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Modified Skyrme model and the nucleon-nucleon interaction
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We present a Skyrme model with modified kinetic-energy terms. The baryon current of the model
supports both fractional and integer baryon number solutions. Chiral symmetry breaking renders the
fractional baryon number states absolutely confined. In the unbroken phase the solutions bear resem-
blance to the constitutent quarks of the nonrelativistic quark model. The model predicts correctly the
nucleon and delta resonance masses using a value for the pion decay constant F„very close to experi-
ment. The model yields an attractive central potential between nucleons.

PACS number(s): 11.30.Rd, 13.75.Cs

I. INTRODUCTION

The Skyrme model [1] pictures baryons as topological
solitons in a nonlinear meson field theory. It has been
rather successful in describing the low-energy phenomena
of strong interactions [2]. The minimal version of the
model predicts baryon masses and properties quite well,
by using essentially two free parameters: The pion decay
constant F and Skyrme's parameter e. It is found that,
in order to fit the baryon masses, F has to be unrealisti-
cally small as compared to the measured value of 186
MeV. In SU(2) the model necessitates [2] a value of
around 128 MeV whereas for SU(3) it becomes as small as
54 MeV when no zero-point energy subtraction is per-
formed [3]. This disturbing feature weakens the reliabili-
ty of a calculation based on the model.

The implementation of the Skyrme approach in sys-
tems of more than one baryon has met with some
difficulties too. The central nucleon-nucleon interaction
predicted by the straightforward application of the model
lacks any attractive components [4]. This would then im-

ply that atomic nuclei cannot exist, with the exception of
the deuteron. Some refinements to the simplest version of
the Skyrme model, such as the inclusion of dynamical
contributions to the two-baryon ground-state wave func-
tion by means of rotational and vibrational degrees of
freedom [5], can improve the situation and yield a mildly
attractive potential. However, it remains unclear wheth-
er this is indeed the mechanism responsible for nuclear
binding. Numerical calculations [6] seem to indicate
such a component indeed exists, when mutual distortions
of the solitons are allowed. In the numerical approach, it
is difficult to introduce collective degrees of freedom,
identifying unambiguously the soliton locations and im-
plement rigorously the baryon number two condition. It
is then still unclear if the model does indeed predict the
medium range central attraction. The modified Skyr-
mion we propose here will be able to use a value of F
very close to experiment. At the same time the model
will give a non-negligible attractive component in the
central potential between nucleons without resorting to
any kind of involved mechanisms or distortions. All this
will be achieved by changing the kinetic energy of the

Skyrme model. This change will also have far reaching
implications concerning the spectrum of states.

We will start with a different current building block for
the kinetic energy. This current when inserted in the
Wess-Zumino action will generate a baryon current that
supports both fractional and integer baryon number
states. In order to make contact with phenomenology,
we will introduce a symmetry-breaking parameter in the
chiral current. In doing so we will discover that the frac-
tional baryon number solitons cease to exist and only in-
teger baryon number solutions survive. The fractional
baryon number solutions of the unbroken phase will be
identified as the constituent quarks of the model. Al-
though QCD is expected to yield confinement even with
massless quarks, the chiral anomaly of QCD will spon-
taneously induce chiral symmetry breaking. Therefore,
even at the QCD level with massless quarks, there are
chir al symmetry-breaking effects. Our manifest
symmetry-breaking interactions in the kinetic energy can
be viewed as a poor man's mock-up of this behavior.
These terms are different from the conventional meson
mass terms that are commonly included in the Skyrme
model and whose importance is minor. The new kinetic
energy forces the constituent quarks to be confined even
when the symmetry-breaking parameter is small but
nonzero. At the same time, the new Lagrangian will au-
tomatically induce different coupling constants for the
vector and axial-vector interactions between mesons and
baryons. This is similar to the effects appearing in the
chiral dynamics method [8], in which it was necessary to
introduce ad hoc a different coupling constant for those
interactions even when meson mass terms are included, in
order to recover the low-energy phenomenology of pion-
nucleon processes.

In the present paper SU(2) baryon properties and the
nucleon-nucleon interaction are calculated. Later we will
consider a more realistic treatment of the constituent
quarks and mesons of the model [9].

II. CHIRAL SYMMETRY BREAKING
IN THE SKYRME MODEL

The simplest version of the SU(2) Skyrme model starts
with the Lagrangian [4]:
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Q2
1L= — fd x Tr(L L")+ f d x Tr(L, L )P 32 2 P'

where

U(x, t)=R (t)U, (8(x))R(t) .

(2)

W„=-,'( U'a„U —Ua„U') . (5)

The normalization of the current is such that, to lowest
order in the pion field, it gives the same dynamics as the
current of Eq. (2) and allows us to identify the pion decay
constant of Eq. (18) below to be the same as the one of
Eq. (1).

Left and right invariance of Lagrangians built with Eq.
(5) instead of Eq. (2) is implemented by transformations
[11]

Uo is the static hedgehog ansatz, depending on the chiral
angle 8, R is a collective coordinate SU(2) matrix depend-
ing on time, I' = 186 MeV experimentally is the pion de-
cay constant, and e is the Skyrme parameter.

The action (1) is invariant under left and right transfor-
mations.

U —+HUB, (4)

where A and 8 are constant SU(2) matrices. Two
currents emerge from the invariances above: The vector
current and the axial-vector current. The first is exactly
conserved while the second is only partially conserved.

The virtue of the Skyrme model is its unified treatment
of baryons and mesons by means of scalar field degrees of
freedom [1,2]. Baryons are identified as the topological
soliton solutions of the theory while mesons arise as Auc-
tuations around the solitons. In the times of chiral La-
grangians [8], two separate entities were used for the
same purpose. Baryons were represented as structureless
Dirac particles, whereas the mesons were incorporated as
separate entities by means of scalar fields coupled to the
baryons. The basic premise in building field theory mod-
els of this kind was the conservation of the chiral current.
The time-honored most successful model of this kind is
the chiral dynamics method [8]. It is based on nonlinear
realizations of chiral symmetry. The tree-level calcula-
tions based on the model correctly predict all the low-
energy soft-pion process. Chiral symmetry is, however,
manifestly broken to account correctly for the phenome-
nology of nucleon-meson interactions. Two types of
breaking mechanisms appear in the model: (1) Mass
terms for the mesons, which are considered to be very
small and relatively unimportant (hence the soft-pion lim-
it was quite accurate); and (2) baryon-meson couplings
that break chiral symmetry by allowing a phenomenolog-
ical distinction between vector and axial-vector interac-
tions. The latter were very important for the description
of meson emission and absorption from baryons and ac-
counted for the fact that the axial-vector coupling con-
stant is phenomenologically bigger by around 20% as
compared to the vector constant. The first mechanism is
easily included in the Skyrme model [10]; the second
symmetry-breaking e8'ect was never included.

Several years ago Callan et al. [11] developed a
method to construct phenomenological Lagrangians for
fields transforming according to nonlinear realizations of
an internal symmetry group. Their technique can then be
used to introduce a more general chiral operator instead
of the one in Eq. (2) and still maintain chiral symmetry
conservation. Consider the following current:

U~ VUB = AUV

U —+AU B, (6b)

where V is an SU(2) matrix depending on the field U. Ex-
plicitly, for infinitesimal left and right transformations

U —+(I+i~ e)U,
U~ U(1+iv 5),

and a generic SU(2) parametrization of the chiral field

U=exp(ir m8),

V becomes

V= 1+—~ [5—a+tan(8)[m X(5+a)]I .
1

2

If we build our Lagrangian with the current of Eq. (5) we
will discover immediately that it becomes, after suitable
parameter rescalings, the original Skyrme Lagrangian for
twice the chiral angle. Our model, in the chiral limit, is
the Skyrme model of Eq. (1) for U replaced by U . We
will, nevertheless, keep the definition of the chiral current
in Eq. (5), in terms of U and not the square root of it, be-
cause, upon introduction of symmetry brea, king the above
combination is the appropriate one in order to have
finite-energy solutions for integer baryon number.

Let us consider the baryon current of the model. Fol-
lowing Witten [7] we can write the Wess-Zumino action

—in c"
nI = fTr(A„A„A AtiA&)d x,

240m
(10)

where n is an integer and 3„ is the current of Eq. (5).
We still use the original normalization of the Wess-
Zumino current because the relevant chiral field here is
U and not U. If one calculates the Jacobian of the trans-
formation between the field manifold and the five-
dimensional target space we will find the normalization of
Eq. (10) provided that the current is defined as in Eq. (5).
This can be seen by expanding the Wess-Zumino action
to lowest order in the pion field.

Applying the U(l) gauge transformation

U~ie(x)[Q, U]

where E is an infinitesimal parameter and Q the quark
charge matrix, and integrating over the fifth coordinate,
we find the electromagnetic current of the Wess-Zumino
action:
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(12)

where

P 2 P (13a)

R =—'BUU
P 2 P (13b)

J)"= Tr R R R&+Tr L L L& dx,
192m

of the various photon (and related) vertices should there-
fore proceed along a different avenue as the one defined
by the Wess-Zumino Lagrangian. It is then reasonable to
assume that the higher-order vertices predicted by the
Wess-Zumino tree-level amplitude are not to be taken as
a strong constraint on the value of the constant n.

We, therefore, chose to fix n by comparing to the decay
of the neutral pion only. (In the future work we will ad-
dress the quark-antiquark picture of mesons [9].)

It is straightforward to identify the anomalous baryon
current

B„B„+t'e A„, (14)

we will find [see Eq. (21) of Ref. [7]]

~'P"~F .F. .
ne

768m F„ pv aP (15)

Equation (12) is 4 times smaller than the one obtained in
the standard Skyrme model due to the normalization of
the currents in Eq. (5). Following Ref. [7] we calculate
the amplitude for the process ~o—+yy. Expanding U to
lowest order in the pion field and replacing the deriva-
tives of Eq. (14) by covariant derivatives,

B"= E" ~Tr(L L L13),
1

(16)

where L„ is the current of Eq. (13a). The new baryon
current is four times bigger than the usual one expressed
in terms of the currents of Eq. (2). Below we will find
that this definition will allow fractional and integer
baryon number solutions. Our world consists of integer
baryon number particles while the fractional baryon
number particles are absolutely confined. We will find
that this phenomenology can be recovered, if we intro-
duce manifest chiral symmetry breaking in the kinetic
terms built from the currents of Eq. (5).

We build the following broken symmetry current,

The amplitude of Eq. (15) is 16 times smaller than the
expression of Ref. [7] due to the normalization factors of
the currents of Eq. (5). Although we have five currents in
the expression of the Wess-Zumino action above produc-
ing a denominator of 2 smaller than the one we obtain
with the current of Eq. (2), a factor of 2 still appears upon
expansion of U in terms of the pionic fields. The elec-
tromagnetic coupling is identical in both cases and does
not introduce any extra factors. The denominator then
becomes 16 times smaller. In order to reproduce the
measured value of the pion decay rate, the factor n in Eq.
(15) has to be equal to 3 times 2 .

The neutral pion decay amplitude is inversely propor-
tional to f„. The decay width of the neutral pion of 7.63
eV needs a value for f of 93 MeV. In the Skyrme model

f is varied. A fit to nucleon and delta masses needs a
much lower value, implying a decay rate as much as a
factor of 4 bigger than the experiment. In the present ap-
proach we will see that we can use a realistic value of f
and therefore our prediction of the neutral pion decay
rate is more appropriate. Due to the normalization fac-
tor n of Eq. (15), the VA A A vertex is here a factor of 4
bigger than the prediction of the anomaly [7]. The ampli-
tude for the VA A A vertex process is, nevertheless, in-
versely proportional to f and, therefore, the prediction
of the present model will be numerically almost the
same —and even better if one uses the value off needed
in the SU(3) case [3]—as the conventional Skyrme model
prediction. (A measurement of this amplitude was re-
cently performed by Antipov et al. [15] and found to be
in agreement with the @CD prediction. ) Moreover, the
present model provides us with an alternative picture of
mesons as quark-antiquark composites. The calculation

M„=—,'[(1+g)U B„U—(1—g)UB„U ], (17)

where g is a parameter that rejects the degree of chiral
symmetry breaking. It has to be equal to zero in the
chiral limit, and close to zero in the broken phase. A
suitable upper limit inspired in chiral dynamics could be
taken to be of the order of 0.23.

The modified Skyrmion Lagrangian now reads

F f d x Tr(M„M")+ f d x Tr(N„, N )
32e

(18)

M„ is constructed such that it gives the correct pion
kinetic-energy asymptotically. N„differs from M„by the
numerical value of the symmetry-breaking parameter g.
[There is no reason a priori to demand the same value for
g in both terms of Eq. (18), thus we use two different pa-
rameters g, in actual applications we fix both of them to
be equal, see below. ]

Expanding Eq. (18) to lowest order in the chiral field
and its Auctuations, we wi11 discover pion-nucleon cou-
plings with a different strength for vector and pseudovec-
tor interactions, only when g is nonvanishing.

We now proceed to investigate the classical solutions
of the model. Introducing the hedgehog ansatz [1,2] in
the modified Lagrangian and performing the adiabatic ro-
tation of U with R (t) of Eq. (3) we find the static mass of
the Skyrmion M and the moment of inertia A to be [see
Eqs. (2) and (4) of Ref. [2] for notation]
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7TF sin (20) 2g i sin (0)M= r dr 0'+ +
2 2, r

2d 8 2 sin'(28) sin'(28), 2 sin'(28) g2sln' 'g2sln
r dr

8 r2 r4 (19a)

3 z 2 sin (20)A= r dr F +g, sin (8)2' 7T 4

+ fr'dr,1 8' + sin (28)+4g sin (0) 8' + +
2 2 4g sin (8)
4r 2r r

(19b)

where g, (g2) are the symmetry-breaking parameters cor-
responding to the first (second) term in Eq. (18), and a
prime denotes radial derivative.

From Eq. (19) we see that finite-energy solutions
demand the boundary condition for the ch;ral angle at
the origin to be 0= n ~ with g &

and g2 nonzero, while for
g, =g2 =0 the boundary condition is 0=n~/2.

Inserting the hedgehog ansatz into the baryon current
of Eq. (17) we find the baryon density

)
sin [20(r)]

2772r 2
(20)

The corresponding baryon charge becomes (taking 8=0
at infinity)

1 sin[20(0) ] (21)

From Eq. (21) we see that for g nonzero and 8(0)=n~
the baryon number is integer, whereas for g=O and
8(0)=nor/2, the baryon number is a multiple of —,'. [In a
later work we treat the quark and meson sectors in detail.
We will find there that it is easy to modify the current of
Eq. (18) in order to have constituent quarks with
baryon number and spin= —,

' [9].]
In the conventional Skyrme model, baryons are sought

to arise as topological solitons in the large N, limit of
QCD. The chiral condensate of pions generates the
baryons through topology. If manifest symmetry break-
ing is ignored, the strong interaction world described by
it, is one of massless mesons and massive topological soli-

I

I

tons recognized as baryons. Confined quarks do not ap-
pear at all in the picture.

The present approach allows for a different interpreta-
tion of the topological soliton model. In the chiral limit
the parameter of manifest breaking g=O. Fractional
baryon number solutions are possible in that limit. Those
solutions can be identified as the constituent quarks of
the model. These solutions cease to exist when symmetry
breaking is introduced. The quarks cannot be free, be-
cause their energy would be infinite (boundary condition
at the location of the source would lead to the diver-
gence). Chiral symmetry breaking and confinement are
more intimately related here. As in the nonrelativistic
quark model, pions will arise, not as Goldstone bosons,
but as quark-antiquark states, obeying topological con-
straints and partially fulfilling chiral symmetry. (For this
reason we omit explicit meson mass terms from the La-
grangian. ) As in the case of baryons, pions, and the
mesons in general, cannot decay into isolated quarks, be-
cause quarks cannot exist as free objects in the chirally
broken phase. The quarks arise as topological solitons in
the pion condensate as in the qualiton model [12]. There,
however, quarks arise as solitons in an SU(3) condensate
of color and confinement is expected to originate from the
coupling to gluons. In the present approach, chiral sym-
metry is manifestly broken in the kinetic-energy terms.
No mater how small the symmetry-breaking parameter is
it will have a leading role in determining the spectrum of
states of the model.

The Euler-Lagrange equation of motion for the static
hedgehog soliton is

0 1+
2

+
2

+ +0
2

+sin (20) 2g2sin (0) 20', 2 sin(40) 2g2sin(20)sin (0) sin(40)
2x X X 2x X 2x

2gisin(28)sin (8)
X

sin(40)sin (20)
8x4

gzsin (28)sin (8) gzsin(48)sin (8)
2X4 2x4

2g2sin(28)sin (0) =0,
2x4

(22)

where x =eI'„r and primes denote derivatives with
respect to x. Two easy checks of Eqs. (19) and (22) are at
hand. In the limit of g& =g2= I we have to recover the
expressions of Ref. [2] and indeed we do. The second

I

limit, when both parameters are set to zero, has to yield
the same expressions as those of Ref. [2], but for double
the chiral phase and suitable factors of —„' and —,', for each
the first and second terms of Eq. (18), again the formulas
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prove to be correct.
Static observables for the modified Skyrmion can be

found in the same way as for the standard Skyrmion [2].
In order to do so we generated the left and right unbro-
ken currents with the transformations of Eq. (6). The

moment of inertia of Eq. (19b) enters in the expression of
some observables whereas for the calculation of the
axial-vector coupling constant g~ we need the parameter
D' [see Eq. (16) of Ref. [2]]:

cos (8)+g, sin (8)D' =F 8'+ sin(28)
r

r

4[cos (8)+g2sin (8)] s,n(28)8 2s-;n (8)8' cos (8)+g2sin (8)+ 2 +
z +sin(28)sin (8)

e r T I"
(23)

Taking values for g i and g2 between 0 and 0.22 we find
that we are able to fit the nucleon and delta resonance
masses with a value of F of approximately 162 MeV, al-
most independently of g& and g2 and e around 3. For
g&=g2=0 and the boundary condition at the origin
19=~/2 appropriate for the constituent quarks, we obtain
soliton solutions that have a static mass of the order of
160 MeV with the same parameters.

The moment of inertia for these solutions is very small,
yielding a very large rotational energy, as found for quali-
tons [12]. A better quantization procedure is needed to
handle the spin-isospin degrees of freedom of the quark.
Verschelde [13] found that a careful treatment of the cou-
pling to quantum rotations and vibrations by means of
Dirac constraints yields a net reduction of the static ener-

gy equal to the rotational excitation of the nucleon of the
order of 80 MeV.

If we introduce such a quantum correction, we will be
able to fit the nucleon and delta resonance masses with an
even better value of F of approximately 170 MeV. This
correction is therefore only minor and operates in the
right direction. On the other hand, a calculation of the
Casimir energy in the Skyrme model [14] indicates a
much larger subtraction of the order of 1 GeV for the nu-
cleon. Such a subtraction would leave us with nucleon
mass very close to zero. However, this calculation has
several limitations, such as the neglect of the quartic, or
Skyrme term, of Eq. (1): the need to introduce regulariza-
tion schemes with input parameters coming from other
models (such as chiral perturbation theory), and the very
important omission of coupling to zero modes that prove
to be crucial in order to identify the proper degrees of
freedom. We therefore prefer to adhere to the exact
determination of Verschelde [13] in considering quantum
Auctuations a small correction.

Almost independently of g& and g2, the values of the
static observables for the integer baryon case are approxi-
mately as follows: nucleon isoscalar root-mean-square ra-
dius ( r )1/0=0. 6 fm, proton magnetic factor
pp t 1 9 neutron magnetic factor p„,„„,„=—1 .4,
pion-nucleon coupling constant g»=8, and g~ =0.65.
[The value of g~ is still small, but it is known to improve
dramatically in SU(3).] These results are essentially the
same as those of the original Skyrme model [2], but now
with a much more realistic value of F .

III. THE NX INTERACTION

U(r„r )=28 U (r0, )8 A U (0r )2A (24)

Inserting Eq. (24) into Eq. (18) and subtracting the
one-baryon contributions we obtain the two-body static
Lagrangian. We evaluated matrix elements of the two-
body Hamiltonian between suitable two-body collective-
coordinate wave functions using a Monte Carlo method
with three million mesh points, obtaining an accuracy of
at least 10%. Comparing to standard parametrizations

TABLE I. Nucleon-nucleon central potential V, in MeV as a
function of internucleon distance R in Fermi for g& =g2=0.22,
and 0.14, 0, respectively.

0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

894
371
125
29

1
—4
—2
—1

0

996
406
145
37

4
—3
—1

0
0

1105
437
164
44

7
—2

0
0
0

We have managed to alleviate one of the problems of
the Skyrme model and fitted the masses of the nucleon
and the delta with a more reasonable value of F . Can
we improve the predictions of the Skyrme model for the
nucleon-nucleon interaction with the modified Lagrang-
ian? The answer here is affirmative too.

As mentioned in the Introduction, the intermediate-
range central attraction between nucleons is notoriously
absent in all the straightforward uses of the Skyrme mod-
el. In order to investigate the central interaction between
nucleons we follow the procedure of previous works [4,5].
The two-body ansatz we use is the so-called product an-
satz for two baryons located at positions r& and rz. It has
the virtue of carrying baryon number two and describing
to separate baryons at large interbaryon separation
r&

—rz. It also allows for a rather easy quantization of the
spin-isospin degrees of freedom by means of each baryon
collective coordinates A and B, explicitly
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of the nucleon-nucleon interaction, we find the central
potentials shown in Table I. We have chosen for the cal-
culation g, and gz ranging from 0 to 0.22. For each case
we used the appropriate soliton profile. It is clear that,
increasing the value of the symmetry-breaking parameter,
one gets an intermediate-range central potential of depth
comparable to that obtained in phenomenological fits
such as the Paris potential, and at the right internucleon
separation. As can be seen from Table I, the smaller the

symmetry-breaking parameters, the shallower the depth
of the attractive component; until when the parameters
are set to zero it almost disappears completely and the
central potential is repulsive throughout. This is a most
remarkable effect.
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