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Analytic expressions for the A energy in the lower nodeless A single particle states
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A A-nucleus single particle potential, mainly suitable for relatively light hypernuclei, which gives
analytic expressions for the A energies in the lower nodeless A orbits is used for an analysis of the
experimental data. The results are discussed and compared with those obtained, in the same way,
for a Woods-Saxon potential. It turns out that the analytic expressions for the B& energies, in the
region oF their validity, give results which are close to the experimental values and compare favorably
with the ones obtained with the (more realistic) Woods-Saxon hypernuclear potential. Our analysis
also shows a state dependence of the depth of the A-nucleus potential which, however, is rather
weak. Finally, the use of an effective A mass is also discussed.

PACS number(s): 21.80.+a

I. INTRODUCTION

The production of hypernuclei via the associated pro-
duction reaction (sr+, K+) has been shown to be a pow-
erful tool for hypernuclear research [1—5]. The (sr+, K+)
reaction offers the possibility of studying both light and
heavy hypernuclei and especially the deeply bound A
states since it is effective in populating such states be-
cause K+ is only weakly distorted in the nucleus. The
reaction mechanism has been extensively discussed by
Dover et at. [6] and later on by Bando and Motoba [7].
The practicality of this reaction was first demonstrated
at Brookhaven for the case of iA2C [8]. Recently the A en-
ergies in heavy nuclear systems have been measured by
means of this reaction with nuclear targets ranging from
sBe to s9Y [1,2]. More recently the A binding energies
and ground-state production cross sections for hypernu-
clei in this region were reported [9].

These new data enable us, for the first time in a rather
systematic way, to follow the evolution of the A binding
energies over an appreciable range of nuclear core mass
number and also in a number of cases provides us with
a complete set of bound and first unbound energy lev-
els for nodeless A orbits at fixed A. This outcome has
increased the interest for the derivation of analytic ex-
pressions which reproduce A binding energies in various
A states as function of the mass number A.

It is noted that a local hypernuclear potential of
Woods-Saxon form

D
&p A, (r) = — ~, R = re(A, )A,'~s

1+exp "

with a depth D = 28 MeV, a radius parameter of the
form re(A, ) = 1.128+0.439A, fm (A, being the mass
number of the core nucleus), and a fixed diffusivity a=
0.54 fm describes the data very well, though some density
dependence or nonlocality is necessary for a better fit
[10].

It is desirable, however, to have analytic expressions for
the A energy in various single particle states which offer

an easy and direct estimate and also give evidence about
the analytic dependence of the A energy on the mass
number. In this work the data are analyzed by means
of a two-parameter single particle hypernuclear potential
which has the advantage of giving rather simple analytic
expressions for the A energies in the lower nodeless A or-
bits. This potential model has recently been used for the
study of the mass number dependence of the oscillator
spacing hurA together with other related quantities [ll]
and also for an analysis of:- hypernuclei [12]. In Sec.
II the main features of the potential model are brieHy
described and the eigenvalue problem is given in general
form, since in [ll] we had restricted ourselves only to the
ground state. In Sec. III the proposed expressions for the
A energies are presented and discussed, while in Sec. IV
our numerical results with the proposed potential model
as well as the Woods-Saxon one are reported and com-
mented. In addition the role of the effective mA mass,
treated in an approximate way, is also discussed. Finally
in Sec. V our main results are summarized.

II. THE POTENTIAL MODEL

In our approach the A-nucleus interaction is approxi-
mated by a (spin-averaged) local A-nucleus potential of
the form

VA A(r) = —D/ chos—, (2)

where D ) 0 is the potential depth and R the distance
from the origin, at which the value of the potential well
becomes —0.42D. It is therefore a little larger than the
"half-depth" radius. This potential model which seems
to be suitable mainly for relatively light hypernuclei has
some worth-mentioning features: It approximates well
the harmonic oscillator potential for r &( B but unlike
this potential its range is 6nite. Its volume integral can
be obtained analytically and, because of this, we can ex-
press the radius parameter ro in terms of the volume in-
tegral of the A-nucleon potential ~Vhiv~ and of the depth
D by assuming the rigid-core model [13,14]. We have
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therefore

rp = —(3~V&&~/D) ', R=rpa.'/'. (3)

It is noted that in the ease of the square well the ex-
pression of r p in the relation R' = rp Ac is r p

X/3

(3(VA~ (/4' D)
We may note that potential (2) falls ofF exponentially

for large r, as does the usual Woods-Saxon one, but its
surface region is very extended. This fact makes it suit-
able for comparatively light hypernuclei, but it is less
appropriate for the heavy ones. The main advantage,
however, in using this potential is that the Schrodinger
eigenvalue problem can be solved analytically for states
with t = 0. The radial wave functions 4„p(r) = rR„p(r)

where y = cosh & . The parameter A is given by the
expression

A = — (1+8yDR /h ) —1 (5)

where p is the A-core reduced mass. The normalization
constant N„p is expressed in terms of the I' function (for
details see Appendix A) as follows:

are written by means of the Jacobi polynomials in the
following form:

1)1/2( + 1)
— P(~)( / — — / )

(4)

2 " I' (n + 1) I" (2A —n + 1/2) (2A —2n —1)
I'(n+ 3/2) I'(2A —n)

The corresponding energy eigenvalues are given by the expression

1 8pDR2 / 3i
2pR2 2 Q ( 2)

with n = 0, 1, 2, ... and n ~„(A —1/2.
Finally, another advantage in using the above potential model is the possibility of obtaining easily, as one should

expect, analytic expressions for the expectation values of the potential and kinetic energies of a A in its ground state
[ll]. Thus, one finds analytically the dependence of these quantities on A. The expression for the kinetic energy

(2A —1)(3A + 1/2)
2A(2A+ 1/2)(2A+ 1)

3dg —&/s 2(1 + d2/ —2/s) &/& (1 + d2/ —&/s) —&/2 10d2g —2/s (8)

is quite simple and particularly useful in deriving an ap-
proximate formula for the oscillator spacing ha~ by ap-
plying the virial theorem [11].The corresponding expres-
sion for the square well is [14,15)

vr'5'
(&g) = A / (rp - 1.1 —1.4 fm).

2ppo

This expression (or the improved one with higher-order
corrections [16]), however, is appropriate only for very
large A, since it ignores certain surface efFects, quite im-
portant in lighter systems, which are expected to give
rise to a term proportional to A, , as is the case with

-Z/3

expression (8).

III. EXPRESSIONS FOR THE A BINDING
ENERGY

I

where

d = (h'/ p8Dr )p

Expression (10) is a rather simple "semiempirical" for-
mula B~ = B~(A,) which reproduces the average trend
of the variation of BA with A, and which is obtained
from the corresponding energy eigenvalue equation with-
out additional approximation, apart from the assumption
that the parameters D and rp are independent of A, . It
is of course approximate and it should be clear that it
contains only part of a proper hypernuclear formula, as
is the case with other semiempirical formulae of this type
[14].

An expansion of (10) in powers of A, can be derived
[»1:

Using (7), the g.s. binding energy of the A may be
written in the form

/p —D y 6dog / +god /
52

(2A —1)
2p, R2

g + d2g —2/3
- 2

—3dA, /, (10)
with

mQ 4/3
Pal ~

(12)
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do=i
(8mpDro ) (13)

The first term dependent on A, is proportional to A,
and not to A, / as for the square well and the Woods-
Saxon potentials [14—21]. Such a behavior of B~ is ob-
served for the first time, to our knowledge, on the basis of
a potential model (with D and ro independent of A) [11].
This behavior should be attributed to the shape of the
potential which has an extended surface region. It is also
seen from (12) that the first four terms of the expansion
are independent of the nucleon mass.

It is interesting to note that a formula derived in anal-

ogy with the Weizsacker-Bethe mass formula for ordinary
nuclei has the following structure [22]:

was made to obtain under some very general considera-
tions a semiempirical formula, which also has a leading

—1/3term proportional to A,
It is interesting, however, to derive an analytic expres-

sion which will also include the A binding energy in states
with l $0. As potential (2) is not soluble for l $0, for
the derivation of such an expression some approximate
procedure is necessary. The idea is to approximate 1/r2
of the centrifugal term by 1/sinh r (see also [25]). This
works well for small values of &, but the most interest-
ing point is that now the eigenvalue problem is exactly
soluble. The expressions for the radial A wave functions
and the corresponding energy eigenvalues are now

@0 ( ) ~ ( 1)f/2+1/2( + 1)
—P~( )(l+1/2, —2A —1/2l

(15)
BA=D —FA (14) - 2

where D and I" are constants. Formula (14) has been ex-
trapolated by a straight line in the plot Bp versus A
to both A —+ oo and the observed low A region. It turns
out, however, that the validity of expression (14) is quite
limited [23]. Finally it is noted that in [24] an attempt

I

while the normalization constant is

(16)

2~" ' iI' (n + 1) I' (2A —n + 1/2) (2A —2n —l —1)
I' (n + l + 3/2) I' (2A —n —l)

(17)

(v„)„,= (e'„t lv~le'„, ) (18)

The difFerence 1/r2 —1/sinh r is then treated as pertur-
bation using the unperturbed wave functions 4„&(r),

which gives

B~ ———E~(t) (t)

2pB2
[2A —(l + 1)]'

&oi = &ot —(V)oi, (22)

h'l(l+1) t'1
2@&' &*' sinh'z) ' R

However, matrix elements of the above form cannot be
calculated in closed form. In view of this, the above
difference is expanded as follows:

-2 —j-—(sinhx) = —(cosh2:) / + ) b~. (tanhx) ~.
j=2

(20)

Then, keeping the first term of the expansion, which is
sufficient to yield stable results (see also [25]), we proceed
to the calculation of the matrix elements as described in
Appendix B. In the case we are interested in (n = 0 and
l QO) we obtain

5'l(l + 1) I' (2A+ 1/2) I' (2A —l —4/5)
6pR2 I' (2A —l —1) I' (2A + 7/10)

(21)

Then the expression for the A energy to erst order is

l(l + 1)I'(2A + 0.5)I'(2A —l —0.8)
3I'(2A + 0.7)I'(2A —l —1)

(23)

For l = 0 we regain expression (10). For the higher states
(n g 0, l g 0) the corresponding expressions become
more complicated.

Our numerical results show that the approximate ex-
pression (23) works very well: The values obtained with
(23) difFer from the numerically calculated A energy
eigenvalues, on the average, less than 1% and therefore
(23) may be used instead of treating the eigenvalue prob-
lem numerically.

IV. NUMERICAL RESULTS AND COMMENTS

Here, we report the results using the expressions
given above and also by numerical integration of the
Schrodinger equation for the Woods-Saxon potential. For
the determination of D and ro of potential (2) we tried
two possibilities. First, using (10) we performed a least
squares fit [analogous to that discussed by Bodmer and
Rote for the ground state BA for the square well poten-
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TABLE I. The s, p, and d A energies for potential (2) for various hypernuclei. The values in
parentheses are for the parameters obtained from the fit to the ground state BA only.

12C
16~
28S.
32S

Ca
51@
56F
89Y
138B
208Pb

Bexpt
1s

10.75
12.50
16.0
17.5
18.70
19.90
21.0
22.1

B1s
(10.73) 10.90
(12.70) 12.89
(16.13) 16.35
(17.04) 17.05
(18.18) 18.17
(19.26) 19.30
(19.70) 19.70
(21.74) 21.61
(23.44) 23.04
(24.86) 24.50

Bexpt
1p

2.5
7.0
8.0
10.5
12.0

16.0

Bag

(2.35) 2.93
(6.74) 7.02
(7.64) 7.92
(8.97) 9.60

(10.50) 11.05
(10.88) 11.70
(14.01) 14.23
(16.40) 16.60
(18.30) 18.60

Bexpt
1d

40

9.5

(4.0) 4.11
(4.15) 4.80
(7.2) 7.9

(10.30) 10.70
(13.01) 13.16

tial [17,18] (see also [26])] to the experimental ground
state BA for 12 & A & 89, reported recently by the
Brookhaven group [9]. The best fit values are D = 35.56
MeV, rp= 1.075 fm. Next, using expression (23), we per-
formed a global fit including also the available p and d
state A energies obtained from the (m+, K+) data. The
pA and dA energies were those from the figures of Refs.
[1,2, 10]. As experimental errors for these we used those
in [10]. The best fit values are D = 34.31 MeV, rp=l 144.
fm. In both cases the best fit values lead to a shallower
but a little wider potential well, compared with those of
an earlier study [11] where, however, experimental data
for the ground state BA from older experiments with less
accuracy had been used. The depth in the second fit is
slightly smaller, the relative diference being 3.5'Po, while
the range is a little longer. In Table I the B~ values in
the s, p, and d states are displayed for hypernuclei cov-

I

ering for the sake of comparison a wide range of A. The
available experimental BA values are also shown. The sA
energy of sAsFe also obtained from the (7r+, K+) reaction
is rather preliminary [27]. The values in parentheses cor-
respond to the first fit, i.e. , to the parameters from the
fit to only the sp energies. In Fig. 1 the A energies in
the s, p, and d states, calculated with (23) (global fit),
are plotted against A, / together with the experimental
values, in which the sp and pA energies of sAS, observed
in the (K, 7r ) reaction [28] are also included.

We also repeated the same procedure for the Woods-
Saxon potential, where the Schrodinger equation is solved
numerically. To improve the fit, instead of using R =
rpA, , a more complicated expression, as in [21], is used

for the radius of the potential [R = rp(A)A, ] in whichI/3

rp is A dependent:

) 6- 1/2 i/3 - ( ) 6- 1/2 i/s)
ro(A ) =,/

ro 1+ 1+— + 1 — 1+—
(rp c ) 27 (roAc/ ) )

(24)

This expression is obtained in the framework of the fold-
ing model and for a Woods-Saxon potential holds pro-
vided that e +/~ (( 1, except for the light hypernuclei
[29]. The best fit values are as follows: ls state D = 26.16
MeV, rp= 1.255 fm and a= 0.38 fm; global fit D = 26.84
MeV, rp 1.21, and a= ——0.38 fm. It is again seen that
there is a small difference of about 2.5/0 between the two
depths. In Table II the Bp values in the s, p, and d
states for the Woods-Saxon potential are shown for the
same A, as in Table I.

It is seen from Table I that the ls A energies in both
cases are very close and agree well with the experimental
BA. For the other states the results of the second fit are
slightly better for both potentials. However, as A, in-
creases the agreement (apart from sA energies) becomes
worse especially for A 50. In addition the comparison
of the results for potential (2) and the more realistic (for
A 16) Woods-Saxon potential (Table II) shows that the
values of E~, obtained with these two potentials agree
fairly well for 16 A 208. For A 12 the various

I

expressions obtained with our model are not expected to
be reliable enough because their D and rp should depend
rather strongly on A. Thus, and in view of the comments
made above, formula (10) for the ground state Bp seems
to be rather accurate almost throughout most of the Pe-
riodic Table (12 A. ~ 208). This is interesting, because
the relevant formula (apart from its simplicity) is valid
for both light and heavy hypernuclei, contrary to those
of Walecka type [14—20] which are more appropriate for
the heavier systems and those potentials which are valid
only for light hypernuclei [22,30—32].

On the other hand, the two potentials do not compare
well for the other nodeless A single particle states for

A 50. Therefore, expression (23) does not seem appro-
priate for heavier hypernuclei. This should be attributed
to the shape of potential (2) which, though it falls off ex-
ponentially, as the Woods-Saxon potential is not so "Bat"
with the appearance of an extended rather "unrealistic"
surface compared with the Woods-Saxon potential, which

is well established as a fair discription for A 16. Thus,
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FIG. 1. The observed A single particle binding energies
and the theoretical values obtained from expression (23).

the large surface thickness does not have a serious efFect
on the ground state energies even for large A, but afFects
more the A energies in the other single particle states as
A increases.

We also fitted the pA energies with both potentials us-
ing data for 16 & A & 89. Our results show that the
depths are a little different from the ones obtained using
the sA energies. The relative difFerences are 7.5% and
12%%uo respectively. The calculated p state energies repro-
duce very well all the experimental Bp for both poten-
tials, also the Ei„energies calculated with potential (2)
and the Woods-Saxon potential are very close throughout
the Periodic Table. However, in this case the A energies
in the s and d states are not reproduced well.

The above analysis of the data indicates that there is
a state dependence of the potential which is rather weak.
This is in accordance with a recent study [29].

The state dependence of the depth is more apparent
for potential (2), and a similar comment could be made
for a square well potential [29]. This could be explained
by the fact that the above potentials are not suitable for
all A. However, potential (2) gives a more satisfactory
description of the lighter hypernuclei (A 18) than the
Woods-Saxon potential. For the latter our analysis shows

that an excellent fit is obtained if data in the s, p, and d
states with A & 28 are used. The parameters in this case
are D = 27.25 MeV, re= 1.189, a= 0.4 fm. This fit also
reproduces rather well the fA energy in &Y (Eif = 2.80
MeV, Eig 2.5 MeV). One should keep in mind, how-
ever, the limited number of the data and their relatively
large errors. More data, especially for heavier elements,
with much better precision (expected to be accomplished
at PILAC [33,34]) will determine more accurately the
depth and the range of the A-nucleus potential.

Finally, though our analysis is purely phenomenologi-
cal, we also considered approximately an efFective A mass
m& g mA. This problem has been discussed in [10] (see
also [35,36]) by employing density-dependent and nonlo-
cal A-nucleus potentials by means of the Skyrme-Hartree-
Fock approximation. Such an approach overcomes the
limitation of a local A-nucleus potential which cannot
satisfactorily 6t simultaneously light and heavy hyper-
nuclei. These studies indicate that the data are better
described for m&/mp —0.8.

We ignore for the sake of simplicity the density depen-
dence of mA and treat mA as a free parameter. Thus we
repeated our fitting procedures but varying the A mass.
For potentials (2), as one should expect, using mz & mA
does not inHuence the results. The reason is that, as seen
from expressions (10)—(13), the use of mA leads to an in-
crease of the range of the potential but the product m~ros
remains constant, while the depth of the well is practi-
cally the same. This is also confirmed by our numerical
calculations in all cases we examined. On the other hand,
for the Woods-Saxon potential our calculations show that
mA (0.85 —0.9)mA does somewhat improve our fit. We
note that in [21] and for this potential there is an anal-
ogous expansion [formula (13)] in powers of A for the
ground state BA. It is seen from this expression that
apart from the leading term (which corresponds also to
the case of an infinite square well), where the quantity
mpro enters, the other terms contain additional contri-
bution from mA and perhaps this explains the observed
small improvement in the fits. However, such a treatment
is rather crude, since the density dependence is ignored
and this should be taken into account in assessing these
results.

TABLE II. The s, p, and d A energies for the Woods-Saxon potential for various hypernuclei.
The values in parentheses correspond to the 6t for the ground state B'~.

12C
16O
"si
32S

C
51~
56F
89Y

A
138Ba
208Pb

Bexpt
1a

10.75
12.50
16.0
].7.50
18.70
19.90
(21.0)
22.1

Bl,
(9.92) 9.60

(12.33) 12.10
(16.21) 16.19
(16.98) 17.05
18.15 (18.25)
(19.26) 19.43
(19.65) 19.85
(21.28) 21.61
(22.46) 22.89
(23.31) 23.80

Bexpt
1~

2.5
7.0
8.0
10.5
12.0

16.0

(1.69) 1.20
(6.85) 7.36
(8.66) 8.18

(10.66) 10.30
(12.66) 12.41
(13.378) 13.16
(16.44) 16.42
(18.73) 18.86
(20.40) 20.65

Bexpt
1cj

4.0

9.50

(5.05) 4.39
(6.06) 5.44

(10.63) 10.20
(14.16) 13.98
(16.81) 16.80
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V. SUMMARY ACKNOWLEDGMENTS

In conclusion, a two-parameter A-nucleus potential
which, in general, is rather suitable for relatively light
hypernuclei and leads to analytic expressions for the A
energy in various A orbits has been used for an analy-
sis of the experimental (7r+, K+) data. Our A energies,
which have the leading term of their expansion in pow-

ers of A, to be proportional to A, / (due to "surface
effects" introduced by the potential model), give results
which are close to the experimental values and compare
favorably with the ones obtained with the more realis-
tic Woods-Saxon potential in the region of their valid-
ity. The proposed expressions are relatively simple and
therefore may easily be used. Our analysis also shows a
very weak state dependence of the depth of the A-nucleus
potential. Finally treating the A mass as a free param-
eter, though we cannot make a firm conclusion, the use
of an effective A mass (m& ( m~) does not influence the
results for potential (2), while for the Woods-Saxon it
slightly improves the fit.
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APPENDIX A

For the calculation of the normalization constant N„o
(the procedure is the same for N„i) it is necessary to
calculate the following integral J:

(y I)1/2( + I)-2A-1/2[P(y)('/ —"-'/ ) ~2dy

The integral J can be expressed in closed form by ex-
ploiting the properties of the Jacobi polynomials (see
[37]). Thus, using the orthogonality property of the Ja-
cobi polynomials expression (Al) takes the form

l (1/2, —2A —1/2)
( 1)1/2( + 1)

—2A —1/2P( )(1/2, —2A —1/2)
( 2)

where l„„' is the coefficient of y" in P(y)„' . Then using the Rodrigues formula [38], we obtain(11'2,—2A —1/2) ~ ~ ~ (1/2, —2A —1/2)

&nn

(y 1 )A+1/2(y + 1)A 2A 1/2dy

y"
I

—
~ ((y —1)"+' '(y+1)" ' ' ')dy.

„(di"
(A3)

2 A. 1 (dy)
Next integrating by parts n times we get the following form:

( 1)~2-2~ (» + )
(A4)I (n+ I)r(n —2A+1),

The integral in (A4) can be obtained analytically (see [39]) and therefore (Al) after simple algebra is finally written

1 I (2n —2A + 1)I'(2A —2n + 1)I'(n + 3/2)
I'(n+ 1)l'(n —2A + 1)1'(2A —n + 1/2)

APPENDIX B

Using the properties of the Jaccobi polynomials [37,38,40] the calculation of the matrix elements of expression (18)
using (19) and (20) is reduced to the calculation of the following integral:

(y I)l+1/2(y + 1)
—2A —7/10) [P(y)(&+1/2, —2A —1/2) i2gy

Following Miller [40] we expand the polynomials in (Bl) in a finite basis of Jacobi polynomials of the form

P(y)( / ' / ), namely,

P( )(1/2, —2A —1/2) ) ~(A)nP( )(1/2, —2A —7/10)

k=o

where the coefficients C(A)& may be expressed in terms of gamma functions (see formula (3.3) of [40]):

(2k + l —2A + 0.8) I'(—4A —0.2)
(n —k)1 r(-n —4A —0.2)

I'(n + k + l —2A + l)I'(k + l —2A + 0.8)I'(n + l + 1.5)
I'(n+ l —2A+ l)I (k+ l + 1.5)I'(n+ k+ l —2A+ 1.8)

Thus we have now to calculate instead of integral (Bl) the following quantity:

(B2)

(B3)
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) I&(&)"I'
k=o

(y I)l+1/2( + 1)
—2A —7/10]P( )(i+1/2, —2~ —7/10) [$dy (B4)

The last integral, however, is the same as the one calculated in Appendix A.
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