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We consider the dependence of collective Bow on the nuclear surface thickness in a Boltzmann-
Uehling-Uhlenbeck transport model of heavy ion collisions. Well-de6ned surfaces are introduced
by giving test particles a Gaussian density profile of constant width. Zeros of the How excitation
function are as much inBuenced by the surface thickness as the nuclear equation of state, and the
dependence of this effect is understood in terms of a simple potential scattering model. Realistic
calculations must also take into account medium effects for the nucleon-nucleon cross section, and
impact parameter averaging. We find. that balance energy scales with the mass number as A ", where

y has a numerical value between 0.35 and 0.5, depending on the assumptions about the in-medium
nucleon-nucleon cross section.
PACS number(s): 25.70.—z, 02.70.Lq, 21.65.+f

I. INTRODUCTION

Broadly speaking, nuclear collective flow in a heavy ion
collision is the deflection of nuclear matter perpendicular
to the beam axis during the course of the reaction. Ex-
perimentally, one observes that flow disappears at a well-
defined beam energy [1—5], the so called balance energy
EB j, whose value depends on the system and impact pa-
rameter range being considered. These zeros in the flow
excitation function were predicted by the Boltzmann-
Uehling-Uhlenbeck (BUU) transport model [6, 7], and an
analysis of scale invariant quantities [8], and may be un-
derstood as an overall cancellation of the attractive part
of the mean field interaction with repulsive contributions
from the mean field and collisional kinetic pressure.

Thus, as has been shown explicitly for BUU simula-
tions in Ref. [3], En ~ is expected to depend on both
the nuclear equation of state and the magnitude of the
in-medium nucleon-nucleon cross section. By making a
systematic study of the balance energy as a function of
the nuclear mass, one therefore hopes to gain insight into
these properties. However, other parameters might well
influence the balance energy. In particular, we wish to
investigate in this note the effect of finite nuclear surface
thicknesses and impact parameter variations on EB ~.

We begin by defining the flow variable to be used here,
and point out the importance of obtaining well-defined
nuclear surfaces that are independent of the grid size used
to compute density gradients. We then show how the
strong surface dependence of flow in a Vlasov simulation
may be understood in terms of a simple potential scatter-
ing model. This dependence persists for full BUU calcu-
lations that include a nonzero collision integral. Last, we

consider the effect on the balance energy when the im-

pact parameter, the nucleon-nucleon cross section, and
the mass number are varied.

II. SURFACE DEPENDENCE OF FLOW

where the weight m, = 1 or —1 if the test particle i
is emitted into the forward or backward center-of-mass
hemispheres, respectively, and P, is the transverse mo-
mentum of the test particle in the reaction plane. In this
note, we shall refer to "flow" in the sense of the above
equation.

We begin by examining the way the local particle den-
sity p is calculated for the mean field dynamics in a
Vlasov simulation. While the mean field is momentum
dependent [12—14], we shall consider here, for illustrative
purposes, a Skyrme-like parametrization that is a func-
tion of the density alone:

U(p) =A —+Bi —
i

&c &

Po gPo )
(2)

To analyze flow quantitatively in experiments one of
the main problems that has to be addressed is the deter-
mination of the reaction plane (see, for example, Refs. [9—
11]). In model calculations, on the other hand, knowledge
of the reaction plane immediately allows one to define a
flow variable such as the average in-plane transverse mo-
mentum
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and take values of the parameters A = —124 MeV,
B = 70 MeV, and o = 2. This choice reproduces known
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nuclear matter properties, with a rather stifF compression
modulus at saturation of Kp = 380 MeV.

We choose to represent the nucleon phase space distri-
bution function f (r, p, t) by an ensemble of test particles.
If f (r, p, t) is to satisfy the Vlasov equation, the equa-
tions of motion of a test particle with coordinates (r;, p, )
are given by Hamilton s equations of motion with poten-
tial (2):

p; = —V„U(p(r;)) and r; =
gm'„+ p,' '

where m~ is the free nucleon mass. The local particle
density p is often calculated on a grid, and the gradient
obtained as a finite difFerence. In this procedure, each
test particle counts a certain fraction towards the density
of the cell it occupies, while neighboring cells receive a
smaller contribution [15]. This stabilizes the numerics,
but also introduces a nuclear surface whose thickness is
roughly given by the grid size Lx. This grid size must
be larger than the maximum distance traversed by a test
particle in one time step, but small enough to be able to
compute the gradients in Eq. (3) to sufficient accuracy.

Instead of "smearing" a test particle in steps over only
the nearest neighboring cells [16], one may choose to sup-

ply each test particle with, say, a Gaussian density profile
of constant width. This also introduces a finite surface
thickness, but one that is well-de6. ned and independent
of the grid size. Thus one may study the efFect of vary-
ing the nuclear surface thickness without the external
numerical constraints imposed on the choice of Ax.

As an illustrative example, we consider flow in pure
Vlasov dynamics as a function of the size of the grid
for La on La collisions at a beam energy of
200 MeV/nucleon and impact parameter b = 2.7 fm. Fig-
ure 1 shows that (iiiP ) depends very strongly on the grid
size, i.e. , the efFective nuclear surface (dotted line). The
calculations with finite Ax ) 0.5 fm gave an overall at-
traction, whereas the extrapolation to Ax = 0 predicts
zero flow. This strong dependence persists at beam en-
ergies of 800 MeV/nucleon. At this energy, the extrap-
olated value to zero grid size (zero surface thickness) is
twice as large as the value at Lx = 1 fm, a frequently
used. grid size.

In Fig. 1, we also show the flow obtained with Gaussian
test particle density profiles. The solid line represents the
variation with Lx for a surface thickness of 2 fm, while
the dashed line is for a surface of 1 fm. Clearly, as long as
the grid size is smaller than the Gaussian smearing width
(i.e. , the nuclear surface), the How is independent of Ax.
Also, the d.otted line crosses the solid and dashed lines
at Ax 2 and 1 fm, respectively. This indicates that at
least most of its rise with decreasing grid size is directly
attributable to the changing surface thickness, and is not
a "numerical artifact. " We conclude that (iiiP ) depends
rather strongly on the surface thickness, a thinner surface
producing more than a thicker one. Of course, quantita-
tively the results obtained here are not reliable, since we
have, for instance, ignored the momentum d.ependence
and hard collisions, but they do show the important in-
fluence of the nuclear surface.
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III. AN INSTRUCTIVE MODEL

The surface dependence of Bow can be understood in
terms of a simple potential scattering model [14]. As-
suming that the nuclei pass through each other without
changing their shape in phase space, the centers of mass
of the nuclei move according to the Hamilton function

H = ' + ' +V(R)2M 2M (4)

where the potential V is given by

V(R) = &(p (r))«' (5)

M is the nuclear mass, Pj and P2 the center-of-mass
momenta, and R the separation of the nuclei. In (5),
V(p„) is the potential energy density corresponding to
Eq. (2)

A 2 B +i
&(p) = ——+

2 pp 0 + $ po

To describe nuclei with a surface, we choose the density
profile to be

pR(r) = [1+exp((r —K/2( —Rp)/a]
—1

po

+ [1 + exp(~r + K/2~ —Rp)/a], (7)

FIG. 1. Flow [as defined in Eq. (1)] versus grid size for
pure Vlasov dynamics with smearing over neighboring cells
only (dotted line). The dashed and solid lines show results if
each test particle is given a Gaussian density profile of con-
stant width. The dashed line corresponds to a nuclear surface
thickness of 1 fm, the solid line to 2 fm. All curves shown are
for La+ La, E = 200 MeV/nucleon, and b = 2.7 fm.
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FIG. 2. Potential Eq. (5) as a function of the separation
of the two nuclei. The radius Ro ——5.8 fm corresponds to
139L

where Bo is the nuclear radius, and 4a the surface thick-
ness.

The potential (6) is shown in Fig. 2 for various values
of the parameter a. As expected, for an increasing surface
thickness, the potential V decreases, and we expect a
larger surface to produce less flow. This can be shown
explicitly in the time evolution of the (wP ) (see Fig. 3).
We find reasonable agreement of the potential scattering
model with the test particle Vlasov calculation at both
values of the surface thickness. Of course, difI'erences are
seen in the details, and are expected because of the crude
.".,ssumptions made in Eq. (4). For example, a Vlasov
calculation shows that EB ~ occurs between 200 MeV and
300 MeV, depending on the surface, while the scattering
model shows no zeros in the flow excitation function.

IV. REALISTIC CALCULATIONS

In the previous sections, we have studied the surface
dependence of the flow variable under the very clean con-
ditions of pure Vlasov dynamics. We now focus on the
disappearance of flow in a more realistic calculation, i.e. ,
a full BUU simulation that includes collisions. First we
want to look at surface efI'ects in La on La and

C + C, and at flow as a function of the impact pa-
rameter for Cl+ Cl. In the next section, we will present
a study of the balance energy for nuclei ranging from
a combined mass of A = 24 to A = 302, including an
estimate of medium eÃects on the cross section.

For the reaction ~ssLa on ~ssLa [1] we flnd that the
balance energy is shifted by 10 MeV when the surface
thickness increases from 1 fm to 2 fm. This is compara-
ble to the shift expected when one changes &om a stifF
to a soft equation of state. For example, in Ar on V
reactions, EB ~ changes by only 8 MeV if the incompress-
ibility is increased from Ko ——200 MeV to 380 MeV by
adjusting the parameters in Eq. (2) [3].

This becomes even more apparent in smaller systems
such as C+ C, for which values of EB ~ were recently
measured at the National Superconducting Cyclotron
Laboratory I17]. Figure 4 shows the flow obtained in
simulations as a function of beam energy, for surface
thicknesses of 1 fm (left panel) and 2 fm (right panel).
The stifF EOS gives EB ~

= 140 MeV and 190 MeV, re-
spectively, while the soft EOS yields EB 1 = 170 MeV
and 220 MeV, respectively I18].

The surface thickness dependence was already dis-
cussed in the preceding section. The flow excitation func-
tion in pure collisionless Vlasov dynamics shows a zero at
about 250 MeV, depending on the surface thickness. The
collisions merely add a repulsive component to the forces
acting on the nucleons hence adding a negative term to
the flow excitation function and shifting the zero to very
much lower values. However, the importance of the sur-
face in the precise value of the balance energy is main-
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FIG. 3. The time evolution of How for pure Vlasov dy-
namics (solid line), and the potential scattering model, Eq. (4)
(dashes). The surface thicknesses are 1 fm (upper two curves)
and 2 fm (lower two curves), and the system is as for Fig. 1.

FIG. 4. Flow versus beam energy in the vicinity of the
zelos Qf the excitation function. The system is C+ C at
an impact parameter b = 1.4 fm. The left panel is for a surface
thickness of 1 fm, the right for 2 fm. Both panels show results
for stiK (diamonds) and soft equations of state (plus signs).
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FIG. 5. The balance energy for Cl + Cl as a function of
impact parameter.

tained. Since the collision-induced repulsion is weaker in
smaller systems, the relative importance of the surface
thickness is enhanced in smaller systems.

In addition to effects mentioned previously, EB 1 also
depends on the impact parameter b [19],as can been seen
in Fig. 5. For peripheral collisions, the contribution of the
nucleon-nucleon collisions becomes relatively less impor-
tant for the flow production than the mean field, because
the repulsion generated by the nucleon-nucleon collisions
is proportional to the overlap volume. Of course, for
a quantitative comparison with experiment an impact-
parameter-weighted averaged flow has to be considered.
However, calculating EB ~ for several A and 6 is computa-
tionaly prohibitive. In addition, the precise distribution
of impact parameters contributing to the data collected
with different experimental triggers is not known. And so
one usually performs the calculations at the average im-
pact parameter determined from the experimental trigger
conditions. We also follow this approach.

20 50 100 200

Mass of Combined System

FIG. 6. The calculated values of EB 1 as a function of the
mass of the system. Only symmetric systems are considered.
Diamonds and circles correspond to a soft and stiff EOS, re-
spectively. For comparison, experimental data from Ref. [5]
(squares) are shown. The solid and dashed curves are power-
law its to the calculations and data.

EB 1
——xA

calculations performed. For every system, flow was de-
termined for five to ten beam energies within the ranges
given in the table, for a surface thickness of 1 fm and
2 fm, and also for a range of in-medium nucleon-nucleon
cross sections. We note that the results in Figs. 6 and
7 use only one impact parameter, obtained from the av-
erage value in the experiment, and proportionally scaled
b for calculations at mass numbers A for which no data
exists.

Figure 6 shows the balance energy as a function of
the combined mass of the system. Experimental data
(squares and diamond) suggests that the dependence of
the balance energy on the combined mass, A, of the col-
liding nuclei follows a power law,

V. MASS DEPENDENCE OF THE BALANCE
ENERGY

150

TABLE I. Performed systematic calculations.

System
C+C
0+0

Ne+ Ne
Al +Al
Cl + Cl
Ca+ Ca
Zn+ Zn
Y+ Y

Ag +Ag
Eu+ Eu

Combined mass
24
32
40
54
74
96
132
178
214
302

Range of energies (MeV)
50 —240
50 —200
50 —200
50 —200
50 —200
50 —200
50 —150
45 —150
45 —150
40 —150

In this section we conduct a systematic study of EB 1

as a function of mass A. Table I gives an overview of the
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FIG. 7. Same as Fig. 6, but varying the in-medium cross
section according to Eq. (9) with nz defined in Eq. (10). For
all calculations, a soft equation of state was used. The lines
represent power-law fits to the calculations and data.
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where the exponent y has a numerical value of 0.33+0.04.
This power law dependence is reproduced by the theo-
retical calculations (triangles and circles correspond to
a soft and stifF EOS respectively) [20]. In the present
calculation, we have parametrized the nucleon-nucleon
cross sections in terms of a least squares fit to the exper-
imental data of Ref. [21]. The resulting values are some-
what different from the isospin averaged expressions used
at higher beam energies. In particular, cr„„g cr„, and
the cross sections are larger than the ones described in
Ref. [15]. This results in a shift of the balance energy to
lower values.

In Fig. 7, we investigate the dependence of the balance
energy on the value of the in-medium nucleon-nucleon
cross section, where we look for medium corrections be-
yond the effect of the Pauli principle on the outgoing
scattering states. In previous studies the free nucleon-
nucleon cross section was multiplied with an overall con-
stant scaling factor [3,7,22]. However, this approach fails
when one has collisions in low-density nuclear matter,
where the in-medium cross section should approach its
free-space value. A more realistic approach uses a Taylor
expansion of the in-medium cross section in the density
variable:

&xiv (V s p) = &~sr(V s, o) + p
8 o N tv (+s, p)

Bp

—
I
1+ c i —+ . .

I &AN (v s, 0)
p

)

p=0
+ ~ ~ ~

(g)

where we have introduced the dimensionless parameter
o.~, given by

~i = po ~ (» &~m(K~ p) ) (10)

In principle, ni is dependent on ~s, but we have here
as a first approximation —taken o.i as an energy-

independent constant. Figure 7 shows the mass depen-
dence of the calculated balance energy as a function of
different values of ni, where we have used a soft nu-
clear equation of state. It is clear that we obtain the
best overall agreement with the experimental data for a
value of o.i ———0.2, corresponding to a 20'Fo reduction
of the nucleon-nucleon cross section at p = po. How-
ever, the power-law exponent y from Eq. (8) depends on
the choice of ni, with cri ——0 (no medium modification)
yielding the best agreement (y = 0.38 6 0.05) with the
experimental value of y = 0.33. For o, q

———0.1 one ex-
tracts y = 0.42 + 0.03, and for o.i ———0.2 we obtain
y = 0.47 + 0.03. That y increases with ~crt~ is due to
the fact that at higher beam energies higher densities are
reached, and therefore the reduction of the in-medium
cross section is stronger for the lighter systems, which
have higher balance energies. This efFect may, however,
be at least partially compensated once one incorporates

a more realistic energy dependence of o.i.
Of course, the use of momentum-dependent mean fields

will also influence the balance energy. However, we find
that momentum-dependent mean fields give results that
are only weakly dependent on A. For example for carbon
on carbon we get a balance energy of about 60 to 80 MeV
and for La+La a value of 50 MeV. The La+La calculation
agrees well with the one published by Krofcheck et al. [1].
This shortcoming of the currently used parametrization
of the momentum dependence of the nuclear mean field
needs a separate detailed analysis and will be the subject
of future work.

VI. CONCLUSIONS

In conclusion, we have shown that in Vlasov and BUU
simulations reliable results for nuclear collective flow
must take into account the finite thickness of the nuclear
surface, a conclusion also reached by Koch et aL [16).
This is best done by giving the test particles a Gaus-
sian density profile, with a width that is larger than the
grid size used to obtain the density gradients. The value
of the nuclear surface thickness has a strong effect on
the balance energy. Therefore, more quantitative BUU
predictions have to not only take into account the equa-
tion of state and medium effects on the nucleon-nucleon
cross section, but also proper initial conditions in phase
space and impact parameter averaging. In addition, we
find that a realistic variation of the in-medium nucleon-
nucleon cross-section with density has a clear effect on
the mass dependence of the balance energy. We find the
best overall agreement with the experimental data for
ni ———0.2, where crt is defined in Eq. (10).

From our studies it seems apparent that one should
be able to extract the information on the nuclear com-
pressibility and information on the in-medium nucleon-
nucleon cross sections from a careful comparison of the
experimental mass dependence of the balance energy, i.e. ,
the zero in the nuclear collective flow excitation function,
to theoretical predictions. To accomplish this we have to,
however, obtain better parametrizations of the momen-
tum dependence of the nuclear mean field than the ones
in current use. This method of extraction of information
on the nuclear equation of state may then rival other
complimentary methods such as the investigation of the
monopole data [23] or astrophysical evidences [24, 25]
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