low compared to the Fermi energy, is given to good
approximation by

(3)
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FIG. 1. The excitation energy of nuclei as a function of
A. for a temperature of 3 MeV. The global shell effects are
clearly visible.

In Fig. 1, we show E,„/A as a function of A at a temper-
ature of 3 MeV, which should be above the temperature
required to remove local shell effects. The global shell
effects are clearly visible, and are the result of the shell
structure in K~ z.

So far in our discussions a~ z has been assumed to
be independent of the excitation energy. For a suitable
energy dependence, aA z(E) might of course merge to a
universal value independent of A, with the concomitant
disappearance of shell effects in E,„/A Th.e question is
whether there is any indication that such a parameteri-
zation is justified.

Present experimental data covers three mass regions,
namely A = 40 [3], A = 120 [4,5] and A = 160 [6—8]. The
results obtained indicate that for the lowest mass region,
aA z remains fairly constant at = A/8 for excitation en-
ergies up to 2 MeV per nucleon, whereas for A = 120,
aA z changes from = A/8 to = A/11 and for A = 160,
from = A/8 to = A/13 (the latter being very close to
the ideal Fermi gas value) over the same range of excita-
tion energies. This change is related to the temperature
dependence of the effective mass m* of the nucleons, as
aA z m*/m. However, m* is not trivial to calculate.
Calculations in the surface coupling model, in which the
Hartree-Fock states are coupled to the collective random-
phase approximation (RPA) modes has produced reason-
able agreement with the experimental data for heavy nu-
clei [9], although similar calculations with realistic poten-
tials for light systems [10] predict a decrease in aA z not
seen in experimental data. On the other hand, a simple
realistic model [11] has produced reasonable agreement
with the experimental data for all three mass regions, al-
though a~ z still shows a decreasing tendency for small
A. However, a general parameterization of KA z(E) is
not easy to extract &om any of these calculations, al-
though the results of [11] suggest that KA z does not
converge to a universal value with increasing E „. It

therefore seems probable that shell effects in E,„/A will
remain visible right up to &agmentation, although the
lack of a reliable parameterization of KA z(E) makes it
impossible to make a firm statement on this.

%le return now to the question of shell effects in a par-
ticular nucleus. As we mentioned above, it is possible to
obtain an estimate of the temperature at which such shell
effects disappear &om the form of the excitation energy
of the nucleus. One way to do this is to calculate E „
in the canonical ensemble using the experimental level
data when available, supplemented by a continuum spec-
trum to account for the unmeasured, high-energy states.
This approach has been used in the past to investigate
low-temperature phase transitions in light nuclei [12], as
well as to extend the semiempirical mass formula to finite
temperatures [13]. The excitation energy is obtained in
the canonical ensemble &om

Oln Z
ex— 0

where Z is the partition function given by

Z = ) g; exp( PE, ) +—
&max

dEpA, z(E) exp( —PE)

with g; the spin degeneracy and E; the energy of the
ith discrete state. The lower limit of the integral, E is
taken to be 80% of the highest discrete energy, and the
upper limit E „2—3 GeV. The level density pA z(E)
is either (1) or (2) depending on the energy. In many
nuclei, there are insuKcient data available to make the
inclusion of the discrete states worthwhile. In these cases,
the discrete states can be neglected altogether and the
lower limit of the integral shifted to zero.

In our calculations, we have used the parameters of [1]
for the nuclear many-body level densities. In particular,
due to the lack of a general parameterization of K~ z,
we have made no attempt to include an energy depen-
dence in this quantity. However, since the temperatures
of interest in our calculations are less than 2 MeV in the
heavy nuclei and below about 4 MeV in the light nuclei,
the neglect of this energy dependence should not be too
serious.

To determine the temperature at which the excitation
energy becomes compatible with that of a Fermi gas, we
compare the excitation energy calculated from (4) with
that obtained from a pure Fermi gas expression, and de-
termine the temperature at which the relative difference
between the two is less than 0.1%. This temperature is
then an upper bound on the temperature at which shell
effects vanish.

The choice of 0.1% for the convergence factor corre-
sponds to differences of a few tens of keV between the
energies of (4) and the Fermi gas. This is a few percent
of the second-order contribution to the shell correction,
which is estimated to be of the order of 1 MeV [14]. De-
creasing the convergence factor to 0.01% results increases
the tempertures at which the shell effects vanish by about
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FIG. 2. The maximum temperature for local shell effects to
be present, T„as a function of A. The solid line corresponds
to 62A and the dotted line to [8/A(8+ 1400/A)]

10—15%%uo.

The temperatures resulting from these calculations are
shown in Fig. 2, and the corresponding many-body ex-
citation energies in Fig. 3. The major point of interest
is the variation in T, with A, where the effects of shell
closures can clearly be seen. This emphasizes the distinc-
tion we drew earlier between local and global shell effects.
The excitation energies E„although not constant for all
A, nevertheless do not display as much structure at shell
closures as the temperatures.

Quantitatively, the calculations indicate that local
shell effects in heavy nuclei (A + 150) have certainly
vanished for temperatures in the order of 1 MeV, corre-
sponding to excitation energies of 15—20 MeV. For lighter
nuclei (A + 50), on the other hand, the temperatures re-
quired to wash out local shell effects are of the order of
2—4 MeV, or E 30—60 MeV.

The temperatures which we obtain for the vanishing
of the local shell effects are of the same order as the
estimate of 41/7rA~/ obtained from calculations of the
shell correction energy with a harmonic oscillator single-
particle potential [15,16], although the values for large
A difFer by as much as a factor of two. This discrepancy
can be understood in terms of the schematic nature of the
harmonic oscillator model, which cannot be expected to
reproduce the shell structure of real nuclei exactly.

There are definite systematics present in our results. In
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FIG. 3. The excitation energy E, corresponding to T, as
a function of A. The solid line corresponds to 480A and
the dotted line to (8+ 1400/A).

Fig. 3 we show two curves which fit the general trend in
E, well, namely E, = 480A / and E, = 8+ 1400A
These curves are not least squares fits, but are shown to
guide the eye. The source of the systematics is the A
dependence of the shifted (i.e. , with pairing corrections
subtracted) matching energy U between the low- and
high-energy densities of states (1) and (2), which can be
quite well described by an A behavior [1]. As might be
expected, this boundary between the regions of validity
of the two expressions is reHected in E, . Corresponding
fits for the temperatures T, can be found using the fits
for E, and (3) with a~ z = A/8.

The calculations described above allow for the extrac-
tion of information about shell effects at nonzero tem-
peratures in a semiempirical manner. Although there
are several approximations in the calculations, most no-
tably the neglect of the energy dependence of the level
density parameter, the temperatures of interest are low
enough for these approximations to be valid. The results
indicate that even though local shell effects in the single-
particle spectrum are smeared out at temperatures of a
few MeV, global shell effects remain visible in many-body
quantities to considerably higher temperatures, and may
survive right up to fragmentation.
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