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Using the Ward-Takahashi (WT) identity and the Bethe-Salpeter wave equation, we investigate
the dynamical requirements imposed by electromagnetic gauge invariance on Compton scattering
from relativistic composite systems. The importance of oB-shell rescattering in intermediate states,
which is equivalent to final state interactions in inclusive processes, is clari6ed in the context of
current conservation. It is shown that, if the nuclear force is nonlocal, there will be both two-
photon interaction currents and rescattering contributions to terms involving one-photon interaction
currents. We derive the two-body WT identity for the two-photon interaction currents, and obtain
explicit forms for the interaction current operators for three illustrative models of nuclear forces: (a)
two-pion exchange forces with baryon resonances, (b) covariant separable forces, and (c) charged
one-pion exchange.

PACS number(s): 24.10.Jv, 13.60.Fz

I. INTRODUCTION

Inclusive electron scattering from composite systems
is an important subject common to nuclear physics [1],
high-energy particle physics [2], and condensed matter
physics [3]. Using this technique, the underlying dynam-
ics of composite systems can be investigated in different
energy regions, and we can study the scaling laws impor-
tant to each region, such as Bjorken scaling [4] in particle
physics, and y scaling [5, 6] in nuclear physics. The struc-
ture functions of inclusive electron scattering are related
to matrix elements of the commutator of the electro-
magnetic current operator, and they can be expressed in
terms of the imaginary part of the virtual Compton am-
plitude for scattering from the ground state of the system.
Thus Compton scattering is important both because of
its close connection to the physics of inclusive process and
also because observables extracted from Compton scat-
tering, such as the polarizability of hadrons [7, 8], are a
sensitive indication of hadron structure. In this paper we
discuss how relativistic calculations of Compton scatter-
ing from few-body composite systems can be done in a
gauge invariant manner.

In high-energy particle theory, the current-current cor-
relator appearing in the inclusive amplitude is assumed
to be gauge invariant from the beginning,

TIJ (*)J"(0))lp) = [q q" —g q ]O(q)

and the essential quantity, O(q), is sometimes evalu-
ated using current algebra [9]. Alternatively, the co-
efficients (C ) in the operator product expansion [10],
Q(q) = P C q, can be calculated perturbatively
[11,12] for an asymptotically free theory [13]. In these
approaches it is not explained how to obtain a gauge
invariant result from the underlying few-body dynamics

which describes the target system, and diKculties are en-
countered in calculating the electromagnetic polarizabil-
ity, or gauge invariant Compton amplitudes with compos-
ite models of hadron structure [14], such as quark models.
In general, it is a very dificult task to evaluate the pho-
tohadronic four-point functions because electromagnetic
gauge invariance is closely related to the dynamics of the
strong interaction. The solution requires, in principle,
that we understand the structure of all composite inter-
mediate states which can be excited by the photon. For
example, the photoproduction of pions from a nucleon
involves contributions from many excited states of the
nucleon, depending upon the energy transferred to the
intermediate state. In order to conserve electromagnetic
current, the dynamics describing the final state interac-
tion between the pion and nucleon should be consistent
with the one describing the intermediate excited states.

In nuclear physics a dynamical approach is both fea-
sible and necessary. For example, many quantitative es-
timates show the importance of final state interactions
(FSI) in inclusive processes within both a nonrelativis-
tic [15—17] and a relativistic [18, 19] framework. Issues
of gauge invariance in Compton scattering have been in-
tensively studied within a nonrelativistic framework [20,
21], but few systematic studies have been carried out in
a relativistic framework [22]. Compton scattering from
the deuteron has been recently studied in Ref. [23]. In
this paper we investigate, within the Bethe-Salpeter (BS)
formalism, the dynamical requirements imposed by gauge
invariance on the amplitudes of nuclear Compton scat-
tering and electrodisintegration.

Our analysis can be regarded as an extension of the
work reported in Refs. [24—26]. In these references a
general constraint on two-body electromagnetic currents
(interaction currents) is derived and expressed directly
in terms of the nuclear interaction. This so-called tmo-
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body Ward Ta-kah, ashi (WT) identity can be derived from
the one-body WT identity [27] using current conservation
and two-body wave equations to relate the two-body nu-
clear force to the divergence of the interaction current.
The general result is independent of the details of the nu-
clear force model once the dynamical degrees of freedom
are specified. Recently the interaction current operator
implied by a covariant separable interaction has been an-
alytically derived [26] by using minimal substitution [28].
The result satisBes the two-body WT identity, and con-
firms the existence of an interaction current. The result-
ing interaction current contributions to electromagnetic
form factors have been studied by evaluating their matrix
elements between bound state wave functions, and they
are not negligible. In this paper we take a similar ap-
proach and study, for Compton amplitudes, the dynam-
ical connections between the (a) impulse approximation,
(b) off-shell rescattering processes, and (c) interaction
currents. In particular, we Bnd that a new interaction
current that involves two photons (the two photon i-n

teraction current) is required in order to satisfy gauge
invariance. The efIiciency of our rather formal approach,
introduced by Gross and Riska [24], will be a help in our
analysis of the dynamically complex four-point function
describing relativistic nuclear Compton scattering.

In general, interaction currents will be present when-
ever the nuclear interaction is nonlocal, even if there are
no charge exchange forces involved. Realistic nucleon-
nucleon (NN) interactions are nonlocal in the mid- to
short-range regions, and, as a result of this nonlocality,
the NN interaction potential (or relativistic kernel) de-
pends on three of the four coordinates of the particles in-
volved in the interaction [see Fig. 1(a)]. This nonlocality
may originate from the fact that the hadrons are spatially
extended objects, leading to a short-range nuclear corre-
lation. The nonlocal NN force has been well approx-
imated by introducing a number of heavy mesons [29]
whose Compton wavelengths are even shorter than the
size of nucleon, or by a superposition of local Yukawa
functions for 12 different mass parameters [30]. These
local models give a fairly good description of the phase
shifts. For example, the local "0." exchange is a good
approximation for the nonlocal force [31] generated by
the two-pion exchange mechanism with excited baryons

[Fig. 1(b)]. Another source of the nonlocality is the
quark-gluon exchange process, which generates a short-
range NN repulsion, and this becomes nonlocal if it is
expressed as an effective NN interaction [32, 33]. In spite
of these interesting, clearly physical mechanisms, it is
hard to distinguish local interactions from nonlocal ones
within the context of elastic NN scattering.

If the electromagnetic field is present, however, we
may expect a new mechanism to take place as a con-
sequence of the nonlocality: within the nonlocal region,
d = ~x~ —xg~ ~x2 —x2~ in Fig. 1(a), the photon field
may interact with the charged constituents participating
in the nonlocal interaction, V(xI, x&I xq, x2). For ex-
ample, a photon may interact with a pion or an excited
baryon in the two-pion exchange potential [Fig. 1(b)], or
couple to a quark in the quark exchange process [34]. In
this way, interaction currents [Figs. 2(a) and 2(b)] are in-
duced by nonlocal nuclear forces, and this happens even
if the efI'ective nuclear force does not involve any charge
exchange.

Much attention has been paid recently to two-photon
processes, such as the polarizability of the nucleon, in-
cluding the effect of the pion cloud [35]. The dynamics of
the AN system involves a nonlocality through the prop-
agation of 4 (and/or the Chew-Low-type [36] iteration
scheme) for the annihilation and creation of pions. The
method developed in this paper becomes extremely useful
in dealing with this topic, including photopion produc-
tion from a nucleon.

This paper is organized as follows. We start in Sec. II
with a study of the electrodisintegration of deuteron us-
ing the conventional impulse approximation and final
state interactions. The need for interaction currents
when the forces are nonlocal is demonstrated. In Sec. III
we study the Compton amplitude including the impulse
and ofI'-shell intermediate scattering processes. In Sec. IV
the one-photon interaction current and its rescattering
processes are introduced, and we show that the result
is not gauge invariant unless two-photon interaction cur-
rents are introduced. In Sec. V we derive the two-photon
interaction current operators from three simple models
of NN force: (a) two-pion exchange interactions with
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FIG. 1. (a) A general nonlocal potential in coordinate

space. (b) Diagram for the nonlocal NN interaction including
excited baryons. The dashed line is a pion with the correla-
tions (the solid circle), the shaded line is an excited baryon,
and the solid line is a nucleon. (c) NN interaction through
the quark exchange process, where the fat solid line is a nu-

cleon, viewed as a three-quark system, and the spiral line is
a gluon.

FIG. 2. Diagrams for (a) the one-photon interaction cur-
rent and (b) the two-photon interaction current. The wavy
line is a photon and the solid line is a nucleon.
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baryon resonances, (b) covariant separable interactions,
and (c) the one-pion exchange (OPE) interaction. By an
extension of the results obtained by Gross and Riska [24],
it can be shown that the results we obtain for the two-
photon interaction currents are not unique, but this will
not be discussed further in this paper. We summarize
this work in Sec. VI.

Throughout this paper (except for the interaction cur-
rent derived from OPE in Sec. V) we consider charge
nonexchange nuclear forces only, in order to present the
discussion in a simple and eKcient form. We focus on
the interaction currents required by the nonlocality of
the nuclear dynamics. We also restrict ourselves to a nu-
clear two-body system, i.e. , the deuteron, for simplicity.
We believe that these ideas can be extended to three-
body systems described by Faddeev equations, and to
relativistic dynamics based on the Gross equation, but
these extensions will not be presented in this paper.

a T

V + V
g/ 6

FIG. 3. Representation of the Bethe-Salpeter equation for
the scattering matrix, M(k', k; p), with an interaction kernel
V(k', k; p). The matrix representation for a two-nucleon sys-
tem [35] is used.

charge exchange. As a simple exercise, we investigate the
dynamical structure of electrodisintegration process, and
this leads to the consideration of Compton scattering.
Here, we assume that the relativistic composite system
(the deuteron) is described by the Bethe-Salpeter (BS)
equation, and we use the matrix representation [37] for
the two-fermion system.

II. ELECTRODISINTEC RATION A. Impulse amplitude and Anal state interaction

In this section we show that interaction currents are
required if the forces are nonlocal, even if there is no

l

The BS equation for the scattering matrix (Fig. 3),
M(k', k; p), is given by

M p g~(k', k; p). = V p, g~(k', k; p)
4

+i V p, ,g(k', k";p)Spy k" + — Mp, ,
g~(k", k;p) S, , (2.1)

where k' =
2 (pi —p2) and k =

2 (pi —p2) are the relative momentum of two nucleons in the final and initial states,
and p = pi + pq is the total momentum. Here, S p(q) = [f—m + ie] &

is the propagator for the nucleon, and greek
characters are used for the Dirac indices. The solution has the form

M p p~(k', k;p) = . ' ' + R p, g~(k', k;p),
I' p(k', p)I'g~(k; p)

p2 —M~2 (2 2)

where the first term represents a pole term due to the lowest bound state with the mass M~, and R(k', k; p) is regular
at that energy. Inserting this expression into Eq. (2.1) and taking the residue at the ground state pole; lim„2~M2
(p2 —M&2) times Eq. (2.1), we get the wave equation (Fig. 4) for the bound state vertex, I'(k; p). Defining the BS
wave function by @~@(k;p) = S(k+ $)I'(k;p)S(k —~2)], we have the wave equations for the bound state (iIJ) and

the conjugate state (@) wave functions,

0 p(k; p) =i S ~ ~

k+ —~V g,,), (k, k'; p)Sgp ~

k ——~@)„(k'; p),
d4k' ( pl, f pl
2~4 '4 2) '" ' '

& 2)
(2.3a)

@ &(k'; p)=i 4g~(k; p)S,
~

k' ——~V~g, ,p(k, k'; p)Spp
~

k'+ —~.
d4k — f, p), (, p)
2vr 4 ' '( 2) " ' ' ( 2)' (2.3b)

FIG. 4. The Bethe-Salpeter equation for the bound state
vertex, 1 (k; p), represented by the open circle.

We can express the amplitudes for electrodisintegra-
tion in terms of the solutions for the bound state wave
function and for the scattering amplitude. Here we assign
the erst particle to be a proton with the charge e~ ——e„
and the second one to be a neutron with e2 ——e„= 0.
The impulse (IMP) amplitude [Fig. 5(a)] is given by

~"~(IMP) = e„q",e,, ~

k ——;p~S ~(k p), (2.4)—P cxh 2 ( 2' ) PP

where the free spinor functions, 6 (k + q) for the pro-
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ton and v)3(k —p) for the neutron with the respective
outgoing momenta k + q and p —k, are dropped from
the final state. For simplicity, we use e„p" for the
photon-proton vertex; it is not essential in this work
to use a realistic form of the ofF-shell one-body cur-
rent, A~(q) = Pi(q)p" + iE2(q)(T" 2", and to include
the photon-neutron coupling. [If we assume A~(q) sat-

isfies the Ward-Takahashi identity, then p" ~ A" (q) in
Eq. (2.6) below, and all of our results also apply when
p)' ~ A)'(q). We refer to Ref. [24] for an explanation of
how to define the oK-shell one-body current [38] so that
the results of this paper can be extended to a realistic
current operator. ] The amplitude with final state inter-
action (FSI), Fig. 5(b), is given by

M"p(FSI) = ie„
a4k' p q / p q / p / p

(2sr)4 '" 2 2' 2 2
'M p gk ——+ —,k ——+ —;p+q Sg(k + q)p @( k ——;p'g (2.5)

where M(k', k; p) is the solution of Eq. (2.1).
We test the gauge invariance of the IMP and FSI amplitudes by evaluating the divergence of the electromagnetic

current for these contributions. By using the one-body Ward-Takahashi (WT) identity [27],

q„p" = S (k + q) —S '(k), (2.6)

we get

qeM e(IMP) = ex (S '(k+ q) —S '(k)) e'See (k ——;P)S e (k —P)

=ex S '(k+q)ql (k ——;p) S '(k —p)
2

'
- cap

—zeP (2.7)

for the IMP amplitude. Here, the wave equation (2.3a) is used in the second terin, and the first term does not
contribute when multiplied by the spinors of the external, on-shell particles. Note that the divergence of the one-body
current is related to the two-body interaction, V(k, k; p). Likewise, by using Eq. (2.1) and Eq. (2.6) we can express
the divergence of the FSI amplitude,

q„~"p (FSI) = ie„
dk' p q, p q

(2sr)4 '" 2 2 2 2
M p. g k ——+ —k' ——+ — p+q

x Sg, k'+qS& k+q@g& k ——
& p

- S., (k -k )S; (qk')qq, (k' -x-; P) S;e'(k „)Se.(k —P))

= ze„

+e„

44k' p qM p.,p k ——+ —,k'
2' 4 ' 2 2

d4k' d4k"

(27r)4 (2vr)4

x See(k' + q) Vee, ,x (k'—

——+ —;p+ q 4p~ k ——;p

k —— + —,k ——+ —;p+q
2 2' 2 2'

P, k// —P;p g„k' —p 0&, k// ——;p (2.8)

where we have used the bound state wave equation, Eq. (2.3a), at the underlined part. The total momentum entering
into the two-body interaction is p while the one entering into the scattering matrix is p+q. We re-express the scattering
matrix in the first term of Eq. (2.8) in terms of the scattering equation, Eq. (2.1). This gives the formula

q„[M"(IMP) + M" (FSI)] p
——ie„ 7 p, ,p(k, k'; p, q) kIip,

i

k' ——;p i,2sr4 " ' ' ' 'i 2'
where 7 )s ,i (k, k'; p, q ) is g.iven by

T'p, ,p(k, k; p, q)= V k ——+ —,k ——/ p q / p

k I I

+i
( )eM eee (k

x V k// ——+ —,k'
2 2'

+ —;p+q —V k ——,k' ——;p
2

' 2 2 exp;eA

—,k ——+ —;p+q S&, (k +q)// p //

2' 2 2'
—;p+ q —V k ——,k ——;p S„~(k —J)).q // p / p //

2
'

- pg;eA
(2.10)
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k' —P k' —P

v x V

(c) FIG. 6. Diagrammatic representation of Eq. (2.10), where
the crossed circle refers to insertion of momentum q by the
photon.

FIG. 5. Diagrams for the electrodisintegration of the
deuteron, where the solid line is a nucleon, the wavy line is a
photon with momentum q, and the open circle is the deuteron
vertex function: (a) impulse approximation (IMP); (b) final
state interaction (FSI), where M is the scattering matrix;
(c) direct interaction current (DIC), where the rectangular
box with a solid circle represents the interaction current; (d)
rescattering of the interaction current (RIC).

This equation expresses the violation of current conserva-
tion in the IMP + FSI amplitudes in terms of the nuclear
potential and the off-shell scattering matrix.

We now distinguish two cases. If the interaction is local
and energy independent, it depends on the momentum
transfer only, and V(k', k; p) = V(k' —k). In this case
the contents in each square bracket in Eq. (2.10) vanish
identically, and the IMP+FSI amplitudes satisfy current
conservation. This is the fundamental reason why con-
ventional approaches using local potentials work for the
electrodisintegration problem. If the interaction is non-
local, however, current conservation is not satisfied by

these IMP+FSI processes. The violation of current con-
servation depends on the nonlocality, and is related to the
difference between the nuclear potential with the photon
momentum (q) inserted before the interaction, and after
the interaction (see Fig. 6). These terms do not cancel
for nonlocal interactions, except for the q = 0 case. We
must find a way to recover current conservation.

B. Current conservation and interaction currents

It has been shown [24—26] that there is usually a two-
body electromagnetic current associated with a two-body
nuclear interaction (referred to as the interaction cur-
rent), and that even a charge nonexchange interaction
can generate an interaction current, 1"(k', k; [p, q]), if
the interaction is nonlocal [26] [see Fig. 2(a)]. This is
because the electromagnetic field can interact with the
charged constituents within the nonlocal interaction re-
gion. Here, k' (k) is the relative four-momentum of the
two nucleons in the final (initial) state, and p is defined to
be the total momentum before absorbing a photon with
the momentum q. From a study of elastic electromagnetic
form factors using the bound state BS equation and the
one-body WT identity one obtains the following general
expression for the divergence of the interaction current:

q„z.", ,(«, k; (p, qj j = ~ v (i' —'-, «; „) —v (q', i q- -'; „q- q) (2.11)

This two-body WT identity is a necessary condition which any dynamical model of the interaction current must
satisfy. Now we add the interaction current and the rescattering of the interaction current to the amplitude of
electrodisintegration, so that all possible first-order processes in the electromagnetic coupling are included. The
amplitude for the direct interaction current process (DIC), Fig. 5(c), is given by

M"p(DIC) = i
d4k'' " J", „(k —p + q, i' —'-; (p, qj) «„(i' —'-; p), (2»)

and the one for the rescattering of the interaction current (RIC), Fig. 5(d), is given by

JH"p(RIC) =— d4k'

(2«r) 4

dk" p q „p q

(27r)4 ' 2 2' 2 2
M p. g k ——+ —,k" ——+ —;p+q

xSq (q" + qj J"„(q"——+ —,i' ——;(p, qj) Sx~(k" —pj «, (q' ——;p) . (2.1«j
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FIG. ?. Diagrams for Compton scattering from the

deuteron: (a) impulse amplitude, C" (IMP), and (b) the
crossed impulse amplitude, C""(IMP).

(b)
FIG. 8. Diagrams for Compton scattering involving the

scattering matrix M: (a) final state interaction, C""(FSI),
and (b) the crossed FSI process, C" (FSI).

By using Eq. (2.11) we observe that the divergence in
the DIC and RIC amplitudes cancels with the one in the
IMP and FSI processes,

q„[M"(IMP ) + M" (FSI) + M" (DIC) + M" (RIC) ] = 0.

(2.14)

The total amplitude, M"(IMP)+M" (FSI)+M"(DIC)
+M"(RIC), is gauge invariant.

The two-body WT identity is a general constraint
which must hold for any model of the nuclear force. It is
a necessary condition which the interaction current must
satisfy. It shows that interaction currents exist but does
not tell us how to find them. In Sec. V we will complete
the discussion by deriving explicit forms for the interac-

I

tion current operator in three different models, and show
that the operators we obtain satisfy Eq. (2.11).

III. COMPTON SCATTERING

In this section, we apply the procedures developed in
Sec. II to Compton scattering. First we consider the
impulse (IMP) amplitude and the intermediate off-shell
rescattering of nucleons after the absorption or emission
of a photon. We refer these latter processes as "final
state interaction" (FSI) processes, since they are similar
to ones in electrodisintegration. The Compton ampli-
tudes C" (IMP) and C""(IMP) for the impulse [Fig. 7(a)]
and crossed impulse [Fig. 7(b)] processes are given by

&" (IMP) = ee;J,q'-p(III pI) )q"S(k + Q)q ) p q'ee (Iq* p*)Se.'(" —p)

d4k—
C&"(IMP) =ie„',4 Z(K&, p&) [p"S(k —Q)7")&,4,~ (K;; p;)S, (k —p),

(3.1a)

(3.1b)

where Ky = k —$ + ~4, K; = k —
$ —~4I p = 2(pf + p, ), Q =

2 (qi + q2), and q = qi —q2. Here p; (py) and qi (q2)
are the four momenta of deuteron and photon in the initial (final) state, respectively. The amplitudes for the FSI
[Fig. 8(a)] and FSI [the crossed FSI process, Fig. 8(b)] are given by

d4k d4k'
C""(FSI)= —e„', , V(KZ, pZ)~" S(k + Q) MZ, &,(t, t'; p+ Q) [S(k' + Q)~"0 (K', ; p;)]...

a4k d4k' . —IC""(FSI)= —e„ IIP(Kg, pg)p S(k —Q) Mp, g~(t, t; p —Q) [S(k' —Q)p" 4(K', ;p;)] q,

(3.2a)

(3.2b)

where t = k —
~2 + ~2, t' = k' —

~2 + ~2, t = k —
~&

—~&, t = k' —
~2

—&2, and K,' = k' —
~2

—&4. Using the WT identity

qi„p = (S (k + Q) —S (k —$) ) = (S (k + $) —S (k —Q) ) in the IMP and IMP amplitudes, we can express
the divergences in the following form:

qe„S" (IMP) =ie @ ( , PI)C(IP"I(kqSQ) Sk(k+ Q) —S (k ——
) l

0 e(IC;;P;)Se e(k —P)
a4k

Pw

and

a4k=ie„kIP p(Kg, pf) p" —p"S(k+ Q)S k —— kI))~g(K, ; p;)Sq (k —p),2' 4 -Pw

d4k
qi„C""(IMP) =ie 4 p(Ky,.pf) S k+ — S(k —Q)p" —p" klf~g(K,. ;p;)S& '(k —p).

2m 4 -Pw

(3.3a)

(3.3b)
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Note that the p~ terms in the square brackets of Eq. (3.3a) and Eq. (3.3b) cancel each other. Likewise, we express
the divergence in the FSI and FSI amplitudes,

and

d4A: d4@'
q,„C""(FSI)= —e„@(Kf,.pf)p" S(k+ Q) p Mp, g~(t, t', p+ Q)

x (1 —S(k'+Q)S '(k' ——)) @(A';;p;)
2 - p8

ql. &" (P») = —x,', , @(Ir/ pt) (S '(k'+ -)S(k —Q) —')
x M&. ,', (t, t;p —Q) [S(k' Q)~—"~(K'' p')1;

(34-)

(3.4b)

mitting the p" term in the IMP amplitude, which is canceled by a similar term in the IMP amplitude, the sum of
the divergence of the IMP and FSI amplitudes is

d4I
qq„[C""(IMP) + C" (FSI)]=ie„[@(Kf,.pf)p" S(k+ Q)] p

x — S k —— 4 k ————p; ~ & —p

Mtt, t~ (tt';p+ Q). @,~t k ————p )'*'p q

2vr 4 2 4
d4k'

i Mp—g~(t, t'; p. + Q)2' 4

x S(k'+ Q) S '(k' ——)kl'(K';; p;) S '(k' —p) S(k' —p)
pb

Pa

d4A:=ie„', @(Kf,.pf)p" S(k+ Q)

d4A. "
p q, p q I p qx —i Vp, b~ k ————,k' ————;p' @ps k ————' p'(2')4 ' ~ 2 4 2 4' 2 4

+t Mp ,
. (tt't; +Q)poit , k' ——— ;p')—p

2~ 4 2 4'
d4k' d4k"

Mp, p (t, t";p + Q) Sp (k" + Q)

xV .t k ————,k ————;p; S (k —p)S t k ————;p;))p q I p q a p q
4' 2 4' ' y 2 4

d4I d4@' .
(2 ), (2 ), @(Kf, pf)p"S.(k+Q) p(O)p .g @ g(K;;p;),

where we have used the bound state wave equation (2.3a) at the underlined parts, and

(O) . =—ttp .t (k ————,k' ————;p; —Mp .,
~

k ——+ —,k' ——+ —;t+Q i

J q, p q. (' p Q, p Q
2 4 2 4' 2 2 2 2' )

4
+' 4Mp, Qp(t, t;p+ Q)Spy (k + Q)Vp p, g~ k ————,k ————;p; Sp p(k —p),

dk, f II tt p q t p q . tt (3.5l )

wher«" = k" —
$ + ~~. Using the scattering equation (2.1) to replace the second term in Eq. (3.5b), we get the

following compact expression;

q) „[C""(IMP)+ C""(FSI)]= —e„[kli(Kf pf)p" S(k+ Q)]
d4a d4k'

x7p, . (k ——,k ——;p——,Q+ — O,t(tt;;p;),q f q q (3.6a)
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where 7 (k, k', p, q) was defined in Eq. (2.10). Likewise, the divergence of the crossed term is

a4I
qi„[C" (IMP) +C""(FSI)]= e iII p(Kf, pf)7p, g~ k+ —,k'+ —;p+—,—Q ——

(2m)4 (2m)4
' ' 2' 2' 2' 2

x [S(k' —Q)p"4'(K';; p;) ] ~ . (3.6b)

The violation of current conservation is again ex-
pressed in terms of 7 (k', k; p, q) defined by Eq. (2.10).
If the interaction is local and independent of energy, the
Compton amplitudes C+"(IMP) +C+"(FSI)+C+"(IMP) +
C""(FSI) are gauge invariant because 7 vanishes identi-
cally. We emphasize that Ci'"(IMP) and C~ (IMP) are
correlated through the p~ terms, which cancel only when
both terms are present, and hence all of the diagrams in
Figs. 7 and 8 are needed. If the interaction is nonlocal,
the sum of all of these processes is not gauge invariant,
except for a special case where the momentum of the
photons is zero (7 = 0 for Q = q = 0). This is the
principal conclusion of this section. In the next section,
we introduce the additional currents, associated with the
nonlocal dynamics, which are needed to conserve current.

IV. TWO-PHOTON WARD- TAKAHASHI
IDENTITY

In Sec. II, we discussed the role that the interaction
current, with rescattering, plays in the electrodisintegra-
tion process. If the interaction is nonlocal these addi-
tional terms are necessary to give a gauge invariant am-
plitude. In this section we include the same terms in the
Compton scattering case.

where

J~ =ie„~~,S.—,' I —"- 2~ 4S' I' —I —"- .

This current is illustrated in Fig. 9. The extra factors in
J~~ convert this one-body operator into a two-body form,
so that both currents in Eq. (4.1) have a standard two-
body structure. The neutron current, J2, is zero in the
examples discussed in this paper. We can systematically
generate all the processes of order e„by evaluating the
four types of diagrams shown in Fig. 10:

C""(WA YZ) = C""(W) + C""(X)+ C" (Y) + C" (Z).
(4.2)

These diagrams are obtained by replacing the one-body
current operators with the unified current, g", in the
IMP, FSI, and their crossed diagrams, Eqs. (3.1a) and
(3.1b) and Eqs. (3.2a) and (3.2b). Note that each of these
diagrams generates four separate diagrams through the
choice of Jz~ or J3 for the coupling with the first and sec-
ond photons. We distinguish them by the subscripts "1"
(for Ji") and "3" (for Js ). For example, the diagram in
Fig. 7(b) is denoted as C""(Xii) and the one of Fig. 8(a)
as C" (Yii).

A. Impulse and interaction currents

We now include all possible processes to order e„which
arise from the lowest-order impulse ( ez) and inter-
action ( ez) currents. Many diagrams are generated
through diferent combinations of these basic elements,
with and. without rescattering by M. It is very ef6cient
to use a unified current obtained by adding the impulse
current, te„p", and the interaction current jg = 1"( k',
k [p ~]):

~ (k', k; [p, q]) = J,"+Jg, (4.1)

FIG. 9. The unified current Q", Eq. (4.1), is represented
by the rectangular box vrith an open circle. The other rect-
angular box with a solid circle is the interaction current, J3.
(In this work the neutron current, 12, is zero. )

FIG. 10. The four types of amplitudes C""(W), C~"(4),
C""(Y'), and C~"(Z) in Eq. (4.2). The rectangular box is the
unified current, /".
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X
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31

Z
31

Yla Z
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FIG. 11. The eight amplitudes in Eq. (4.3), where the
incoming (outgoing) photon has momentum qi(q2) and po-
larization e (e„).

FIG. 12. The eight amplitudes in Eq. (4.4), Eq. (4.8) and
Eq. (4.9). The two photons are labeled as in Fig. 11.

B. Current conservation

%e will now show that the Compton amplitude given
by Eq. (4.2) is not gauge invariant, even though it in-

I

eludes, to order e, all possible combinations of 1 im-
pulse, (2) FSI, (3 interaction currents, and (4) rescat-
tering of the interaction currents.

First, we prove that

qi ~"" ~ia +~" ~is +C" &i.i +~" &i.3 +C" ~ii +~""~~a +~" &~1 +C"" &i3

d4k= ie„@(Kf p f)p"S(k + Q) S '(k + Q) @(K, ; p;) S '(k —p)

a4I—ie„S (k —p)4(Kf pf)S '(k —Q) [S(k —Q)p"4(K;; p;)]p

=0 (4.3)

so that these eight amplitudes, shown in Fig. 11, are
separately gauge invariant (at least with regard to the
index v). The proof is somewhat similar to the one lead-
ing up to Eq. (2.14), and is presented in Appendix A.
Brieffy, the first four terms in Eq. (4.3), C~ (Wii) +
C""(Wis) + C" (Yii) + C" (Yis), have the same struc-
ture as the ones in electrodisintegration, M" (IMP) +~"(FSI) +~"(DIC)+ M" (RIC), given in Sec. II. The
difference is that the free spinor functions in the final
state are replaced by the bound state wave function along

I

with the emission of a photon (q2), so that the only reason
the divergence is not zero is because the Anal nucleons
are off shell. However, the divergence of these four terms
is precisely canceled by the four crossed (qi ++ q2) am-
plitudes) C (Xll) + C (~13)+ C (+11) + C (+13).

Among the remaining eight amplitudes (shown in
Fig. 12), we first investigate C~"(W3i ) C (W33),
C""(Ysi) and C" (Y33). These four amplitudes are given
by

C""(W») =ie„, ,4 &(Kf, pf ) iJg,, ( Kf, k' ——+ —;[p + Q, —q, ] [
[S(k' + Q)~ @(K',",p;)] „

(4.4a)

C""(W33)=t iIr p(Kf, pf)tJp q~ Kf, k ——+ —.;[p+ Q, —qz]
~

S,(k" + Q)

xiJ",p pg ~

k ——+ —,K',.; p ——,qi
~

Spy(k —p)44,p(K, ;p;), .J Q I.
2 2 2 )

(4.4b)



48 GAUGE INVARIANCE AND COMPTON SCATTERING FROM. . . 1957

) = ze 4'nP(Ky, pf)z J& &.i Ky, k" ——+ —;[p + Q, —q2] i S~,(k" + Q)

l
"—+ —,k' —"—+ —;p + Q i

S, (k" —p) [S(k' + Q) ~ 4 (K,'; p;)] „,
(4.4c)

(+») =
{ ) ( )g ( ) ( )g@ P(Kfipf) Jp;b l

Kf k + i[p+Q' &2] I & ( +Q)

» Q «p Q.x~M,~., i
k —-+ —,k" —-+ —;p+Q

l Sy (k- p)S, (k" +Q)2' 2 2'

x~Jp. . g i
k —-+ —K' » ——~~ I

S-(k p)@—~n(K' p')
p Q 9 ~ «

(4.4d)

e evaluate the divergence of these amplitudes with respect to qq. Separating out common overall factors,

&,„y~"(~») +C~"(W») + C~"(V,, ) + C "(V»)1 = ie„, ,+.~(K~;py)2' ~ 2m. ~

x Jg..„i K&, k"-"-+—;[p+Q,—~.] I &lV&j „
we obtain

jWY$~s = i ( 1 —S(k" + Q)S ' {k"——
) 4(K,";y) )

p Q, p Q
S~, (k" + Q)M, ~ &„ i

k" . +,k' ——+ —;p+Q i
S~q(k" —p)(2~)' ~' '~'"

q 2 2' 2 2 )
x ]. —S k'+ S-' k' —— 4 K,",p,

(4.5)

d4k' ]I P q IS~, (k + Q) V,p , ),y k.
(2vr) ~ 2 4' 2

—v„.„, i

ki -+ —,k —-+——;p+Q
i S,~(k p)~~~(K;;p—;)

k „P„pQ-
(2m)

' ' ( 2 2 2 2
S,{k"+ Q) M,y ik" ——+. —,k ——+ —' p + Q l

xSyp(k" —p)S (k+ Q) V p k ———— k ————~P
p q q

pw etc) 77 2 4l 2 4&

-V.„,,„ i
k —

—, + —,,
k' —

—, + —,;» + Q i
S-(k p) ~. (K —p*). (4.6)

Here Fq. (2.] ]) was used again. Using the wave equation for the scattering matrix, Eq. {2.1), the underlined parts «
the above equation cancel and (4.6) reduces to

(WV)„= ~e,&(K;";p, ) —i S(k" + Q) S ' k" —— @,~(K, ; p')
2 -~n+,S„(k"+ Q)M„,-~, i

k" —-+ —,k' —-+ —p+ Q
I
s„(k"—»)

t' „p Q, p Q.
(2vr)

' '" ( 2 2 2 2 )
x S k'+ S-' k' —— ~ Kp,

4 S,[k + Q)]V, .„~ k —,k ————;p —— 4yg(K, ; p, )Srg(k —p)
dk (I I( p q I p q.

)
4 'Y« ~Pi 2 4 2 4' 2

(„p Q — pS„(k"+Q)M, ~... i

k" ——+ —,k ——+ —;p+Q
I
Sy~(k" —p)(2') (27r) ' ( 2 2 2 2 )

S,.(k+Q)V.„,„X-—,
——,k' —

—,
——;»—

—, +~ (K,'.p*)S-(k —p)
p q I (4.7)
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where K," = k" —
$

—~4, K,' = k' —
$

—
&4, and p —

$ = p;. The other kinematical variables, Ky, K, , p, Q, and q, are
the same as in Sec. III. Using the bound state equation,

( „p q, p q

(2~)4" I, 2 4' 2 4' 2y
" 2

——;p——
~
C«„(K,;p;) = i—S—

k —— 4 k ————;p, S (k —p)
—1

2 4

the fourth term becomes

6p

(4th term) =i S,(k" + Q) S ' k" —— 4 k" ————;p, S '(k" —p) S a(k" —p)Q6 P
6p

=,s„(e+ q) s-„' (~- —'-) e„(e—"- —'-;,,),
and cancels the second term. Likewise, the fifth term cancels with the third term. Only the erst term remains to
contribute to Eq. (4.5), so we conclude that

d4k d4I '

(2~)4 (2~)4 '( 'P')

x Jg ~ ~
Kf, k' ——+ —;[p+Q,—q, ] ~

4 ~(K;;p;).P~ $P 'I

2 2
1 1 ) f 1'I 1

qq„[C (Wsq) + C""(W&3) + C" (Ysz) + C" (Yss)] = —e„

(4.8)

The remaining four amplitudes in Fig. 12, C" (Xsq), C""(X33) C (Zsj) and C" (Zss), are listed in Appendix B. The
divergence of these amplitudes can be obtained in a similar way, and the result is

a41 d4A. "

qg„[C""(Xsg) + C""(Xss) + C""(Zsg) + C""(Zss)] =e„@p(Kg., py)

xJg ., ~

k ————,K,'; p ——,—q, ~@,s(K,';p;). (4.9)

From Eq. (4.3), Eq. (4.8), and Eq. (4.9) the divergence of the total amplitude given by the W+ X+ Y + Z processes
ls

q&„C+ (WXY'Z) = q&„[C+"(W) + C+ (X) + C+"(Y) + C+ (Z)]

d4k

(2vr) 4

d4I '

).~-~(Kf pf)I$. ..~:(K.; p. ) (4.1O)

where

p q p Q & & p Q p q qI" . =e J".
/

k ——+ — k ——+ —'[p+Q —q2] I

—e J"Ps& "P~~(24'22)~'~(22'242'
Note that I" does not vanish in general, and the viola-
tion of current conservation is now expressed in terms
of the one-photon interaction current. We conclude that
the contributions from the impulse, interaction current,
and scattering matrix given by Eq. (4.2) are not enough
to satisfy gauge invariance in Compton scattering. This
failure is due to the nonlocality of the nuclear dynam-
ics. A new, two-photon interaction current is needed to
restore gauge invariance.

C. Two-photon interaction currents
and the %'T identity

In Refs. [24, 26] the need for an interaction current was
demonstrated in the following way. First, the matrix el-
ement of the impulse (one-body) current for an exclusive
processes, such as the charge form factor of a composite
system, was derived. Then it was shown that the diver-

gence of the impulse current was not zero, but was related
to the two-body force. This relation can be regarded as a
constraint on the interaction currents; they must be con-
structed so that their divergence cancels the divergence of
the impulse current. Finally, an explicit form of the inter-
action current operator was derived, and the result was
shown to satisfy the constraints. Physically, interaction
currents [as shown in Fig. 2(a)] exist because a photon
can interact with charged constituents which are present
within the nonlocal region d = ~xq —xz~ ~x2 —x2~ over
which the force extends.

We now extend this idea to cases involving two pho-
tons, Fig. 2(b), where both of the photons couple to the
charged constituents of the system. The nonlocality will
lead to a new two-body current, a two-photon interaction
current

J"~,,(Kf, K, ; [p, , q„q,]) .

The variable p; = p~ + p2 is the total four-momentum of
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the two nucleons before absorbing (or emitting) the pho-
tons and Kf (K;) [sometimes denoted simply by K' (K)]
is the relative momentum of the 6nal (initial) state. The
total amplitude for Compton scattering is then given by

C" (total) = C""(W) + C""(X)
+C""(&)+ C""(&)+ C" (J.,)

where

(4.11)

f
d4k d4k'—

p(Kf, pf) Jg" s(K.f, K;; [p;, qg, q2])@~s(K;;p;). (4.12)

In order for the total amplitude to be gauge invariant, qt C (total) = 0, we require that the two-photon interaction
current satisfy the following two-body WT identity:

I~s ———q, „J$, s(K', .K; [p, , qg, q2])

J" . K' ——,K; p;, —q —J" . K', K+ —;,+q, —q (4.13)

In conclusion, if the nuclear forces are nonlocal, the im-
pulse current, one-photon interaction current, and scat-
tering matrix contributions to Compton scattering are
not enough to satisfy gauge invariance. A two-photon
interaction current is needed to restore gauge invariance,
and its divergence must satisfy the ttvo body WT-iden-
tity, Eq. ($.18). In the next section we will derive the
explicit form of the two-photon interaction current for
several cases.

V. T%'0-PHOTON INTERACTION CURRENT

In this section we find the explicit form for the two-
photon interaction currents for three simple models of the
NN force: (a) a two-pion exchange model with baryon
resonances, (b) a covariant separable potential model,
and (c) the charged one-pion exchange force. The results
for the current operators will be shown to satisfy the
two-body WT identity, Eq. (4.13). We use the method
of Feynman diagrams [39] for models (a) and (c), and the
method of minimal substitution [26, 28] for model (b).

termediate excited baryons (4 and N*), illustrated in
Fig. 1(b). This mechanism is a possible explanation for
the intermediate-range attraction approximated by the
"o" exchange used in the one-boson exchange model [29].
The nonlocality of this interaction is caused by the prop-
agation of the intermediate baryon resonances. 4 is par-
ticularly important, as demonstrated by its role in inclu-
sive electron scattering just above the quasifree region [1].

In general, the two-photon interaction current associ-
ated with this nonlocal mechanism is described by 22
diagrams (including the coupling of two photons to each
pion and two-photon contact terms). Here we will sim-
plify the discussion by considering only the exchange of
neutral pions between the neutron and proton, giving a
simple model which still includes the essence of the non-
locality caused by the propagation of the baryon reso-
nances. (Hereafter we will use the symbol "¹"to de-
note both 4 and all other baryon resonances which might
appear in the intermediate states. )

The nonlocal potential, Fig. 13, is given by

A. Two-pion exchange model

One of the Inost familiar nonlocal NN forces is the
(correlated) two-pion exchange interaction [31] with in-

PPPPPP/2
I I

I

I

I

I I
VXZZXNPPA

(a)

wuuuuzz
I I

I

I

I

I I
W//PPWX/4

FIG. 13. A model for the nonlocal potential
Vgy. (K', K; p), with intermediate baryon resonances (shaded
lines). The dashed line is a neutral pion.

FIG. 14. Electromagnetic interactions involving baryon
resonances: (a) pN' coupling and (b) the one-photon inter-
action current generated by the presence of the p¹coupling
inside of the nonlocal potential.
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V~- (K', K; p) p.q

) & 2 )

where A(k) = [k —p + ie] is the propagator of the neutral pion with mass p and I' is the 7rN¹ vertex. Here,
K' = —

(p&
—p2), K = —(pq —p2), and p = pq + p2 ——pz + p2 are the relative momentum of the two nucleons in

the fina} state, in the initial state, and the total momentum, respectively. The propagator of the baryon resonance is
represented by S„(p); we will not need its explicit form. The WT identity for the p¹vertex, A~~. [see Fig. 14(a)],
is given by

q„A~. = S, '(p+ q) —S, '(p).

The one-photon interaction current is given by evaluating the Feynman diagram in Fig. 14(b) to get

(5.2)

J~. (K', K; [p, q]) p, ~

dk4 K'+ K

Kpx I'gS.
i

——K'+K q l ( K' —K ql ( K' —K q)

Note that p = pi + p2 and p+ q = pi + p2, where q is defined to be the absorbed momentum. The charge of the
baryon resonance is denoted by eN. . (e~- = 1 in this model).

We now examine the two-body WT identity for this one-photon interaction current. Using Eq. (5.2) with the
appropriate kinematical variables, q„A~~. ——S„("+~+ + + ~ —k) —S„~("—+ + —~ —k), we get

q„J~.(K', K; [p, q]) p, ~
—e~.

dk4 ('p [K' —q/2] + K
(2.) '-'(2

(p [K' —q/2] + K
x I'gS,

(2 2 ) p~

[K' —q /2] —K i ( [K' —q/2] —K i

dk' ([p+ q] K'+ [K+ q/2]
(2 )4

* ( 2 2

([p+ q] K'+ [K+ q/2]x I'gS„
2 2 ) pS

K' —[K + q /2] ) („K'—[K + q/2] 5

V„. ~' ——,X;p
ex@;hp

(S.4)

This is the desired result, satisfying the two-body WT identity, Eq. (2.11).
The two-photon interaction current can be derived by evaluating the diagrams in Fig. 15. Note that processes

in which one of the photons couples to an external leg and the other couples to a baryon resonance should not be
considered a two-photon interaction current because all such diagrams are already included in the amplitudes for the
(impulse) x (one photon interaction -current), i e , C~"(Wqs), C.

~. (Wsq), C~ (Aqs), and C~" (Asq). The result for the
two-photon interaction current is therefore

J„"".(K', K; [p, q„q, ])

K' A

(2 2

x I' S,
/ 2

4

K'+K u ) „(p K'+K u———k I',
2 4 ) i2 2 4 )
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where

(p K'+K u
l(p

K'+K u= (eN-A&. ) S*
I

—+ ———k+ qi I
(e~ A~ ) + (e~-AN ) S*

I

—+ ———k —q2! ( ~ A~. )*E» 4
N'

r
and u = qi —q2. The first and second terms in Z"" correspond to the direct [Fig. 15(a)] and the crossed [Fig. 15(b)]
processes, respectively. The divergence of the current operator, qi Jg,".(K', K; [p, qi, q2]), can be simply obtained by
using Eq. (5.2). Omitting the common factors we have

and

K'+ K K' K

— I S
I

+ + ——k!( .A".)S!—+
4 ) g2

ltd———k+qi! I',
4

(5.6a)

(p K'+K u (p K'+K u
qi„J~".(crossed) 1 S, !

—+ ———k —q2 I
(eiv. A~. ) S,

I

—+

K'+ K K'+ K
(5.6b)

Note that the first term in Eq. (5.6a) cancels the second term in Eq. (5.6b). Finally, we get

q J""(K'K [pq q]) = — ~ A!k —!4!k-
([p+ q, ] K'+ [K+ q, /2] q, lx I'gS,

2 2 4)+k- d

I([p+ qi] —q2 k+
K'+ [K+ qi/2] q21

2 2

q21
4)

([p+ q

dk4

(»vr) 4

(px I'gS, I—
K2

x I' S,
I

(p

xS,
I

——k
(p
i, 2

gye~- J~. K ——
2

i] „K'+[K+ qi/2] q2)
2 4)

I
k+.( [K' —qi/2] —K q2 ) ( [K' —qi/2] —K q2 )

2
+ —!A!k—4) 2 4)

[K' —qi/2]+ K q2&! q
2 4)

—q2 [K' —qi/2]+ K q2&l,
)+ eN* A~.

2 4) N'

+
[K'- q, /2]+ Z + —

I

I'.
2 4)

, qq; ]q, qg })—Jg. —(qq'IC + —;Q + q„,
—

qg]) (5.7)

This is the desired result satisfying the two-body
WT identity for the two-photon interaction current,
Eq. (4.13).

B. Interaction currents for a covariant separable
potential

As the second example of a nonlocal force we consider
a covariant separable potential. With a separable kernel
the BS equation has analytic solutions for both scatter-
ing amplitudes and bound state wave functions, and such
a model has been used for both two-nucleon systems [40]
and three-nucleon systems [41]. Such a model therefore
provides an explicitly soluble scheme for Compton scat-
tering. The covariant separable interaction has also been
successfully applied to the description of the structure of

I

I

I

I
I I
WJ/P/j/P/A

I I

I

I

I

I I
V///PAP//8

(~)(a)
FIG. 15. Diagrams for the two-photon interaction current

associated with the nonlocal potential: (a) direct process and
(b) crossed process.
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mesons as quark-antiquark (qq) composite systems [42].
The model gives an analytical solution for the dynami-
cal quark mass generated by the spontaneous breaking
of chiral symmetry. Here qq ++ meson duality [43] seems
to support a factorizable form of the interaction, par-
ticularly for electromagnetic observables including vector
meson processes. The physics of hadron resonances, such
as the vrN ~ L ~ vs% process, may also be eKciently
described with an efFective interaction of separable form.

In this section we give the explicit form for the one-
photon and two-photon interaction currents associated
with separable interactions. The derivation of the one-
photon interaction current is given in Ref. [26]. The
derivation of the two-photon interaction current is fairly
lengthy and will be published in a separate paper [44].

We will use a simple rank-one model for the covariant
separable interaction:

FIG. 17. The matrix element for one-photon annihilation
at the vertex A(zi, x2).

V p, g~(K', K;p) = F p(K')FJ (K),

where the vertices are given by F p(K') = f(K' )0 p
and F&~ (K) = ft(K2)At& The fo. rm factors f(K' ) and

f t(K ) depend on the relative momentum of the two nu-
cleons in the final state, K' =

2 (pi —p2), and the initial
state, K = 2(pi —p2), where pi (pi) and p2 (p2) are
the respective four-momentum of the first particle with
charge e~ @nd the second particle with charge e2. The
4X4 matrix 9 p operating on the nucleon spinors is as-
sumed to be independent of any momenta. The dagger
attached to the form factor means that the Hermitian
conjugate is to be taken if a quantum mechanical oper-
ator is inserted as the argument. In coordinate space
(Fig. 16), the separable interaction is given by

FIG. 18. Terms which make up the one-photon inter-
action current, J", associated with the separable potential
V(&1 &2 &1 &2) ~

+op;By(&1)1&2)i&1)l&2) —+np(&1) +2)+ Bp(+1~ &2)&l

where

(5.9)

X'
2

X
2

&-P(*i ~2) = f pi —p'. 'l
(27r)s ( 2 )

I I
zpzx A~pe

A~ (Xi, X2) = dpqdp2, t t pq —pq
4 4

(27r)s ( 2 ), fi
XOt e '""~e

cxP

X1 x,

x' X (d)

FIG. 16. A rank-1 separable potential V(mi, xz', xi, x2),
where the shaded circle represents the vertex A(xi, x2) and
the conjugate vertex A (xi, T2).

FIG. 19. Terms which make up the two-photon interac-
tion current, J",associated with the separable potential.
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are the Fourier transforms of the vertex functions,
I" p(K') and I"& (K). Note that the momentum variables
in the form factors can be replaced by the derivative oper-
ators, f (["'2"'] ) ~ f (—[ '2 '] ) . We now introduce
the photon field, A" (x ), through minimal substitution,
0)' —i B~ = B~ + i,e A)'(x ), where e, x and 8" are
the charge, coordinate, and derivative operator of the nth
particle. The line over the derivative operator will indi-
cate minimal substitution of the quantized photon field

given by

d4q
A„(x) = (a„(q)e '~ + at(q)e+'~ ), (5.10)

where at (q) and a~(q) are the creation and annihilation
operators of a photon with momentum q and the polar-
ization e„.The presence of the photon field modifies the
vertices,

&-)s(xi x') ~ &-n(xi x') = (5.11a)

A~ (xi, x2) -+ b, ~ (xi, x2) = d Pid P2 t ( 01 —82

(2vr)s
~

2
(5.11b)

and each form factor involves the photon field operator. The matrix element of the one-photon absorption (Fig. 17) at
the vertex is given by (O~A(x'1, x2) ~a (q)). The presence of the photon field modifies the potential, and the variation
is given by

~V(xi) x21) xil) x2) +(x].) x2)+ (xil& x2) +(xl) x2)+ (xil) x2)

+(T( T2) (+ (+1 T2) + (Tl »)) + (+(2( +() +(»»)) + (Tl »). ( 5.12)

This change of action also defines the one-photon interaction current, J", and the two-photon interaction current,
J"",through the coupling of photon field:

hV = A„J"+ A„A J" + (5.13)

The one-photon interaction current with momentum transfer q can be derived from

J„(*1,*2,*1 x2 [q]) = —(2~)'(O~~V~a„(q)) (5.14)

and

(o~bv~i~,'(~)) = (o~i (~(*|z2) —~(*i *2)) i~t (Q))(o~i~'(»»)~io)

+(o~l~(*( *'2) lo) (o~l (&'(»») —~'(»») ) l~,'(q)) .

The two terms in Eq. (5.14) are illustrated in Fig. 18; the details of the derivation can be found in Ref. [26]. For a
system with one proton (ei ——e„) and one neutron (e2 ——e = 0), the one-photon interaction current obtained from
the separable potential is given by

~"(z', sc;()) = ~

' '"
v re —-', z —v(z', z) — ' ')' v sr z -' —v(x' sc) )(q. [4K' —q]) 2' '

(q [4K+ q])
'

2

(5.15)

We point out that the current operator itself is expressed in terms of the separable potential, and it is clear that the
operator satisfies the two-body WT identity, Eq. (2.11). The two-photon interaction current is obtained from,

J, (xi x2 xi x 2 [qi, q2]) = (2~) '(aI (q2) ~

~V
~

a'. (qi) ), (5.16)

where qi (q2) and e„(e~) are the absorbed (emitted) momentum and polarization of the incoming (outgoing) photon.
The matrix element has four terms,
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(~~(q2)l('&l~'. (qi)) = (~~(q~)l&(*(, *'*)Io)(ol (&'(&I») + (Tl.»)) la (qi))

+(ol&X„*',)lo)(o (v~)l (&'(*»T2) —&'(*i *~)) lo'. (»))

+(ol&(~(, *',)l~'. (vi))(~, (v~)l (&'(», **)—&'(»»)) Io)

+(~,(e) I (&(*(,*l)
—&(*'„*l)) I

~'.(e)) (OI &'(», *.) I
o), (5.17)

where the first, second, third, and fourth terms are illustrated by the diagrams in Figs. 19(a)—19(d). The result for
the two-photon interaction current is

J""(K' K. [q q ]) = O""g O"" y O""g O""

where

(5.18)

& K'+ —,K+ ——V K'+ —,K + V(K' K) —V K' Z y q'
1 p ) )

O,""=.„' V K', Ki —" G,""+V K', K ——", G.""+V~ K', K+ ', '
~G„" —V(K', K)&."",

and Qi ——Qi" (qi ++ q2), Q2 ——Q2 (qi ++ qz). The kinematical factors (G" ) are defined by

[4K'+ q2]"[4K+ qi]
([4K' + q2] . q~) ([4K + qi] qi)

'

[4K + 2qi —q2]"[4K + qi]
([4K + 2ql 'q2] ' 'q2) ([4K + ql] ' ql)

[4K —2q, + qi]"[4K —qg]"

([4K 2'q2 + qi] ' qi) ([4K —q2] q2)
1~PV

(2K ~ qi —q2)2 —(2K)2
[4K —2q2 + qi]"[4K —q2]" [4K + 2qi —q2]"[4K + qi]"x 2g"" ~

([4K —2q2 + qi] . qi) ([4K + 2qi —q2] . q~)

QPv
(2K + qi —q2) —(2K)

x 2g" [4K —2q2 + qi]"[4K —q2]"
([4K —q2] . q2)

[4K + 2qi —q2]"[4K + qi]"
([4K g qi] . qi)

Here Oi+", O2", Oi~, and O2~" correspond to the four processes in Figs. 19(a)—19(d), respectively. Finally, we evaluate
the divergence of this two-photon interaction current

q, J" (K'Ic;(q, , q, ]) = a"*
,

' ' " v tc' ——', Ec —v
I

A" + ' ', Ec I)"(2K' + q2 —qi) 2 —(2K' —qi) 2
' ( 2

— *)"
~

—
&~

)"(2K + q, —q, )' —(2K + q, )' q
' 2 ) '

2

(5.19)
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This is just the two-body WT identity, Eq. (4.13).

C. Two-photon interaction current for the
one-pion exchange process

Finally, we derive the two-photon interaction current
for the one-pion exchange (OPE) mecharusm. Only the
charge exchange potential shown in Fig. 20(a) can con-
tribute to the interaction current, and in order to keep
the presentation simple, and to ensure that it is consis-
tent with our assumption that e = 0, we work directly
with the charge changing 7rnp coupling (we do not use
the isospin formalism), given by

(5.20)

/

P,

P, n po P,

(b)

FIG. 20. (a) The OPE charge exchange NN interaction.
Note that it is an exchange interaction and hence is nonlocal
in the proton momentum transfer pq —pq. (b) The OPE
interaction current, where momentum conservation pq + pq +
q = pq + p2 is understood.

Vp ~g(K', K;p) = g+pp p —qA(K+K'). (5.21)

where m annihilates an incoming n particle (or creates
sr+), @„annihilates an incoming proton, and @ creates
an outgoing neutron. From the isospin theory we know
that g+ ——~2g~~~, where g ~~/4m = 13.5 is the fa-
miliar neutral pion coupling constant, but we will not
need this result here.

The OPE charge exchange potential obtained from
(5.20) is

~h~re K =
2 (p] —p2), K' =

2 (p', —p2) and p = (py +
p2). Note that this potential is not a function of the
proton momentum transfer, K' —K, and in this sense
it is a nonlocal potential which can be described by the
formalism developed in this paper.

The one-photon interaction current generated by this
OPE charge exchange is shown in Fig. 20(b), and is

(5.22)

where the electromagnetic coupling of the negatively charged pion gives a Feynman factor of

j" (k', k) = ie„(k'+ k)~, (5.23)

where k and k' are the four-momenta of the pion before and after the interaction. The famous Z graphs must not be
added as a separate contribution because, in the relativistic formalism, the nucleon propagators include the negative
energy components which generate the Z graph, and hence these contributions are automatically included in the
nucleon current terms. Note that the one-photon interaction current (5.22) satisfies the correct WT identity (2.11),

q„J"(K', IC; ]p, q]) = —g+ e~ y 8 p' E (K + R' ——
)

—E (K + A' + —
)

=e„V K' ——,K;p —V K', K+ —;p+q (5.24)

Next, the two-photon interaction current can be derived from the diagram shown in Fig. 21. The result is given by

J" (K', K; pg, p2., [p, qg, q2]) =A (A(ks)[ks+ k2]"A(k2)[k2+ kg] A(kg)

+A(ks)[ks+ k2]"A(k2)[k2+ k, ]"A(k, ) + A(ks)( —2g"")A(kg)}, (5.25)

where g'v = —g+e„p p, and the new momenta are kq ——p2 —pz, k3 ——p2 —py, I"2 = p2 —pq+qx, and k2 = p2 —pq —g2-
af 2 2 5 5

The erst, second, and third terms of Eq. (5.25) correspond to the direct [Fig. 21(a)], crossed [Fig. 21(b)], and contact
[Fig. 21(c)] terms, familiar processes in the Compton scattering from a free pion. The two-photon contact term
contributes a Feynman factor of

(k', k) = 2ig" e„, (5.26)

for the ppvr coupling. We assume that the pion is point-like, so that the vertices given by Eqs. (5.23) and (5.26) do
not have form factors. By using the WT identity for the per vertex,

q„j" (k', k) = ie„[A (k') —A '(k)], (5.27)
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we can evaluate the divergence of the two-photon interaction current:

qlu J (K ~ Ki pl ~ p2~ [pi ql~ 'q2]) ~ (+(k3) [k3 + k2] +(k2) [+ (k2) + (kl)]+(kl)
+A(k3)[A '(k3) —A '(k2)]A(k2)[k2+ kl]"A(k, )
—2A (k3) [k3 —k 1 + q2]"A (kl ))

—~ (+(kl 'q2) [2kl 'q2] +(kl) +(k3) [2k3 + q2] +(ks + 'q2) j ~ (5.28)

Each term in the curly brackets can be expressed in terms of the one-photon interaction current. We obtain

ql J" (K', K;pl, p2, [p, ql, q2]) = e„J" K' ——,K; [p, —q2] —J" K', K+ —;[p+ ql, —q2] (5.29)

in precise agreement with Eq. (4.13). We note that con-
tributions from the direct, crossed, and contact terms are
all crucial to get the result, just as they are for Comp-
ton scattering from a free pion. In the derivation, we
assumed that the pion is pointlike, and the use of the
WT identity, Eq. (5.27), was crucial. If we had form fac-
tors F~ (q) and F» (q) for the per and ppvr vertices, we
could still obtain a gauge invariant result if we defined
new o8'-shell currents with the form factors confined to
the transverse parts of the current. A complete discus-
sion of how to carry this out for one-photon interactions
can be found in Ref. [24]. The method can be extended
to the treatment of two-photon interaction currents.

VI. SUMMARY AND DISCUSSION

/

P1

q
P,

q

q

P,

(b) (c)

FIG. 21. Diagrams for the two-photon interaction current
derived from the one-pion exchange mechanism: (a) the direct
process, (b) the crossed process and (c) the contact term.

There are four principal results in this paper.
{1)We derived a condition which the impulse (IMP)

and final state interaction (FSI) processes must satisfy
if current is to be conserved. (We use the terminology
"FSI" to denote both final state interactions in electro-
disintegration and also rescattering process in Compton
scattering. ) If the forces are nonlocal, the conventional
amplitudes including IMP and FSI processes do not con-
serve current. In both electrodisintegration and Comp-
ton scattering this violation is expressed in terms of the
quantity 7 {k',k;p, q). [See Eq. (2.10) and Eqs. (3.6a)
and (3.6b)]. This quantity depends on

V I ——+ -, I ——+ —;p+q —V k ——,A; ——;pp v p / p p
2 2' 2 2' 2' 2'

and these two terms correspond to momentum insertion
by the photon before and after the nuclear interaction,
as shown in Fig. 6. These two processes cancel for local
interactions, but not for nonlocal ones.

(2) In addition to IMP and FSI processes, we intro-
duced one-photon interaction currents associated with
nonlocal forces. These interaction currents are generated
by the coupling of photon(s) to the charged constituents
in the nonlocal region (d = ~xl —xl~ ~xz —x2~) of the
interaction V(x'1, x2, xl, x2). The contribution from the
interaction currents [Fig. 5(c)] and interaction currents
with rescattering [Fig. 5(d)], restore gauge invariance in
electrodisintegration. The replacement of the impulse
current by the combined current J",Eq. (4.1), includes
all of these contributions systematically.

(3) We used this combined current to analyze the
reaction mechanism for Compton scattering from the
deuteron. The total amplitude generated from this cur-
rent, corresponding to the 16 diagrams shown in Fig. 10,
is not gauge invariant. Gauge invariance can be restored
if we introduce a new two-photon interaction current
[Fig. 2(b)] which satisfies a tnio body WT-identity. This
identity for the two-photon interaction current is given
in Eq. (4.13).

(4) We derived the explicit form of the two-photon in-
teraction currents from three simple models of nonlocal
forces. In the first model the nonlocality arises from the
two-pion exchange process with excited baryons in the
intermediate state. The interaction current arises from
the coupling of the photon to the excited baryons. In
the second model the nonlocality arises from a covariant
separable potential and the interaction current is derived
by minimal substitution of the photon field into the form
factors of the separable potential. In a third example the
nonlocality arises from one-pion charge exchange and the
interaction current is derived from the diagrams which
describe Compton scattering from the virtual, oÃ-shell
exchanged pion. The interaction currents derived from
all three of these models satisfy the two-body WT iden-
tities for the one-photon interaction current, Eq. (2.11),
and for the two-photon interaction current, Eq. (4.13).

Throughout this paper we focused on the eKect of the
nonlocality in nuclear dynamics and assumed the nuclear
force to be of a charge non-exchange type (except for the
OPE current). Inclusion of charge exchange interactions
is extremely important in calculating realistic amplitudes
for Compton scattering and electrodisintegration. In fu-
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ture work we will extend these techniques to a general
treatment of charge exchange interactions.
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APPENDIX A

Here we prove Eq. (4.3). The amplitudes in Fig. ll are
given by

C~ (Wgg) =ie„
d4k.~-~(Kf ») (~"S(k+ Q)~ ]» ~»(K. p. )S,.'(k —p), (Al)

d4k d4k' .C" (W-) ='. . . ,+(Kf »)~"S(k+ Q) .,
xiJ~.„~ k —- + —,k' —- + —;p+ —,qi

~
~,~(K;;p;), (A2)

d4k

(2vr) 4C""(Yjq) =ie„
d4k' .

4 (Kf, pf)p" S(k + Q)]

xiM~. ,&, ~

k —-+ —,k' —-+ —;p+Q ~

[S(k'+ Q)p @(K';;p,)]... (A3)

d4k
C""(Yjs)=ie„@(Kf., pf)p" S(k ~ Q)

d k' d4k". ( p Q „p Qi', ~q ~

k ——+ —,k" ——+ —,; p+ Q
~

S&,(k" + Q)S „(k"—p)(2~) (2m)4 '
g 2 2 2 2

p Q i pxiJ b ~

k ——+ —,k ————;p ——,qq ~@ ~(K! p)2 2 2 4 2' (A4)

C""(Xgg) = ie„
d4k

,~-n(Kf pf) I~ S(k —Q)~"lp, @~~(K' p*)Sa.'(k p), — (A5)

d4k

(27r) 4C""(Xgs) = ie„

C" (Zgg) = ie„

d4k"

(2vr) 4
C" (Zgs) = iep

The divergence in the 6rst four amplitudes is given by

d4k' .
@(Kf,pf)p" S(k —Q)]

p Q, p q.x J"
I

k ————,k' ————;p ——,—q I

@ ~(K';p'),
2 2 2 4' 2 )

d4k d'k'
, [4(Kf,pf)p S(k —Q)

x'M&. ,', i
k —

—,
——,, k' —

—,
——, p —Q

I
[S(k' —Q)~"+(K. p )],.

d4k d4k'

)4 [4 (Kf fp)p S(k —Q)]

xi';wy ~

k ————k —— 'p Q l Se (k Q)Ss»(k p)
p Q Ir p Q . ~ o If

2 2' 2 2

xiJ,
~

k ————,k ————;p ——,—q2
~

@ g(K;;p).p Q g p
2

'
2 4' 2' )

(A6)

(A7)

(A8)

qg„[C""(Wgg) + C" (Yjg) + C" (W~s) + C" (Ygs)] = iep
d4k

, [@(Kf pf)v"S(k+ Q)] p (Ojq

where
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($)p ——ee S '(k+ Q) —S '
(k ——

) See(K;;p;)Se '(k —p)

Q, p Q+, Mp, » ~

k ——+ —,k' ——+ —;p+Q
~

(27r)4 ' ~
q 2 2

'
2 2

' )
x I —Sk'+ S ' k' —— 0 K,';p,

dk' „( p Q, p q q+' q,„J~., ~

k ——+ —,k' ————;p —,—q~ I~,~(K,';p;)
(27r)4 " ) '»

g 2 2
'

2 4' 2

d4k' d k" ( p Q, p QM~. »~ . k ——+ —,k' ——+ —;p+q
~
S,,(k" +q)S„(k"-p)

(2vr)4 (2sr)4 ' ( 2 2
' 2 2

'

x'q, J .
~

k —- + —,k ————;p ——,e l +,~(K;;p, )
(„p Q, p q.

sP» ( 2 2' 2 4'

= eeSp '(k -k Q)See(IC;;P )Se '(k —P) —
eeSp

'
(k ——

) eke(S. ; P )Se '(k —P)

d4k' . ( p Q, p QiM~. ,„~ k —-+ —,k' —-+ —;p+QI @,~(K,'-;p;)
(2sr)4 ' 2 2

'
2 2 )

eMp, e
~

k ——— k —,k ——+ —;p+Q
~

S'(k + Q)S k —— C'(A;;p, )
p Q, p Q.
2 2 2 2 2

dk'. p q, p q q
+e& i Vp .g~ k ————,k' ————;p——

(27r) ' 2 4 2 4 2

—V~..., ~

k —-+ —,k' —-+ —;p+Q
~ @,~(K,;p;)

2 2' 2 2

d'k' d4k" . ( p Q „p Q+e„~M,...& ~

k —-+ —,k" —-+ ;p+ q —I S~.(k" + q)S,.'(k" - p)
(2sr)4 (2vr)4 ' ( 2 2

'
2 2 )

p 0 I pxi V, .g k ————,k ————;p——
&P) 2 4 2 4 2

—V„,» ~

k" —-+ —,k' —-+ —;p+Q
~

@,a(K, ;p;).p Q, p Q.

The overlined terms cancel by the wave equation for the bound state,

d4k"q p q . d k p q „p q „p q

2

The underlined terms also cancel. The double-underlined terms cancel if we use the scattering equation

Mp~.,» i
k ——+ —,k' ——+ —;p+Q i

p Q, p Q.
)

Q, p Q= V pe, ~

k ——+ —,k' ——+ —;p+Q)
2 2' 2 2'

+' M, , ~

k ——+ , k ——+ —;p—+q
~
S,, (k +q)S,.(k -p)p Q n p Q. & ir n

(2sr)4 ' 2 2
' 2 2

'

xV„,„I

k" —-+ —,k' —-+ —;p+q
I

.
2 2 2 2

Only the erst term remains, so that

q - l~" (~-)+c""%.)+~""(~-)+~"(&-)j
4

= ie IC'(Kf pf)p"S(k + Q)] Sp '(k+ Q)C'~p(K;; p;)S~ '(k —p) .

Similarily, the divergence of the Xqq + Zqq + X~3 + Zq3 processes is given by

d4k'
q,.I~ (~„)+ e"(~„)+ ~"(~„)+ e"(~»)] = '.„,(O)., [S(k'+ q)~"+(K;p;)],

(A9)
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where

&o) ~= —,s.—,'(k' —„)e„(lr,;~~)&„,'I-k —' Q)+e, s;,'js —p)e„pc,';p, )s;,'(v+ -)

—ep
d~k' —, . f p Q, p Q
(2~)4 ~ f' '
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k ————,k' ————;p —Q
~
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iM„,.~ ~

k ————,k' ————;p—Q
~2 2' 2 2' )

—iep
dk' — p q p q

(27r)' ' ~' 2 4 '
2 4 '@iq(Kf; pf) Vqv, p k ——y —,k' ——+ —;p —q)

p Q, p Q—Vg~,. yak ————,k' ————;p—Q i2 2' 2 2

d4k

(2vr) 4

d4k"
X@p$(Kf I pf )2' 4
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2 2
'

x Sp, (k —Q) Sp (k —p)i M, p, p ~

k ————,k ————;p —Q ~

.p Q I p Q.
2 2 2 2

As in the derivation of Eq. (A9), the underlined terms cancel, leaving the first term only. We have

'll [C (~11)+ C (Zll) + C (~13) + C (Zls)]

4k'
= —ie„',S& '(k' —p)4~~(Kf., pf)S, '(k' —Q) [S(k'+ Q)~"0 (K,'; p, )]& . (A10)

Equations (A9) and (A10) were used to complete the proof of Eq. (4.3) in Sec. IV.

APPENDIX B

We now derive Eq. (4.9). The four amplitudes are

d4k

(2vr) 4
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C" (Z33) =i d4k

(2sr) 4
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xi J$ „( ~

. k ——+ —,k ————;[p —Q, qg] ~
Sg, (k —Q)Sp„(k —p)

xiM, @, p ~

k ————,k ————;p—Q ~
Spy(k —Q)S„(k"—p)

(- p Q, p Q.

p Q ( p q q I.xzJ, k ————k ———— p —— —q, @ g(A p).Av; 2 2 2 4 2' Z (a4)

To evaluate the divergence of these amplitudes, we separate out a common factor,

qg [C""(Xgg) + C""(X33)+ C""(Z3g) + C" (Z3g)] = ie„

where the curly bracket is given by

d~k

(2sr) 4

(XZ)~ = e„
d4k'

(q(qqy;py) S ' (k+ —
) S(k —()) —1 ) i' ~ k ————,k' ————;(p

——,—q, i)

+e„
d4k'

(2sr) 4

d4k"
(qi(lqg;py) S (k+ —

) S(k —q) —1 )

xi', ~ ~

k ————,k ————;p—Q
~

S~p(k —q)S (k —p)
p Q qq p Q . ) qq qq

q( p Q ( p q. qxiJ ., k ————,k ————; p ——,—q2

d4k'

(2vr) 4 2' 4 @,p(Kf, pf) iqg„J, ~ ~

k ——+ —,k" ————;[p—Q, q, ] (l 2 4' 2 2' ' ')

xS4,p(k" —Q)S (k" —p) iJ" . k" ————,k' ———— p —— —q4'

d4k'

(2sr) 4 (2sr) 4

d'k . ( p q — p Q
(2~)4 " ' "~

& 2 4' 2 2' ' )e„~(Zf,pq)iq, .J„„~~

k ——y —,k ————;[p—q, q, ] ~

p Q J Q.x S),(k —Q) Sp„(k —p) i M, p ~

k ————,k" ————;p —Q
~2 2' 2 2' )

x sq(k —q)s.. k —p) xz
~

k ————,k ————
~; p ——,—q, )

I/ („p Q, p ql q
P CXCJ P~ ~ bp 2 2 2 4g 2

Use the two-body WT identity for the interaction current,

q„J"(k', k;(p, q]) = a~ V (k' ——,k;p) —V (k', k+ —;p+q)

to get the following expression:

(XZ jq ——e„

where

d4k' . „p Q, p q qi J", k ————,k' ————; p ——,—q2
(2m. )4 ~ ~ '~ 2 2' 2 4'
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(oj p
——(@(Kg;pg) S ' (k+ —

) S(k —Q) —1
nP

@(Kg;pg) S ' (k+ —
) S(k —Q)

p Q „J Q.xiM~, . p ]
k ————,k" ————;p—

2 2' 2 2'

i@,p(Kf, pf) Vp, , y ~

k ————,k"d4k" .— ( p Q
2sr ' " ' "'

q 2 2'

Q
~

S4p(k" —Q)S (k" —p)

p Q————;p—Q I2 2' )

—~,. ~ k ——+ —,k ——+ —;p+— S&&1 — S k —p
P V P II II

2 4' 2 4' 2

Q-
(2sr)4

' "'" ( 2 2
'

2 2
' )ie„„(Kf;pf) v,„« ~
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d4A:"

(27r) 4

—V),„. ( k ——+ —,k ——+ —;p+— Sg, k — Sp k —p
P V P V V

2 4' 2 4' 2 rl

xi M,~, ~
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S,~ (k —Q) S .(k —p) .p Q Ir p Q.

)
Note that the underlined, double-underlined and overlined terms cancel themselves. We get (Q) &

—— @p(—Kf pf),
and this proves Eq. (4.9).
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