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method
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We study the quantum foundations of a theory of large amplitude collective motion for a Hamil-
tonian expressed in terms of canonical variables. In previous work the separation into slow and
fast (collective and noncollective) variables was carried out without the explicit intervention of the
Born-Oppenheimer approach. The addition of the Born-Oppenheimer assumption not only provides
support for the results found previously in leading approximation, but also facilitates an extension
of the theory to include an approximate description of the fast variables and their interaction with
the slow ones. Among other corrections, one encounters the Berry vector and scalar potential. The
formalism is illustrated with the aid of some simple examples, where the potentials in question
are actually evaluated and where the accuracy of the Born-Oppenheimer approximation is tested.
Variational formulations of both Hamiltonian and Lagrangian type are described for the equations
of motion for the slow variables.

PACS number(s): 21.60.—n, 21.60.Ev, 0.3.65.Ca, 03.65.Sq

I. INTRODUCTION

For the past decade, the authors and their collabora-
tors have been involved in the development of a theory of
large amplitude collective motion. This enterprise began
with a pair of papers [1,2] on possible quantum founda-
tions for such a program. Soon thereafter [3] it was real-
ized that the leading approximation, to which most pre-
vious studies had been confined, was classical in nature,
(with subsequent requantization) and, as a consequence,
almost all later systematic theoretical development, re-
viewed in Ref. [4], was based on the study of this limit.

Quantum corrections can be important in selected cir-
cumstances, however. Consequently, the elements of a
systematic method for including quantum corrections by
expansion about the classical limit has recently been de-
veloped [5], distinct from the approaches found in our
initial papers. We consider it worthwhile, nevertheless,
in the light of subsequent developments, especially within
the context of the Berry phase idea [6,7], to update, aug-
ment, and improve the work described in those initial
efforts and to tie them, where possible, to more recent
work. In a paper currently in preparation, we shall con-
trast the nuclear-physics foundations of the method de-
scribed in this paper with that found in Ref. [5], both
approaches requiring elaboration compared to what has
already been published.

Ln Sec. II we give a condensed but at the same time
more precise account of the essential theoretical content
of Ref. [1],namely, a method for separating and identify-
ing a collective subspace for a specified class of Hamilto-
nians. This is done in an approximation that suppresses
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any coupling to noncollective degrees of freedom. As op-
posed to the corresponding problem in molecular physics,
the Hamiltonian is generally given in a form where the
coordinates are not appropriate to make the separation
of the Hamiltonian into a collective and a noncollective
part. The discovery of new coordinates that will effect
the separation is an essential part of the problem. In the
regime of large amplitude collective motion, a reasonably
complete theory that can be implemented [4,5] has been
developed so far only for the case that the transforma-
tions to new coordinates and momenta are restricted to
point transformations.

In Sec. III, we describe how the previous theory may
be extended to include the interaction between the fast
and slow variables. This is done by means of a standard
Born-Oppenheimer (BO) representation of the states of
the slow variables. Though some of the ensuing details
are similar to those encountered in the molecular prob-
lem, leading, for example, to the occurrence of Berry po-
tentials [6,7], others are characteristic of the problem of
large amplitude collective motion. In order to evaluate
the corrections found to the potential energy of the col-
lective variables, it is necessary to obtain wave functions
for the fast variables. This is done by an extension of
the analysis carried out in Sec. II. At the same time
this development provides a justification for some of the
assumptions of the previous analysis.

In Sec. IV, we present material that has no direct
counterpart in any previous work in this field, outside
our own. One of the results of Sec. III was to estab-
lish a complete effective quantum mechanics in the col-
lective subspace, i.e. , we not only computed an effec-
tive Hamiltonian operator in the collective subspace, but
also proved that it was expressed in terms of canonical
variables. In Sec. IV we study variational principles for
the associated Heisenberg matrix. mechanics. If we put
aside, momentarily, special diKculties associated with
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the curved spaces that we allow in our general formula-
tion, we find quantum analogues of variational principles
both for Hamilton's and for Lagrange's equations. The
connection between the two forms is the standard one,
even when Berry phase terms are included, in contrast
to a result based on the use of path integrals [7]. For
the general case of a curved space the situation is more
involved, and only a variational principle for Hamilton's
equations is presented and analyzed.

The corrections to the potential energy of collective
motion found in Sec. III are of three types. There is
first a "quantum" potential arising from the curved space
(position-dependent mass tensor). This term cannot be
evaluated fully with the tools developed in our previous
work [4]. In practical applications to systems with N
degrees of freedom, this term is of order N 2, and there-
fore should be small for a many-body system. A second
term consists of the eigenvalue for the state of the fast
variables for a fixed value of the slow variables. In our
approximation this state is that of a set of independent
harmonic oscillators, with frequencies dependent on the
instantaneous value of the collective coordinates. We are
mainly (though not exclusively) interested in the zero-
point motion associated with the ground state. This
contribution, which is only of order N ~ compared to
the leading term, has been studied previously in simple
examples [8]. A third correction, referred to as the Berry
scalar potential, occurs together with the Berry vector
potential, both appearing in the collective Hamiltonian
as a consequence of the BO approximation.

Examples in the literature relevant to the approach
described in this paper are not numerous. The examples
studied by Bulgac [9,10] have been stimulating, but a bit
too simple for our purposes. On the other hand, the work
by Girard, LeTourneux, and Vinet [11] on the dipole-
quadrupole problem in spherical nuclei is too complex
to satisfy our initial needs. Section V is devoted to the
study of several "in-between" models sufficiently simple
that the BO approximation can be carried out, includ-
ing the calculation of the Berry potentials, and compared
with more exact results. Some technical details associ-
ated with the material of Secs. II and III, respectively,
are provided in two appendices.

II. SUMMARY OF PREVIOUS RESULTS

physics [4,8], but it is also possible [12] to transform the
large amplitude problem of nuclear collective motion into
this form as the basis for further development. Associ-
ated with this Hamiltonian is a form for the scalar prod-
uct in Hilbert space that is discussed in Appendix A.

The problem of immediate interest is to find a de-
composition of the operator H into two parts, exactly
in rare cases, approximately under most circumstances,
that describe slow and fast (or collective and noncollec-
tive) degrees of freedom. A basic difficulty of the class
of problems that interest us is that we cannot assume
that this separation occurs for the initial choice of coor-
dinates. Instead, we assume that it is possible to efI'ect
such a decomposition, at least approximately, by means
of a point transformation of the form

( =u (~),
2:=(Q', q ),

i=1" K,
a=K+1 N,

(2.3)

that is locally invertible,

(2.4)

&(4) = &[~ (Q ~)] —= &(Q, Q) (2.5)

Turning then to the consideration of the kinetic energy,
T

Though we have discussed, in the past [3,4], the possi-
ble interest of going beyond point transformations in the
study of large amplitude collective motion, it is only for
this simpler class of transformations that a substantial
theoretical underpinning can be claimed to exist, a foun-
dation that we wish to widen in the present work. (Of
course, there is a substantial literature based on transfor-
mations that are polynomial in coordinates and momenta
that are applicable to anharmonic vibrations (see, for in-
stance [13,14]), but this is not the subject of the current
paper. )

A first step is to carry out a formal transformation
of the Hamiltonian, H, to the new variables. For the
potential energy, we have, trivially enough,

T=-( ( p & (())) (2.6)
In this paper we base our study on a Hamiltonian that

with the help of the summation convention takes the form

H = H((, 7r ) = —(vr,

(harp,

B P(())) + V((), (2.1)

that describes N coordinate and momentum pairs, (
and vr, o, = j. N, that satisfy canonical commutation
relations (h = 1),

[(,harp]
= i,bp (2.2)

We thus allow for a curved space described by a (recip-
rocal) mass tensor B P. Not only is this formulation
of interest for a range of applications outside of nuclear

this expression can be transformed to the new variables
with the aid of the relations [1]

T = —,(p. , (p-, &""(Q,q)))+ U(Q, ~), (2 9)

(2.7)

(2 8)

The derivation of (2.7) is given in Appendix A, whereas
(2.8) confirms the tensorial character of the mass tensor.
In terms of the new variables, the kinetic energy conse-
quently takes the form
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(2.11)

We now remind ourselves that the initial, even primary,
goal of the present considerations is to identify a piece of
the transformed Hamiltonian as collective. This collec-
tive Hamiltonian, H&, should depend only on the vari-
ables Q', P, , that we suppose to be canonical pairs. The
simplest possible choice would appear to be the restric-
tion of the full Hamiltonian to the values q = 0, p = 0,
and thus (see below)

Hc; = (P, , (P,—, B"(Q, 0))) + V(Q, 0). (2.12)

This choice is purely formal until we specify a procedure
for determining the unknown functions V(Q, O)

—= V(Q)
and B'~(Q, O)—:B'~(Q) in terms of the elements of
the original Hamiltonian and of the point transformation
(2.3) and (2.4). The criteria for such a determination
must be chosen so as to somehow minimize the coupling
between the collective and noncollective variables.

The simplest approach to this problem is to consider
H&, (2.12), as the first term of a Taylor expansion in
powers of the noncollective variables, q~, remembering at
the same time that we have a polynomial of degree two
in the noncollective momentum operators, p, . Assuming
that higher-order terms are successively of lesser impor-
tance, basically the same assumption that governs the
treatment of all variables in the small vibrations domain,
we adopt the same assumption that defines optimum de-
coupling in the classical limit [4], namely that the terms
linear in the noncollective variables vanish. This yields
the two sets of conditions

V (Q) + -(P' (P B (Q))) = o (2.13)

B *(Q) =0, (2.14)

recognizable as the coefficients of q~ and p, respectively.
The operator character of these conditions is apparent
only from the second term of (2.13). However, if we in-
troduce the Wigner transform of these equations, because
of the special symmetrization that we have adopted for
the kinetic energy, they reduce exactly to the classical
conditions studied extensively in our previous work [4].
There, starting from these classical conditions, we have
described and illustrated suitable algorithms for the de-
termination of the elements of the collective Hamiltonian.

With the determination of the elements of the Hamil-
tonian, (2.12), the theory is completed by the assump-
tion that the eigenstates of this operator are defined on a
K-dimensional Hilbert space of (round-bracketed) states
[n),

where the second term, which is specifically a quantum
potential arising from the noncommutativity of coordi-
nates and momenta, has the form

8U(Q, q) = [f"~g~, g ),
B"

),„—[f" g~„],„g~B"". (2.10)

For further work, the momenta are also divided into col-
lective and noncollective subsets,

l~) = f&QIQ)(ql~) (2.15)

and that these states accurately model a corresponding
subspace, ~n), of states of the full Hilbert space. The
theory described above is very close to the theory that
has been applied in a number of early applications, such
as [15,16]. A major aim of the present work is to critique
and generalize this procedure.

We emphasize that in this program, the ele-
ments of the collective Hamiltonian are determined
from a K-dimensional manifold in configuration space,
parametrized by the coordinates (Q), whereas the quan-
tum mechanics is determined in a Hilbert space defined
by the same coordinates. Upon further reflection, it may
strike the reader that this is a strange result, or, at least,
a very limited one. The reason is that the true collec-
tive states, ~n), though they define a subspace of the full
Hilbert space, are nevertheless states in this space and
therefore depend also on the noncollective coordinates,
at the very least through the zero-point motion of the
latter. Though we have been able to neglect this depen-
dence in the approximation considered so far, this will
no longer be true if we seek to include the effect of the
coupling to the fast variables on the properties of the col-
lective states, or in directly describing the motion of the
fast variables.

III. GENERALIZATION OF THE FORMALISM
TO INCLUDE THE EFFECTS OF THE FAST

VARIABLES

(Q'q /n) =—(Q, q/n)

= ) .(Qln~) [ql~:Ql (3.1)

where the index v is not to be confused with its previous
use as a coordinate index. Here and for the remainder of
this paper, we adopt a notation where angular brackets
indicate states in the full Hilbert space, square brackets
states in the space of fast variables (though dependent

In this section, we set ourselves two tasks. We shall
first find the forms of the leading corrections to the col-
lective Hamiltonian given above, arising from the cou-
pling of the fast to the slow variables. This will be done
with the help of the standard Born-Oppenheimer (BO)
approximation. In order to evaluate these corrections
explicitly, however, we shall then commit ourselves to
further approximations for the dependence of the full
Hamiltonian on the fast variables, that yield a normal
mode description of the latter.

To generalize the restricted ideas of the previous sec-
tion, we thus introduce the BO picture into the theory of
large amplitude collective motion. As stated above this
amounts to an extension of the complexity of structure
allowed for the states of the collective subspace so as to
take into account the influence of the fast variables, We
first assume, more generally, that the collective states ~n)
have coordinate space representatives
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parametrically on the slow variables, as denoted by: Q in
the state vector), and parentheses states in the collective
space. We suppose that for fixed Q, the states [qlv: Q]
are a complete set of functions for the fast coordinates,

).[ql~:q][~:Qlq'] = ~(q —q'). (3.2)

(n'I~.~(q P) l~) = (~'IH(t! ~)l~) (3 3)

This relation will assume the status of a definition of the
collective Hamiltonian within the space of slow variables
and H,g recognized as a generalization of H~ only af-
ter we specify how to eliminate the fast variables from
the right-hand side. The procedure that we shall fol-
low is closely akin to the traditional Bo approach, with
characteristic differences arising from the facts that at
the beginning we cannot specify which are the slow and
which the fast variables, and that the treatment of the
fast variables comes as a kind of afterthought, dependent
in detail on the prior treatment of the collective variables.

Let us start with the potential energy,

V(0) = V[g (q q)] —= V(q q)

and evaluate the associated piece of (3.3)

(3.4)

(~'IV(C) l~) = (~'Iv.ill&)

q(~'Iq) [o:qlq]v[g (q, q)]

x [qlo: q](ql~) (3.5)

Though for the moment we have not specified the equa-
tion of which they are the solutions, we shall be able to
do so, at least approximately, as a consequence of the
developments to be carried out in this section.

For the remainder of the current discussion, we shall
consider the simplest case in which the fast variables oc-
cupy, for any given value of the slow variables, their state
of lowest energy, which is assumed to be nondegenerate.
For the case to be studied here, v takes a single value de-
noted by zero. The eoefBcient function, usually denoted
in this case by (Qln), that appears in (3.1), can then be
identified as the wave function for the collective motion,
and this identification will agree with the one that has
been made in the previous section, where the descrip-
tion of large amplitude collective motion was not tied to
the BO approximation. There we emphasized a connec-
tion between the decoupled Hilbert space of the collective
coordinates and the crucial existence of a K-dimensional
decoupled coordinate manifold described by the functions
g~(q, q = 0). The approximate separability of the asso-
ciated Hilbert space is based on the assumption that the
functions [qlv: Q] describing the fast variables are con-
fined to a narrow region in q space in the neighborhood
of the collective surface. If this picture holds, we may
expect the mathematical details to work out reasonably.

Adopting the BO approximation, we set ourselves the
task of finding an efFective Hamiltonian to describe the
motion of the collective variables. This operator is de-
fined, though not yet operationally, by means of the equa-
tion

within the BO approximation. The only feasible way, in
general, of integrating out the fast variables is to expand
V in powers of q,

v(Q, q) = v(q) + v q'+ -v bq q (3.6)

leading to

v.,(q) = v(q) + v~'&(q) + v&'l(q) +. , (3.7)

where assuming that the function [qlo:Q] is normalized,

V(Q) = V(Q, O), (3 8)

V(i) (q) 1[qlo: Q] I'q

—= V (Q)(q )q
V' (Q) = 2V.b(q)(q q )z.

(3.9)

(3.1o)

V~(q) = V~g

V~b(q) = V. pg gb

(3.11)

(3.12)

These equations are simplified by introducing one of
the decoupling conditions that follow from Eq. (2.13),
namely that (3.11) should be zero. (Here we are as-
suming that the two terms of (2.13) vanish separately.
Conditions for this to be true and modifications neces-
sary when it is not have been discussed in Ref. [4].) The
third term V~2l(q), is the first, A~i&v(q), of a sequence
of contributions that we shall identify as the leading cor-
rections to the potential energy. Further discussion of the
evaluation of this term and of the additional correction
terms, to be identified below, will be continued later in
this section, following the identification of all the pieces.

The remaining terms will arise from the study of the
kinetic energy, given after transformation of coordinates
by Eqs. (2.9) and (2.10). In order to integrate out the
fast variables in the contribution that these terms make
to H,p, consider the first term of the kinetic energy. We
expand the mass tensor in powers of q, and keep initially
only the leading term B" (Q, O) = B& (Q). In this ap-
proximation, we first restrict the study to the contribu-
tion of those terms where the indices p, v take on values
i, j in the collective subset.

As a preliminary to this calculation, we study the sim-
pler object

We thus see that the leading term is independent of
the wave function for the fast variables, coinciding with
the standard result for the potential energy of large am-
plitude collective motion [1,4] presented in the previous
section. The computation only requires the form of the
collective submanifold, ( = g (Q, O), which can be de-
termined by well-defined procedures [4]. To go beyond
this lowest order, we need, besides the wave function of
the fast variables, to rearrange the expansion of V, as
explained in Appendix B. There it is shown that if we
wish to interpret the small quantities q~ as components
of a vector, we must replace the ordinary second deriva-
tive by a covariant second derivative, V,. b, that can be
computed from known or calculable quantities according
to the equations
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(~'l(P').~l~) = (~'IP'l~)
= (~'I(P' —A') l~)
—:(n'ID, in). (s.is)

Here P, is the collective momentum operator identified
in the previous section, and

-'(D' (D B"(Q)))+ —.'Sl, B" (3.24)

where the second term can be incorporated into the col-
lective potential energy as a second such contribution,
a~'~ v(Q).

An additional contribution of this type is obtained by
setting q = 0 in Eq. (2.10),

A, = i dq[0:Qlq]0, [qlo:Q], (3.14) aE'iv(Q) = U(Q, o), (3.25)

where 0, means partial derivative with respect to Q'.
Notice, however, that if we calculate straightforwardly,

(~'l(P'P ).~l~) = (~'IP'P l~)
= (n'I(P, P, —A, P, —A, P, + S,~)ln),

(3.15)

where

S,, = — dq[0: QIq](0 /BQ'OQ~) [qlo: Q]. (3.16)

As a consequence of this result, we are reassured that
the effective value of zero is zero, i.e.,

where U(Q, q) is the quantum potential defined in Eqs.
(2.9) and (2.10).

It remains for us to discuss the contributions from T
that depend on B~'(Q) that "mix" the collective and
noncollective indices and those that depend on the non-
collective mass tensor B ~(Q) Th. e former can be ne-
glected because of one of the decoupling conditions, Eq.
(2.14). The leading contribution of the latter is seen to
be another contribution to the potential energy,

(3.26)

To summarize our findings, we have derived the follow-
ing effective Hamiltonian:

0 = (n, 'I[P, , P ]I~) = (~'l[P, , P ]I i). (3.17)
H.~ = 8(D* (D B"(Q)1k+V(Q)+&v(Q) (327)

It is easy to see that the remaining canonical commuta-
tors also project without change.

It is useful to rewrite (3.15) in a form that makes con-
tact with standard results. We have

(~&~) [ql~:Q] = ) [ql~':Q]4(Q)- -,
v'

(s.is)

j v'v =& dq[~" Qlq]~& [ql~:Q] (3.19)

Because of the Q dependence of the matrix element, it
now follows that

where

Sv =).(A')o (A~) o+(i&')A~
V

= (iO, )A, +A, A, +S,', , (s.2o)

(A, )pp = A, , (3.2i)

Sl, =).(A')p (4) o

v+0
(3.22)

Consequently, we may also rewrite Eq. (3.15) as

(~'I(P'P ).el~) = (ri'I(D'D + S,', )I~). (3.23)

In the simplest case, where [0:Qlq] is a real wave func-
tion, and it follows that A; vanishes, the contribution S,'~
remains to be taken into account.

We are now in a position to apply to the computa-
tion of the collective kinetic energy the same reasoning
as just carried out for a product of momentum operators.
Making use of the analogue of (3.23), the result is

where Av(Q) is the sum of four terms that summarize
the leading quantum corrections including the coupling
to the fast variables,

4

zv=) s~'~v, (3.28)

H = Hc + U(Q) + H~c,
Hxc = ppiB (Q)-+ 'q q V|(Q). -

(3.29)
(3.30)

In Appendix B, we point out that once the elements
of H~ have been determined, one can choose a set of

given respectively in or in relation to Eqs. (3.10), (3.24),
(3.25), and (3.26). Let us contrast this result with
the corresponding form appropriate to the more famil-
iar molecular case. The introduction of a curved met-
ric aside, the main difFerence is that in the molecular
case, the ground state wave function of the fast variables,
for a fixed value of Q, may be assumed known, and its
eigenvalue, ep(Q), together with A~z&V, contained in Eq.
(3.24) constitutes the collective potential energy [6,7].

In the present instance we cannot assume that we know
the Hamiltonian of the fast variables, except in an ap-
proximate sense that we now discuss. We need to extend
the considerations of the previous section that led to the
definition of the quantum collective Hamiltonian opera-
tor Hc Instead of sp. ecializing the transformed Hamil-
tonian operator to the values q = p~ = 0, we now retain
terms up to second order in these variables. In this treat-
ment, we may replace U(Q, q) by U(Q, 0), since this term
is already a small correction, and the remaining terms
linear in the fast variables may be dropped because of
the decoupling conditions. To the specified accuracy, we
obtain the following quantum Harniltonian:
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fast variables and calculate the matrices that appear in
(3.30). For each value of Q, the Hamiltonian H~~ rep-
resents a standard normal mode problem. Let c~, c~~ be
normal mode destruction and creation operators, A~ the
corresponding frequencies, and n~ = ct c~. Assuming
local stability, i.e., 0 real and positive, we have

H~~(Q) =).(& + 2)~ (Q). (3.31)

The practical importance of the contribution of (3.31)
has been noted in several applications carried out in the
past [8,15].

The quantum Hamiltonian, expressed in terms of the
optimum choice of variables, but in a restricted approxi-
mation, has thus been found. Except for the term U(Q),
it has been expressed in terms of elements that can be
calculated. Evaluation of U(Q) appears to require some
properties of the point transformation that have not so
far been studied. Comparison of approximate calcula-
tions (with this term omitted) with exact calculations
indicates that it is probably a small correction. As previ-
ously remarked, it is of order N compared to the main
term in the potential energy, where N is the number of
degrees of freedom. We shall make no further allusion to
this term in the present paper.

Let us now return to a discussion of the correction
terms, AV by which H,g, Eq. (3.27), differs from H~.
We have just discarded A~s~V. The sum 4& ~V+ b, ~4&V

has been seen in (3.31) to be a sum of oscillator terms
in the approximation considered, its contribution then
depending, naturally, on the state of motion of the fast
variables. As stated above, in this section we shall con-
sider only the lowest-energy state for these variables, so
that the contribution of this term is just the zero-point
energy.

It remains for us to discuss the contribution of the term
L~ ~U, the Berry scalar potential, associated with the
projection of the kinetic energy onto the collective sub-
space. This contribution goes together with that from
the "vector potential, " A, . In Sec. V, we shall study ex-
amples where these terms contribute. In fact, the manner
in which both the vector and scalar potentials contribute
is best studied within the context of these illustrations.

In this section we have thus gone as far as we shall in
defining a quantum theory of the slow variables, having
derived an effective Hamiltonian and shown that it is ex-
pressed in terms of canonical variables. Thus we are also
free to study this problem with the help of the Heisen-
berg equations of motion. In the next section we shall
consider variational formulations of these equations.

—i[Q', H,g] = H,g, (4.1)

i[P;, H,p] = (4.2)

The purpose of this section is to show that these equa-
tions can be derived from a variational principle, the so-
called trace variational principle, involving H,g, or an
operator closely related to it; it is to show, further, that a
reworking of this principle leads to a second version of the
variational principle, involving an effective Lagrangian,
L,g, that is defined in the natural way as the Legendre
transform of K,g. According to Moody, Schapere, and
Wilzek [7], when L,p is defined by means of a path inte-
gral, it is not exactly the Legendre transform of H,g. We
shall not encounter any such difhculty as long as the mass
tensor is independent of coordinates, the only case stud-
ied by previous authors. When the mass tensor enters in
full generality, the formulation of a variational principle
of the type we have in mind is not quite as straight-
forward as in previous instances that we have studied
[i7,is].

In order not to have to deal with all subtleties at once,
let us first consider the case that the mass tensor does
not depend on coordinates. In that case we may utilize
the standard version

6Tr(H, ir —iA[Q', P, ]j = 0. (4 3)

bV(Q) = [oV(Q)/OQ"]6Q". (4.4)

The equations of motion that follow from these assump-
tions are

Here the trace is taken over a finite subspace of the collec-
tive Hilbert space. This assumption allows us to utilize
the invariance of the trace under cyclic permutation, a
property that plays an essential role in the manipulation
of the second term of (4.3). In this term, A is a Lagrange
multiplier operator associated with a set of constraints
that are the nonvanishing canonical commutation rela-
tions. These, at least, must be imposed because, to start
with, the variational quantities are arbitrary matrix ele-
ments within the space included in the trace, and these
variations must be subject to the kinematical constraints.
The fact that we can limit the constraints to the commu-
tators for canonical pairs is, at the moment, an observa-
tion.

In order to come out with the Heisenberg equations of
motion upon variation, it is necessary, as well, to choose
variations of the coordinates that depend only on the
coordinates themselves, so as to validate the formula

IV. VARIATIONAL PRINCIPLES: LAGRANGIAN
FORMULATION

—i[Q', A] =

i[P;, A] =

(4.5)

(4.6)

Having defined an effective quantum theory within the
collective subspace, we can imagine that we study this
theory by means of Heisenberg's equations of motion,

To make these agree with Heisenberg's equations, the
choice A = H,g is indicated.

We apply this formalism to the case with nonvanishing
Berry potentials but constant mass matrix, described by
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the Hamiltonian operator,

(4 7)

where it is understood that V may include the correction
terms discussed in the previous section. The operator
equations of motion that follow from (4.5), (4.6), and
(4.7), after some standard manipulations, are

where

Q' = D, B",
D, = —V, + 2(Q~, X,~),

(4.s)
(4.9)

and

A, = 2((BA;/BQ'), Q'),
P,, = (BA,/BQ~) —(BA, /BQ'),

(4.10)

(4.11)

D, = Q~B~, , (4.12)

with B~; the matrix inverse to B~', is the solution of Eq.
(4.S) for the gauge-covariant momentum.

From the combination of (4.9) and (4.12), we can de-
rive the familiar Lagrangian equations of motion

Q~B,, + V, —-', (X...Q') = 0. (4.13)

Of some interest is that the associated variational prin-
ciple from which these equations can be derived, namely

0 = bTr( L,s)—
= 6Tr( ——,'Q'Q~B, , —Q'A, + V), (4.i4)

ean be obtained directly from the starting trace vari-
ational principle, (4.3), simply by eliminating the mo-
menta in favor of the velocities by means of the relations
given above. Instead of independent variations of coordi-
nates and momenta, only the coordinates are to be var-
ied. In this variation, the velocity Q is to be replaced
by —i[Q', H,p] and H,p is not to be varied. One ob-
tains the correct equations of motion because algebraic
manipulation of the resulting trace expressions, contain-
ing commutators with Heff ) that is aimed at isolating
the coordinate variations, produces the same results as
integration by parts of the time derivatives in the corre-
sponding classical variational principle, proper attention
being paid to the order of noncommuting factors. For
the case just concluded, the outcome is thus completely
satisfactory.

When we reinstate the Q dependence of the mass ten-
sor, an additional problem is encountered. If we insist
on the cyclic invariance of the trace, which has played
an essential role in the previous applications of the trace
variational principle, then we have

Tr(P, , {P~,B'~)) = 2 Tr(P, P~, B'~). (4.15)

However, direct transformation, using the commutation
relations, yields

(P;, (P~, B*~))= 2(P,P~ , B'~) + B'~, . (4.16)

leading to an apparent contradiction upon formation of
the trace. Of course, in deriving (4.16), we have used the
commutation relations appropriate to an infinite Hilbert

V. ILLUSTRATIVE MODELS

It is simplest to illustrate the main points by choosing
models in which the collective coordinates have already
been identified, so that we need not enter into the intri-
cacies of the theory of large amplitude collective motion
per se. For instance, in the first model studied below,
there are no terms in the Hamiltonian linear in the fast
variables. Thus the model satisfies the decoupling con-
ditions exactly. In both of the models to be studied, we
break time-reversal invariance, and in that sense they are
somewhat artificial.

A. The first madel: Berry phase in excited states

We study the Hamiltonian

+ = Hcore + ~sp + Hint
= Hcore + +NC~

p2
+ V(Q),

H» ——~(Q)(a&a~ + a~a2+ 1),
H;« ———G(Q a~a2 + Q+a~aq).t

(5 1)

(5.2)

(5 3)

(5.4)

space. The point is the same as that TrQP g TrPQ
for a truly canonical pair. In order to derive the equa-
tions of motion from a trace variational principle, we deal
with this problem by adopting (4.15), but including the
last term in (4.16) as part of the potential energy. This
implies the assumption that the trace is taken, to start
with, only over a finite-dimensional vector space and that
therefore the invariance of the trace under cyclic permu-
tation is a correct operation. As a consequence, the equa-
tions of motion are given in matrix form. The operator
form of the equations of motion is recognized as a limit
of these equations. In this limit, the application of (4.16)
after variation, can be seen to yield the equations of mo-
tion in the desired symmetrical (Weyl) structure. Thus
the final variational principle takes the form

b Tr(H, d —iH, g[Q', P;]),
where

1
H od = H,ff+ —I3'~. (4.is)

In the discussion above, we have noted a problem
only in connection with the part of the kinetic energy
quadratic in the momenta. It may be verified that a
similar difficulty does not occur for the terms that are
bilinear in the momenta and the "vector potential. "

Unfortunately, in the transition from Hamilton's equa-
tions to Lagrange's equations for this case additional
complications are encountered; because of the non-
commutativity of the mass tensor with the momentum,
the Lagrange equations do not follow from the expres-
sion obtained by eliminating the momenta in favor of
the velocities in the starting variational principle. The
equations of motion that follow from this conjectured
Lagrangian variational expression differ from the correct
equations of motion by additional "quantum" potentials.
This line of inquiry does not appear to be illuminating
and therefore will not be pursued.
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Here the coordinates Q and the canonical momenta P
are both two-dimensional vectors. We use the notation
Q = (Qi, Qz) Q+ —Ql + &Q2, and Q = (Qi + Q&)
(In this section, we are not maintaining the distinction
between upper and lower indices. ) Furthermore, the
a, , a, , i = 1, 2 are boson destruction and creation opera-
tors, G is a coupling strength, and the frequency, u(Q),
of the uncoupled boson modes has been given a so far un-
specified dependence on Q that will be chosen for analytic
and numerical convenience. Note that the Hamiltonian,
(5.1) conserves the boson number,

bt @(')at
2

In detail we have as a possible choice

(S.i2)

bi = ai+ expiy(Q)a2,
2 2

b2 = exp i/(Q)a, — a2,t= 1 t 1

2 2

(5.13)

(5.14)

ized solutions of (5.10) are represented most conveniently
by introducing the normal-mode creation operators

N = aiag + a2a2 ——const.t (5.5) where

Since the N = 0 problem is completely trivial, the first
interesting case for the present model is N = 1. Here, the
state vectors may be written exactly as a superposition

l~) = dQ((Qlni)a', lo]+ (QI~2)a', lo]), (s.6)

tan P(Q) = Qz/Qi. (s.is)

We now apply these elementary results to the adia-
batic approximation. In this case we represent a suitable
subset of the eigenfunctions (5.6) in the form

where l0] is the vacuum state. The use of square brack-
ets for the vacuum state of the fast variables is consistent
with the notation introduced in Sec. III. The resulting
eigenvalue equation in the space of the collective vari-
ables, Q, is determined by the 2 x 2 effective Hamiltonian,
H,g, with matrix elements

(Hes')ll = Hcore + 2~(Q) (HeB)22'

l~) = dQ(QI~)bil0:QI (5.16)

where the notation 0: Q refers to the vacuum for the
normal modes. (For the current model, it coincides with
the uncoupled vacuum. ) The considerations of See. III
now apply to this class of state vectors and, in particular,
we apply Eq. (3.23). As a special case of this equation,
we have

(Her)i2 = —GQ- = (Her)2i

(5.7) ).(P,)' -).(P, —~')'+). l(~.). I' (5.17)

Below we shall describe our solutions of the associated
Schrodinger equation.

These exact solutions are to be compared with the adi-
abatic approximation, with and without the Berry po-
tential terms. For this approximation, we require the
normal modes of HN~, which we calculate in a standard
way from the equations of motion,

where

A, = i[0:Qlb, a,btilo:Q],

(A, )2i = i[0:Qlb28, b, l0: Q],

(s.is)
(s.i9)

where 8, means the partial derivative with respect to Q, .
With the help of Eqs. (5.13) and (5.14), the quantities of
interest are found to take the values

[a„HN~] =~a, -GQ .„
[a2 HNc] ~a2 GQ+ai

(5.8)
l , (Qz —Qi),

I(&') I' = (1/4Q')

(s.20)

(5.21)
by forming the matrix elements,

@.= [oI 'l~] (5.9)

With 0 representing the energy of the state l4], we ob-
tain the equations

The singular character of these results was to be ex-
pected.

The collective or adiabatic Hamiltonian, H~, that thus
emerges from the assumption that the state vectors of in-
terest can be written in the form (5.16), has the structure

~4i = ~4i —GQ-A

&A = —GQ+@i+~A,
(5.10) Hg = (1/2M)[(P —A) + (A2i) ]

+&(Q) + (3/2) ~"'(Q) + (1/2) &'"(Q). (5.22)

that yield the eigenvalues

(5.11)
0( l (Q) = ~(Q) + GQ,

that are degenerate when Q = 0. The associated normal- ~(Q) = -GQ. (5.23)

We turn to the problem of solving the associated eigen-
value problem. We wish to compare the results of exact
(numerical) calculations with the eigenvalues of the col-
lective Hamiltonian. It is useful to choose w(Q) such that
the latter is exactly solvable. One such choice is
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In this case the additional contribution to the potential
is zero,

I = —i

= —i(Qj.P2 —Q2Pr), (5.25)

2
-n('l(Q) + -n('l(Q) = o.

2
(5.24) to simplify the P . A term. We can further simplify the

equation H~g(Q) = E@(Q) by substituting

We further take M = 1 and V(Q) = &Q2.
We use the definition of the two-dimensional angular

mornenturn, and find

o(Q) = Q-'i'x(Q)"-' (5.26)

1d' 1 ~ 1 1 ~—-„,+, '+ +- +-Q' x(Q) =&a(Q). (5.27)

Even though the centrifugal term has changed, this is
still very similar to the radial equation for the two-
dimensional harmonic oscillator. It can be solved by the
substitution

X(C)
—

~
+' 'e ' 'L"(~') (5.28)

As is well known the right-hand side of this equation
satisfies the condition

X+i~ +
4

i~=(4 +2 +2)~ (

We thus find that

and

~(m) = +1/4+ (m+ I/2)z (5.3o)

E„=[2n + o.(m) + 1]. (5.31)

Without the Berry's phase terms we would have found

E„=(2n+ imp+1). (5.32)

When G = 0 the solution (5.32) is exact Thus Eq. . (5.31),
which is independent of G, cannot be valid for all G. It
should be valid in the adiabatic limit, which means that
the two frequencies 0 must be very different. This occurs
when G is very large.

The exact solution of the problem can be calculated
using a spherical harmonic oscillator basis for the Q co-

j

ordinates. This is coupled to a state containing either
one ai or one az boson,t t

in, rn, n&, nz) = in, m)(at&)("'l(a )("'lio]. (5.33)

B. The second model: Ground state

We next study a model that is also exactly decoupled,
difFering from the one just investigated only in the form
of the interaction. In this model Eqs. (5.1)—(5.3) stand
as given, but Eq. (5.4) is modified to

H;„t ———GoQ(aia2 + a2ai) —Gi(Q+aiaz + Q aiaz).
(5.34)

The interaction Hamiltonian only couples states with
ni ——1, m = mi to states with nz ——1, rn = my + l. If we
thus choose the value mi we have'only a relatively small
matrix to diagonalize. Since we wish to obtain accurate
results for large G, we allow the number of Q harmonic
oscillator quanta to be fairly large. We have used up to
200 harmonic oscillator states in each block (which leads
to a 400 x 400 matrix eigenvalue problem).

In Table I we give a selected set of results for mi = 0
and a number of values of G. Similar results for mi ——1
are listed in Table II. We clearly see the convergence to
the the collective model results including the Berry phase
for large G.

TABLE I. The lowest 10 eigenvalues of the coupled problem for mq = 0 as a function of G. The
column labeled Berry lists the eigenenergies of the collective Hamiltonian {5.22).

G

E2

E4

Es
Eg

Elo

0.01
1.00875
2.01328
3.01540
4.01827
5.01997
6.02221
7.02367
8.02558
9.02687
10.0286

0.1
1.07849
2.13134
3.14492
4.18125
5.19061
6.22068
7.22768
8.25425
9.25972
10.2840

1
1.36229
2.92007
4.09426
5.30157
6.57000
7.66964
8.90918
10.0230
11.1883
12.3410

10
1.58463
3.48844
5.39473
7.29413
9.17666
11.0262
12.8133
14.4981
16.0926
17.7119

100
1.66532
3.63505
5.60870
7.58443
9.56145
11.5393
13.5177
15.4965
17.4754
19.4544

1000
1,69302
3.68298
5.67438
7.66658
9.65932
11.6525
13.6459
15.6396
17.6335
19.6276

Berry
1.7071
3.7071
5.7071
7.7071
9.7071

11.7071
13.7071
15.7071
17.7071
19.7071
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TABLE II. The lowest 10 eigenvalues of the coupled problem for mq = 1 as a function of G. The
column labeled Berry lists the eigenenergies of the collective Hamiltonian (5.22).

G

E2
E3
E4

Es
E9

E10

0.01
2.01308
3.01670
4.01807
5.02086
6.02202
7.02436
8.02538
9.02745
10.0284
11.0302

0.1
2.11333
3.17369
4.16340
5.21512
6.20307
7.25000
8.23691
9.28063
10.2669
11.3082

1
2.41566
4.20360
5.44213
6.43129
7.86356
8.79958
10.1070
11.1975
12.3141
13.5364

10
2.54921
4.51926
6.48766
8.45380
10.4165
12.3739
14.3218
16.2512
18.1346
19.8627

100
2.57601
4.57057
6.56479
8.55880
10.5527
12.5464
14.5400
16.5336
18.5270
20.5204

1000
2.5804.2
4.57959
6.57866
8.57766
10.5766
12.5755
14.5744
16.5733
18.5721
20.5709

Berry
2.58114
4.58114
6.58114
8.58114

10.58114
12.58114
14.58114
16.58114
18.58114
20.58114

The second term of this interaction spoils the conserva-
tion of boson number used to simplify the solution of the
previous problem. For the present problem, it is already
interesting to study the spectrum when the fast variables
are in their ground levels, since there are now nontrivial
ground state correlations and associated nontrivial Berry
potentials, that we shall calculate.

We first turn to the study of the BO approximation.
As before we need the normal modes of the fast variables,
as determined from the equations of motion

[al ~NC] ~+1 GOQa2 G1Q—a2

(5.35)

we obtain the eigenvalue equations

~41 = ~41 GoQ42 G1Q —x2&

~@2 = ~@2 G0Q@1 G1Q—xl

~xl = ~xl GoQx2 G1Q+Ql)
—~x2 = ~x2 —GoQxl —G1Q+41

The physical eigenvalues are the positive roots of

0 (Q) = (~ ~ GoQ) —G1Q,

(5.40)

(5.41)

[o2 ~NC] = ~&2 GOQal G1Q—Gl

and their Hermitian conjugates. In terms of the defini-
tions

which are again degenerate at Q = 0. As for the first
model studied, we label these solutions 0('), i = 1, 2. The
corresponding amplitudes are determined from the equa-
tions of motion and the normalization conditions

t,t q(~) at (~)
i j j ~j

@,"= [0:Ql, I&'*'],

x,"= [0:QI,'I+"],

I+"]= t,'10:Q]

(5.36)

(5.37)

(5.38)

(5.39)

I@11'+1@21' —IXll' —IX21' = 1 (5.42)

The simplest forms for the amplitudes are achieved by
repeated use of the eigenvalue equation (5.41). We thus
find

q(i) ( 1)j+1q(j)

-(j)
( 1)j+lx(j)

(A(j) + cu) + (—1)'GoQ
v 2((ld + n(j))[(Cd + n(j)) + (—1)j2GOQ] + (G2 —G2)Q2j'~

(j) ( 1)j+lf (j)(Q)q(j)

f{j)= G1Q
(A(j) + (u) + (—I)jGOQ

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

Here p is the polar angle for Q, p = arctan(Q2/Ql).
These results are thus available for application to the

BO approximation studied by means of the assumption

I

formula

A, = i[0:Q[c),[0:Q]. (5.50)

&0 l&&(QI&) I0:Q]. (5.49)
To carry out this calculation, we need the form of the
correlated vacuum state, as given by the equation [19]

It follows that the Berry vector potential is given by the [0:Q] = A exp [2 Z,~ a, a ] i 0], (5.51)
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where JV is a real normalization factor, whose value we
shall not need, a; IO] = 0, and Z;~ is a generally complex
array whose values will be considered below. Using the
constancy of the norm of the correlated ground state as
a function of the values of Q, we can rewrite (5.50) as

A' = 2i([0:QI8 Io:Q] —[8o:QIo:Q]) (5.52)

which shows that the (real) normalization factor JV does
not contribute. This leaves the result

A, = i[(at at—)8,zf, i
—(aAai) 8,Z„',], (5.53)

where the averages, indicated by angular brackets, are
with respect to the correlated vacuum.

We next indicate how (5.53) can be evaluated in terms
of the solutions we have found above for the equations of
motion. The quantities ZI, ~ are solutions of the equations

(A')», p = i[11:QI8'Io:Ql
= —i[8, ll: QIO:Q]
= —i[0:QI~18 (52) Io:Q]&

(1)e 8 (2)e (1)e8 ~(2)e

~ ~

'x x'
3

(5.58)

Similarly, remembering the normalization of the states,
we find

Any other matrix element, (A, ) p of the Berry po-
tential can be calculated by similar techniques. In fact,
the only nonvanishing elements of this type are (A, )11 p,
(A, )2p p, and (A, )p2 p, where, for example, v = 20 means
a state with two correlated bosons of type 1 and none
of type 2. We quote formulas for these matrix elements
that follow from the same elementary techniques that
furnished Eq. (5.57). We thus have

y(i) Ze (i)
qI

—Xk (5.54)

@(i)t, + x(i)'5t (5.55)

and their Hermitian conjugates that are the inverse to
Eq. (5.36). An elementary calculation now yields

(
t t) ( „,) (i)q(i)* (5.56)

Thus for the vacuum Berry potential, we obtain the for-
mula

[
(m) @(m)*8 Z (m)*y(m}8 Z ]4 ~k (5.57)

I

that follow from the definition b, l0: Q] = 0. The expec-
tation values can also be evaluated with the help of the
formulas

(Ai)zo, o = . ~ ~ )a+2
(1)e8 q(1)*

X2 i2

Z~y = exp( —i((())Z&.A, , Z~k = real. (5.60)

The calculation of the Berry potentials as defined
above is now straightforward. In terms of purely real
quantities, we find, for example,

(5.59)

Finally, the matrix element (A )pzp is obtained from
(5.59) simply by replacing all superscripts 1 by 2. In
order to implement fully the BO approximation, it is nec-
essary to evaluate these matrix elements in terms of the
explicit solutions of the model displayed in Eqs. (5.43)—
(5.46). It is also appropriate to remark here that in con-
sequence of these relations and Eq. (5.54) we can write

-() () -() () -() (1) -() () (5.61)

Using the real form of Eq. (5.54), this expression can be simplified to

A. = 8,~[(x(")'+(x(")']
G 1 1
2 (u+ Q(1))(of + Q(1) —2GpQ) + (G2 G2)Q2 (~+ Q(2))(~+ Q(2) + 2GpQ) + (G2 G2)Q2

In contrast to the previous model the vector potential is not singular at the origin, but take the finite value

G2
~(0) =

4 (0), (—Q2 Q1)

Turning to the ofI'-diagonal matrix elements, we find by similar calculations

(5.62)

(5.63)

(A')», p = 0e

(A')2o, o = ~2exp( —i4)[(8'4')@1 X1 + i(4'1 8'X1 —X1 8'@1 ]
(1) - (1) . (1) - (1) - (1) (1)

= —%2exp( —ill) (l(p )
fl'l ll,$+ (8l;Q)8 lntef

'

G1[(A(') + ~) —GpQ] 1 1
a ln (')

2[( +0('))( +A(') —2G Q)+(G' —G')Q'] Q
'

Q

(5.64)

(5.65)
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G, [G,Q+(n(')+ )] 1
n ~'&

( i)ozo = ~ p( 4')
2[(~ + f1(z))(~ + f1(z) 2G Q) + (Gz Gz)Qz] Q( Qzl Ql) +

Q
(Ql) Qz)Q q f

(5.66)

These off-diagonal potentials are also regular as Q goes to zero, for reasonably well behaved u(Q).
I

We now study the numerical solution of the adiabatic Hamiltonian is invariant under the interchange ai ~ az,
Hamiltonian, we introduce new operators that are invariant under this

parity transformation,

Hc = —[(P —A) + ~A2o, o~ + ~Aoz, o~ ]
2

+-,Q'+ —,[~&'&(Q) + ~"&(Q)], (5.67)
Gy = (Gi + Gz).t t t

2
(5.69)

where we have once again made the choice M
1, V(Q) = zQ . For simplicity we take Go = 0, and
write Gi ——G. For this special choice A(i& = A&z) = 0
and (&,)02,0 = (A')zo, o. A simple form for ~(Q), cho-
sen such that 0 is positive definite, is

Hi~t = —Go(Q+G~ —G G—)

—,'
(Q+ [~+ —~'

] + Q- [~i' —~'-']) (5.70)

We now make the expansion

The interaction Hamiltonian takes the simple form

~(Q) = ceo + GQ. (5.68)

0.08

0.06

0.04

0.02

0.00

0.06

0.04

IAI/Q

0.02

0.00

In Fig. 1 we show some of the relevant quantities in the
collective Hamiltonian for the choice | = 1, up = 2.

We diagonalize the collective Hamiltonian by first go-
ing to spherical coordinates, and use the fact that m is
conserved to write down a radial equation. We then map
the Q values from the interval [0, oo) to the interval [0, 1].
Finally we make a finite difFerence approximation to the
radial equation, and solve the approximate equation by
matrix diagonalization.

Solving the complete problem without making the adi-
abatic approximation is somewhat involved. Since the

(5.71)

{The even powers in this equation constitute the only
combination that includes the vacuum for the fast degrees
of freedom. )

An approximate solution is obtained by limiting the
sum over K, while summing over all allowed r.. At
the same time we expand Q~„(Q) in a finite number
of spherical harmonic oscillator eigenfunctions (Q~nm).
We denote the m value used in the expansion of QR „(Q)
by mK „. The interaction does not couple states of dif-
ferent z for fixed K. We thus find that m~„= tn~ =
m~ ~

—1. Thus the value mp is a constant of the mo-
tion, and can be used to specify difFerent solutions. This
quantity corresponds directly to the value of m in the
collective Harniltonian. We have performed matrix diag-
onalizations for wo = 2, 10 and G = 1. We have used har-
monic oscillator states up to principal quantum number
70, and K values up to 20. (This corresponds to a 61 401
x 61401 matrix. ) The resulting matrix, which is very
sparse, was diagonalized using a Lanczos algorithm. The
eigenvalues were checked for convergence by comparing a
calculation with smaller cutofFs on n and K against one
with larger cutouts. In Tables III and IV we compare a
few selected ground state energies of the complete collec-
tive Hamiltonian with the exact solution. The splitting
between states with opposite values of m is completely
due to the vector potential. For the case up ——2, where
the adiabatic approximation we see that the size of the

Q
10

FIG. 1. Parameters in the collective Hamiltonian for
G = 1, up = 2. The lower panel shows the frequencies A~~

the middle panel shows the size of the diagonal Berry poten-
tial, and the upper panel shows the square of the ofF-diagonal
Berry potentials.

Exact
Collective

m= —5
9.54715
9.56722

m=5
9.73101
9.74656

m= —1
4.97309
4.98669

m=1
5.03405
5.04375

TABLE III. A comparison between the exact numerical
ground state energies and those for the collective Hamiltonian.
up ——2, G = 1, and the values of m are listed in the table.
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Exact
Collective

m= —5
18.0745
18.0750

m=5
18.0918
18.0922

TABLE IV. A comparison between the exact numerical
ground state energies and those for the collective Hamilto-
nian. ~0 ——10, G = 1, and the values of m are listed in the
table.

B( i Bx' (A8)

For ease of notation, consider below a three-dimensional
space, since this will exhibit the general features. By
utilizing the equation, equivalent to the definition of J
as a determinant,

splitting is very close to the exact value. The difference
is probably due to nonadiabatic effects that cannot be
completely neglected for ~o = 2. For the case ~p = 10
the correspondence is much closer, but the size of the
Berry vector potential is much smaller as well.

This work was supported in part by the U. S. Depart-
ment of Energy under Grant No. 40264-5-25351.

APPENDIX A: SCALAR PRODUCT AND
TRANSFORMATION OF MOMENTUM

OPERATORS

In this appendix we provide the proof of Eq. (2.7),
which specifies how the momentum operator transforms
under a general point transformation. It will be essential
to recognize that this result is tied to a choice of scalar
product. We suppose that the Hamiltonian (2.1) is to be
used in conjunction with the metric

Bx' B( B(
JB(~ = 2&ijk&appB (A9)

J J = —.J —,k p . „.J
2 x2 x xl

=
2

'
B "2"'""P'B B &

1 1 f B , B(P BP'= —.J & ~, 2~As p~ . „J
+—.

I
J 2 q~a~I ~np~

2i x& Bx" Bx')

By an application of (A9), this becomes

(A10)

1 1 B t iBx'i 1 ( iBx'5 B
2i Bx' ( B(~) 2i ( B(~) Bx'

with e,~A, the alternating symbol, we display the algebraic
manipulation leading to the desired result,

Thus

(@ l@~) —= d(' d( @:(()@b(().

7t Qr ~ l o

(A1)

the result sought.

22 ~ x' (A11)

J = (8( /BxP I (AS)

Now carry out the point transformation (2.3) with Jaco-
bian J,

APPENDIX 8: POTENTIAL ENERGY FOR THE
FAST VARIABLES

If we introduce a new wave function

1= Jz@,
the metric is preserved in the sense

(A4)

In terms of the original coordinates, let us consider the
change in the potential energy between two neighboring
points, ( and (+ b(. To second order in b( we have the
usual terms of a Taylor expansion,

(4', 4'g) = (@,gg) = dx' dx Q'(x)Qg(x). (A5)
4V = V((+ b() —V(()

= V b( + 2V~pb( b(p, (B1)

[d(]@.*~ %t, = 1 1
[dx]@'J2~~J 2@b. (A6)

Thus we must show that

This is the metric that is associated with Eq. (2.7), as we
proceed to show.

With d(' . d( = [d(], we study

d(a b(n + 1 ya b(PbP

that contains the Christoffel symbol,

(B2)

that now appears most unsatisfactory, since LV is a
scalar, but the second term of (Bl) contains the ordinary
rather than the covariant second derivative. This defect
is removed by replacing the quantity b'( by substitution
from the relation

1 1
J&vr J & = 2(f', ( iB/Bx'))—

We have first

(A7) I pp
—

z & (&&p,~ + +&~,p

We thus obtain the form

(B3)
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(B4)

where the second term contains the covariant derivative

V. p=V p
—I' pVp. (85)

It is now apparent from (B4) that d(~ are the compo-
nents of a vector, and therefore transformation to any
alternative set of coordinates such as the q" is standard.

This allows us to calculate the quantity V(2) of Eq.
(2.10) from given dynamical quantities, provided we can
define a complete set of coordinate axes at each point

of the decoupled manifold. This is done in two stages.
In the first stage, the basis vectors at each point of the
tangent space to the collective submanifold, for example,
the set f~i, are determined by the algorithm that discov-
ers the collective submanifold. A set of basis vectors f,
orthogonal to the tangent space is then determined (non-
uniquely) by the requirement that these be orthogonal to
the f~ and to each other with respect to the metric B i

The basis vectors orthogonal to the tangent space are
precisely the elements needed to compute the Hamilto-
nian of the fast variables.
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