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Phase shift analysis of 7r+- He elastic scattering
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An energy-dependent phase shift analysis of 7r+- He elastic scattering data up to an energy
T = 260 MeV was carried out. Using a careful treatment of Coulomb effects to describe the
Coulomb nuclear interference we reexamined the constraints to the 7r- He forward scattering ampli-
tude fo by dispersion relations. This allows a stringent consistency check of the data. A satisfactory
description of the data could only be achieved assuming large error bars of the total cross section
measurements and allowing normalization factors for the differential cross section data.

PACS number(s): 25.80.Dj

I. INTRODUCTION

The vr- He system is one of the simplest pion nucleus
systems and therefore very important for the test of pion
nuclear scattering models. Several angular distributions
of the vr- He elastic cross section have been measured
by different groups [1—6] in the energy region from T
= 24 to 260 MeV. From measurements of the differen-
tial cross section at forward angles one can extract the
real part of the forward nuclear scattering amplitude fo,
using Coulomb-nuclear interference. This was done by
Binon et al. [5] and in a more sophisticated way, but
with essentially the same results, by Das and Deo [7].

Several groups [8—10] have made dispersion relation
analyses to calculate the real part of the forward scatter-
ing amplitude of this reaction starting from total cross
section measurements. The cross section in this energy
region is dominated by the L33 vr-nucleon resonance at
T = 180 MeV, close to which the real part of the for-
ward amplitude goes through zero. It shows a maxi-
mum at T —100 MeV and a minimum at T = 300
MeV. It was found that there exist discrepancies between
dispersion relation calculations and measurements of the
real part of the forward scattering amplitude at energies
above the resonance, especially at T = 260 MeV, with
Refo(measured) ) Re fo(calculated).

Recently, new data from vr- He elastic cross sections
measurements at Los Alamos became available [11]span-
ning the energy range from T = 90 to 240 MeV and an
angle range from 10 to 170'. Both sr+ and m data were
taken with much reduced error bars in the large angle re-
gion, where the cross sections are small. Previously high
quality data only existed for 7t — He differential cross sec-
tions at forward angles [5]. The availability of both vr+

and vr differential cross section data allows a better de-
termination of Refo In a first anal.ysis [11] it was found
that Refo(measured) ( Refo(calculated) for energies be-
low the resonance. However, in that analysis Coulomb
effects were treated very roughly.

The disagreement with dispersion relation predictions
is either due to inconsistencies in the existing data set, or

must have its origin in a wrong description of Coulomb or
other charge symmetry breaking effects, that contribute
to the difference of cross sections for sr+ and 7r scatter-
ing.

The origin of the problems can be investigated best
in a phase shift analysis, that includes careful treatment
of Coulomb effects and the dispersion relation. Such an
analysis was made by Nichitiu et al. [12] before the Los
Alamos data were available. They were able to find a
solution without the disagreement at T = 260 MeV.
However, in this solution, the slope of Imfo near thresh-
old was incompatible with mesic atom data [13]. So, the
problem was not solved, but only shifted.

We therefore made a phase shift analysis including the
new data, along the line of earlier work on vr+- C [14],
7r+-isO [15], and n+-4oCa [16]. In the analysis we used
the forward dispersion relation as described by Pilkuhn
et al. [13] to obtain the real part of the forward scat-
tering amplitude from the imaginary part. In the fol-
lowing we give a short description of the formalism used
to treat Coulomb effects (Sec. II) and the dispersion re-
lation (Sec. III), before we compare the result of our
analysis with the data (Sec. IV) and discuss remaining
discrepancies (Sec. V).

II. COULOMB CORRECTIONS

The elastic differential cross section of m+- He scatter-
ing is described by

do+/dO = if,+,
i

.

The total amplitude f~+t consists of a sum of three parts

fh is the pure hadronic amplitude, f& the pure Coulomb
amplitude, and f& represents the Coulomb corrections
which take into account the modifications of the pure
hadronic force by Coulomb efFects [17]. f& can be split
into the part f&~ '", where the pion and the He nu-
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cleus are treated as pointlike particles and fP +, which
represents the contribution from the charge extension of
vr+ and He to the Coulomb amplitude:

cu&
&

——n&+ (dpi„ i/dk + cos 28h, i sinh 2wh i/2k) .

(14)

f+ fpoint+ + fext+
C C C (3)

where

(p) '9 —ip in sin ( s O)+2iu&&

2k sin (20)

(6)

fP + is calculated numerically with the He form factor
F of Germond and Wilkin [18] and the pion form factor
F of Frosch [19] from the Klein-Gordon equation [14].

The difFerential cross section at very forward scatter-
ing angles is sensitive to relativistic eBects in the point
Coulomb amplitude. Therefore we use the very accurate
formula [20, 21]

fPnint f(P)+ f(1)+Qf(i)

With the Coulomb factors

2m„zo.k
Ai

oc) kf 2

x P dk'
k2 —k'

Pi (x)F (q') F (q')
2

q

where m is the pion mass and q is the transferred
momentum. As not only the hadronic phases bg ~ and
wh i but also their derivatives d/dkh ii and d/dkw~ i are
needed for the calculation of the cross section, this for-
malism can only be used in an energy-dependent analysis.

III. DISPERSION RELATION

For the crossing symmetric hadronic amplitude fi, the
once subtracted dispersion relation reads

Ref h( k, t = 0) = Refg (m ) + ) 2~; f2k

(d d(d 1m',
k&2 ~&2 ~2 ~ (16)

I,=O

) (2l+1) (e'*" —." ) P, .
1

2ik
1,=0

rl is the Sommerfeld parameter, p = [(l + ~)2 —z2a2]i~z
with z = 2 and ct = 1/137. a is given by

(8)

(9)

where l is either —1/2 or l.
The fact that negative pions are accelerated towards

the nucleus while positive pions are slowed down changes
not only the momentum of the pions but also their im-
pact parameter. This is taken into account with the last
contribution fR to Eq. (2). After a partial wave decom-
position, the amplitude ft+t can be expressed in terms of
real and imaginary phase shifts b+ and ~+:

Re fh (k, t = 0) = ReAp — w, trf,~ (18)

M deed Imfh —Imi fh
k (d —Cd

where fh (m ) = Ap —— (—0.138 + 0.045i) fm [22] is
the complex scattering length at T = 0 Mel/' and the
pole sum represents the contribution from excited nu-
clear states. The lower limit of the integrand is the nu-
cleon emission threshold w . For the threshold expansion
of Im fh, we follow the procedure of Pilkuhn et al. [13]and
divide it into three pieces

Imfh = Imp fh, + Imiifh, + Im, ifh, ,

where Imi fg comes from pion absorption on one nucleon,
Imii fh from two or more nucleon absorption, and Im, i fi,
from elastic n-nuclear scattering. As Imifh is negligible
throughout the physical region, it is sufhcient to com-
bine the dispersion integral over it with the poles into a
single effective pole f,&/(w —u2&). Assuming moreover
cu2~ ((~2, k2 = —m2 we obtain

y+ 2*(d;„, , + . . .) y)tot, l (10)

with

R, / tot, l (12)

4&
&

——
&i& (dbh i/dk+ sin28h, i cosh2tvp„ i/2k), (13)

We calculate the Coulomb corrections in terms of these
phase shifts [14]

where the lower limit for the integration is now the He
binding energy u = 28.3 MeV, which we prefer to use
instead of twice the neutron emission threshold used by
Pilkuhn et al. [13]. The magnitude of the effective pole is
not well determined theoretically, but its contribution to
Re fp is believed to be small. Values of w, g f ~& ——0 to —6.4
MeV have been used before [9, 13, 23]. We determined
tv tr f ~& by a fit to the data and also investigated the effect
of changing this parameter on the different data sets (see
Sec. V).

To estimate the contribution of the integral close to
threshold we use the threshold expansion [13]
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with

Ap+ k Bp
1 —ik(AO + k2BO) 1/Ag —iks (19)

B,= —0.18 fm',

Aq ——(0.42 + 0.06i) fm .

Because the dominating contribution to the scattering
amplitude at threshold comes from two nucleon absorp-
tion, we multiply fth„» with the approximate phase
space factor for this reaction to obtain

Imfh, —Imps, = "" Imfth„».
m~ —v~~

(20)

This threshold expansion is used up to an energy of T
= 20 MeV where inelastic vr- He scattering starts to con-
tribute.

IV. THE HADRONIC AMPLITUDE

The general features of the angular distribution of the
differential cross sections of vr- He scattering up to an
energy of T = 260 MeV can be well described by an
exponential decrease from the cross section at 0 = 0
and one or two minima at larger angles. Therefore an
often used ansatz for the description of the pure hadronic
amplitude is

f„(k,t) = f, (k)e ("i' [1 —t/t, (k)]

with t = —2k2(1 —cos 8), where k and 8 are the c.m.
momentum and scattering angle, respectively. The form
contains B, a real function of k, and three complex func-
tions of k, namely the forward scattering amplitude fo
and t;, that describe the cross section near the first and
possible second minimum. For the energies discussed
here, a possible third zero would be located beyond. the
backward direction in the unphysical region and only af-
fect the slope, but cannot give more structure for the fit.
To be able to use this ansatz together with the Coulomb
corrections described in the previous section, a Legen-
dre decomposition of the hadronic amplitude is made to
obtain the hadronic phases.

An advantage of this ansatz is the explicit occurrence
of fo as a parameter. This allows a simple algorithm to
include the forward dispersion relation to calculate Re f0
from Imf0. This way the constraints given by dispersion
relation and unitarity are satisfied and we do not rely on
separate measurements of the real and imaginary part of
the forward scattering amplitude.

Analytic expressions for B, Imfo, and t, were chosen
to describe the energy dependence of the hadronic am-
plitude. The expression for Imfo was required to join
smoothly to values for Im fo obtained from total cross sec-
tion data of Chavanon et al. [24], which span an energy
range from T = 465 to 1160 MeV. For higher energies,
the parametrization [23, 9]

f =) X tt +) Xtlnt (23)

is used with 0 = 0.071 b and B~ = 4.79 MeVb . This
formula reproduces well the total cross section measured
for k = 3.48 GeV/c and 6.13 GeV/c [25], k = 7.76 GeV/c
[26], and k = 40.4 GeV/c [27]. In contrast, differential
cross sections measured at k = 5 GeV/c [28] give a for-
ward scattering amplitude about a factor of 2 too low
when extrapolated to 0 = O'. As there are also prob-
lems to reproduce the forward part of this angular dis-
tribution by theoretical calculations [28, 29], we believe
that there is a normalization problem at least with part
of these data. Total cross sections measured for energies
above 40 GeV show a slight increase [30] with energy.
Using a logarithmic increase of the cross section to re-
produce these data changes the results of the dispersion
calculations by less than 0.001 fm for the real part of the
forward scattering amplitude at energies below 300 MeV
(see Fig. 2).

To determine the coefFicients of the expressions for B,
t, , and Imfo, we used difFerential cross section measure-
ments from Nordberg and Kinsey [1] at T = 24 MeV,
Fournier et aL [6] at T = 25 and 51 MeV, Block et al. [2]
at T = 51—68 MeV, Crowe et at [3] at .T = 51—75 MeV,
Brinkmoller et al. [11] at T = 90—240 MeV, and Binon
et aL [5] at T = 110—260 MeV. In the energy region
from 260 to 465 MeV there exist only the measurements
of the elastic cross section by Boswell et aL [31], which
are not complete enough to be used in a phase shift anal-
ysis. Therefore Imfo is only determined by interpolation
in this energy interval. Assuming a smooth interpolation
from 260 to 465 MeV only little freedom is left. Even
when using rather large or small values for Imfo in this
energy interval no significant improvement of the descrip-
tion at T = 240 and 260 MeV can be obtained.

We also used total cross section data from Block et
al. [2] at T = 51—68 MeV, Johnson[32] at T = 51—105
MeV, Binon et aL [5] at T = 110 MeV, and Wilkin et
aL [8] at T = 110—262 MeV. There are large system-
atic uncertainties due to Coulomb corrections, and the
discrepancies between data taken by different groups ex-
ceed the quoted error bars by far. Therefore, we only
included data from groups that measured both 7t+ and
vr cross sections and. used the average of this. By this
we made sure that at least to first order differences in the
treatment of Coulomb effects used for the extraction of
the total nuclear cross sections cancel. Furthermore we
assumed a 10% error for all these measurements indepen-
dent from the quoted errors. The absolute normalization
of the differential cross section data sets was treated on
the same basis as the total cross section data, assuming
also a 10% error.

As the number of data points for energies above 90
MeV by far exceeds the number of data points at lower
energies, we did not minimize the overall y, but calcu-
lated y per number of data points individually for each
energy where data exist. We then minimized the function

tot oo + B
(22)

where n is the number of energies where differential elas-
tic scattering data exist and nq is the number of total
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TABLE I. Normalization factors and y per number of
data points (N&„) obtained in our energy-dependent analysis.
The value in brackets for g /¹„was obtained when keeping
all normalization factors equal to 1.

300-

250-

I I 1 I I

T (MeV)

24.1
25.1
51.0
51.0
51.0
58.0
60.0
65.0
68.0
75.0
90.0

110.0
110.0
130.0
150.0
150.0
180.0
180.0
220.0
240.0
260.0

Reference

[11

[6]
[6)
[3]
[2]
[2]
[3]
[2]
[3]

[11]
[11]
[5]
[11]
[11]
[5]
[11]
[5]
[5]

[11)
[5)

Ng„

15
12
18
30
18
18
30
18
30
30
81

134
64

143
211

30
230

59
27

193
61

norm.

0.94
1.05
1.05
1.04
0.83
0.85
1.13
0.?8
1.22
1.20
0.94
0.93
1.07
0.93
0.93
0.98
0.98
1.03
0.98
1.16
0.98

y /Nsi,

1.28 ( 1.60)
1.63 ( 2.62)
8.55 (11.10)
2.32 ( 4.58)
0.86 ( 3.55)
1.25 ( 5.21)
7.20 ( 8.42)
2.25 ( 7.86)
2.10 ( 5.92)
4.55 (11.29)
1.28 ( 4.80)
2.04 ( 4.86)
2.37 ( 2.36)
0.89 ( 2.51)
1.43 ( 2.24)
2.01 ( 1.87)
1.57 ( 1.56)
5.62 ( 7.54)
2.53 ( 2.51)
2.71 ( 6.13)
3.61 (10.19)

cross section measurements plus the number of difI'eren-
tial cross section data sets. y is the y per number of
data points for the difI'erential cross section data and y,
is the y from the total cross section data and the abso-
lute normalization of the difI'erential cross section data.
For the minimization we used the computer code MINUIT

[33]. With the coefficients of the expressions for Imfo,
B, t, , and w, e f,& we had 27 parameters to fft 15 data
points for the total cross section and 1448 data points for
difI'erential cross sections in 21 difFerent data sets.

Table I shows the normalization factors used for the
difFerent data sets and the obtained y . In Fig. 1 the

g 200-

(mb)

1 00-

50-

Re f

(fm)

0

10' 10 103 10

T (MeV)

1O'

FIG. 2. The upper part shows the total cross section ob-
tained from the fit. The data are from Block et al. [2], John-
son [32], Binon et al. [5], Wilkin et al. [8], Chavanon et al.
[24], and Burq et aL [30]. The lower part shows the real
part of the forward scattering amplitude obtained from this
by dispersion relation. The inBuence of a logarithmic increase
in the total cross section to fit the data of Burq et al. (dashed
curve) is only noticeable for energies above 1 GeV. So it was
not used in this analysis.

angular distributions obtained by the fit are compared
to the data. Table II shows the total cross section mea-
surements used together with total cross sections from
the fit. Figure 2 shows the fit to the total cross section
data and Re fo that is calculated from it with the help of

TABLE II. Total and total elastic cross sections from the analysis. The total cross sections are
compared to measurements of different groups. The experimental result is in each case the average
of the measured 7r+ and 7r total cross sections.

T (Me V) Reference o, , (exp. ) a, , (fit) cr, ) (fit)

51.0
51.0
58.0
61.0
65.0
75.0
85.0
95.0

105.0
110.0
110.0
146.0
189.0
225.0
262.0

[2]
[32]

[32]

[32]
[32]
[32]
[32]

[8]
[8]
[8)

[8)

85.2
110.5
94.7

106.8
117.2
143.2
156.2
185.7
205.5
227.2
256.0
336.0
322.0
274.0
226.0

2.9
+ 4.3
+ 2.7
+ 4.3
+ 3.6
+ 5.2
+ 4.5
+ 4.5

4.2
+ 1.4
1 2.0
+ 1.0

1.0
1.0

+ 1.0

81.2
81.2
94.1

100.3
109.0
133.3
159.9
187.4
214.2
227.0
227.0
293.4
300.8
264.5
215.3

29.6
29.6
36.5
39.7
44.0
54.9
65.2
74.6
83.0
87.2
87.2

105.0
109.0
98.9
82.0
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the dispersion relation. As can be seen from Figs. 3—5
the variation with energy of the slope parameter B and
of t,, is very smooth. The general behavior of the param-
eters is very similar to that found by Binon et al. [5].
However, we use a diferent sign convention for t, and for
Imtq we prefer a solution with a change of sign at about
T„=225 MeV.

In the fit we obtained a value of u, ~f~& ———6 MeV,
which is within the range of values obtained before. How-
ever, this result depends strongly on the way the weight
of the total cross section data is chosen in the fit. So we
cannot claim to be able to determine the contribution of
the pole term accurately.

V. DISCVSSION OF RESULTS

FIG. 3. The slope parameter B as a function of pion ki-
netic energy.
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For energies where both m+ and vr have been mea-
sured, we can compare our solution to experimental re-

sults for the charge asymmetry A = + (Fig. 6).
The agreement with the data is very good. Larger dis-
crepancies only exist for the forward angle data at T
110 Mev, which are discussed below. We conclude that
our treatment of Coulomb efFects as the only origin of
charge symmetry breaking is adequate. A similar con-
clusion was already drawn by Khankhasayev et al. [34]
using data below the A33 resonance only. Here we can
show the nice agreement obtained also for resonance en-
ergies (T = 180 MeV) in the minimum of the angular
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FIG. 4. The real part of the first (solid line) and second
(dashed line) zero of the hadronic amplitude as a function of
pion kinetic energy.
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FIG. 5. The imaginary part of the first (solid line) and sec-
ond (dashed line) zero of the hadronic amplitude as a function
of pion kinetic energy.
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FIG. 6. The charge asymmetry A = + for various
energies. With the exception of T = 110 MeV a reasonable
description of the data is achieved. Unfortunately there exist
no measurements close to the maximum of A at forward angles
below an energy of T = 110 MeV.
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distribution. This is in contrast to the preliminary result
of Brinkmoller et al. [11],who obtained the wrong sign
for A at this energy and angle.

In the preliminary analysis the real parts of the nu-
clear phases b» and the absorption coefBcients g» were
used as fi.t parameters. In several calculations we checked
whether the differences to this preliminary analysis were
due to the different treatment of Coulomb effects or to
differences in the parametrization of the nuclear ampli-
tude. Using g» and b» as fit parameters and our treatment
of Coulomb corrections in an energy-dependent analysis
over a limited energy interval we could improve the over-
all y with respect to the results obtained by Brinkmoller
et al. and obtained. the measured sign of A at T = 180
MeV. This shows the importance of a good description
of the Coulomb part.

We also obtained a better y than for the results pre-
sented here. This is due on one side to the increased
number of parameters that lead to a better description
of the large angle region at higher energies. On the other
side, the results obtained using g» and b» do not satisfy
the dispersion relation, which constrains our forward an-
gle scattering amplitude.

Therefore we think that, in spite of the unsatisfactory
obtained in our analysis, it is a good basis to discuss

possible inconsistencies in the existing data. For each
data set we examined the reason for possible deviations
from the fit and investigated how a better description of
a particular data set would affect the rest of the data.

For the lowest energies the forward angle cross sections
for vr — He at T = 51 MeV measured by Crowe et al.
[3] and by Fournier et al. [6] are incompatible with each
other. Our solution follows the data of Crowe et al. To
fit the data of Fournier et al. one needs a larger value
for Refo, which can be obtained by choosing ur, g f~& ——

—25 MeV. In the fit this leads to a reduction of Imfo
and therefore to discrepancies with the total cross sec-
tion data of Block et aL [2] and of Johnson [32]. How-
ever, as can be seen from Table I, the normalization fac-
tors needed for the differential cross section measured by
Block et al. are well below 1. It is quite likely that the
same normalization factors have to be applied to the to-
tal cross section data, which would lead to a reduction
of 20%. So, from the low energy data alone a solu-
tion with lower total cross section cannot be ruled out.
However, a value of ur, ~f,&

———25 MeV would also in-
crease problems in the description of sr+- He data at T
= 110 MeV, so that more evidence speaks in favor of the
solution given here.

Although the y for the data sets at T = 60 and 75
MeV of Crowe et al. [3] is very large, we could not find
any systematic error that could explain this. Even in a
fit to their data alone the y per data point could not
be improved considerably, so we suppose that the quoted
error bars are smaller than they should be.

At energies of T = 180 MeV and above, major con-
tributions to y come from the large angle data points.
Here one can see that the parametrization chosen by us
is not sufhcient any more to describe finer details of the
structure at large angles. However, as we are mainly
interested in a consistent description of the forward scat-

tering amplitude and there are still more severe discrep-
ancies within the data, we do not think it necessary to
change to another parametrization at this point.

A considerable uncertainty arises from the normaliza-
tion factors. We already mentioned the inconsistencies
between different data sets at low energies. There also is
a major difFerence in the normalization factor of Crowe
et al. [3] at T„=75 MeV and of Brinkmoller et al. [11]
at T = 90 MeV. At resonance energies the normaliza-
tion of the data of Brinkmoller et al. and of Binon et
al. [5] are consistent with each other at forward angles.
However, the data of Binon et al. tend to be below the
data of Brinkmoller et al. at large angles, which results
in a slightly larger normalization factor in the fit. Above
the resonance there is again a large difFerence in the nor-
malization factors for the data of Brinkrnoller et al. at
T„= 240 MeV and of Binon et al. at T = 220 and 260
MeV.

The total cross sections measured so far do not help a
lot to resolve the discrepancies in the normalization fac-
tors as the systematic uncertainties of these data are too
large. Our solution is in reasonable agreement with most
of the total cross section measurements. An exception
is the measurement of Johnson [32] at T = 51 MeV,
which is also in contradiction with the data of Block et
aL [2] at the same energy, and the cross sections mea-
sured by Wilkin et al. [8] at T = 110—260 MeV, which
are systematically above our values. Note that the nor-
malization factors obtained in our analysis for the difFer-
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FIG. 7. The Coulomb-nuclear interference region at far
forward angles for T = 110 and 260 MeV close to the maxima
of ~Re f0~. In both cases the Coulomb-nuclear interference is
slightly overpredicted; however, the discrepancy at T = 260
MeV is very small.
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ential cross section data at resonance are very close to
1. Furthermore, at T = 110 MeV our solution is in per-
fect agreement with the value obtained from Binon et al.
[5] taken as the average value of the total cross sections
measured for 7r+ and vr scattering. Unfortunately, this
is the only energy where Binon et al. measured both sr+
and vr cross sections. The results obtained at the other
energies for 7r only are again systematically above our
solution.

The total cross section at the peak of the 433 reso-
nance strongly influences the calculation of Re fo at other
energies. Dispersion relation analyses that follow the to-
tal cross section data of Wilkin et al. overpredict the
Coulomb nuclear interference at T = 260 MeV strongly
[10]. The new data of vr-4He scattering at T = 110
MeV [11] reveal additional problems below resonance.
The splitting between vr+ and 7r cross section is again
smaller than predicted by existing dispersion relation cal-
culations. Refo obtained from our analysis is shown in
the bottom part of Fig. 2. The smaller total cross section
at resonance results in a reduction of Re fo both above
and below the resonance and therefore in a smaller split-
ting between 7r+ and vr cross section.

Figure 7 shows the forward angle region of the data at
T = 110and 260 MeU. These are the most sensitive data
for a consistency check with the dispersion relation. All
other data sets do not extend far enough into the small
angle region or are measured at an energy where the real

part of the forward scattering amplitude and therefore
differences due to Coulomb efI'ects between sr+ and vr

scattering are small. A fair description of the data at
T = 260 MeV is obtained, with the fit underestimating
the data only slightly. However, at T = 110 MeV larger
discrepancies remain, especially with the sr+ data, while
the description of the vr data is very good. In a separate
fit we verified that a good description of both sr+ and m

data can be obtained when Refo is reduced further, which
requires an even smaller total cross section at resonance.

The reduction of the total cross section at resonance is
of great importance for theoretical calculations used to
describe vr- He scattering. Usually, the vr-nucleon scat-
tering amplitude is used as the starting point to calculate
vr nuclear optical potential. It has been shown that the
total cross section depends strongly on efFects associated
with intermediate nuclear excitations during pion scat-
tering by the same nucleon or by different nucleons [35].
Existing models like the 4-hole model [36] or microscopic
optical models [37] use free parameters to describe the de-
tails of the interaction and obtain a good fit to the data.
A lower total cross section at resonance could require
significant changes of these parameters and the interpre-
tation of the results.

In Table III we give the nuclear phases from our analy-
sis. Because of the inconsistencies between difFerent data
sets encountered in our analysis, these results should be
used with care. However, we believe that the phases give

TABLE III. Reconstructed phases from the analysis of He(7r, 7r) scattering.

T (MeV)

25.0
51.0
60.0
68.0
75.0
90.0

110.0
130.0
150.0
180.0
220.0
240.0
260.0

T (MeV)

25.0
51.0
60.0
68.0
75.0
90.0

110.0
130.0
150.0
180.0
220.0
240.0
260.0

bp (deg)
—4.51
—8.53

—10.01
—11.29
—12.37
—14.58
—17.78
—23.02
—33.32
—51.64
—55.74
—54.30
—53.50

go

0.9675
0.9129
0.8910
0.8701
0.8492
0.7904
0.6721
0.5200
0.3945
0.3984
0.4774
0.4629
0.4311

bg (deg)

3.12
8.80

11.32
13.72
15.89
20.58
26.38
30.90
33.13
23.85

—33.44
—37.82
—39.49

0.9780
0.9426
0.9244
0.9030
0.8794
0.8124
0.6870
0.5269
0.3504
0.1165
0.1599
0.2350
0.2947

b2 (deg)

0 ~ 14
0.90
1.41
1.98
2.57
4.07
6.35
8.36
8.98
2.53

—16.17
—19.63
—20.50

0.9984
0.9862
0.9760
0.9625
0.9467
0.8977
0.7982
0.6650
0.5155
0.3301
0.3384
0.4074
0.4707

bs (deg)

0.02
0.05
0.08
0.13
0.27
0.53
0.81
0.90
0.12

—3.22
—5.24
—6.82

0.9996
0.9990
0.9981
0.9968
0.9915
0.9760
0.9470
0.9028
0.8187
0.7340
0.7246
0.7342

b4 (deg)

0.01
0.03
0.81
0.09
0.01

—0.65
—1.25
—1.89

0.9999
0.9996
0.9984
0.9954
0.9891
0.9709
0.9358
0.9214
0.9136

bs (deg)

0.06
0.01
0.00

—0.11
—0.25
—0.44

0.9999
0.9997
0.9991
0.9967
0.9889
0.9830
0.9796

b, (deg)

—0.02
—0.04
—0.08

0.9997
0.9985
0.9974
0.9962

br (deg)

—0.01
—0.01

0.9998
0.9997
0.9994
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the most consistent description of m- He scattering that
can be obtained with the existing data.

To resolve the discrepancies, measurements in the
Coulomb-nuclear interference region at far forward an-
gles are needed near T = 75—90 MeV, where the deep-
est interference minimum is expected for 7t.+ scattering.
These measurements would also help to solve the problem
with the difference in the normalization between the data
of Crowe et al. and of Brinkmoller et a/. Further mea-
surements are necessary at energies above the resonance
near T = 300—400 MeV again mainly in the forward
Coulomb-nuclear interference region. This would deter-
mine the forward scattering amplitude at the minimum
of its real part.

VI. CONCLUSIONS

Using a phase shift analysis that contains careful treat-
ment of Coulomb effects and the forward dispersion rela-
tion we tried to And a consistent description of ~- He
elastic scattering. Our solution implies that the long
standing problem with the real part of the forward scat-
tering amplitude could be due to an overestimation of
the total cross section at resonance. The analysis shows
clearly which measurements are needed to resolve the re-
maining discrepancies and to complete the data set for
elastic vr- He scattering.

The authors are indebted to Prof. E. Boschitz and
Prof. H. Pilkuhn for useful discussions.
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