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Effects of the single-particle potential insertions in the effective interaction
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We investigate the effects of the single-particle potential insertions in the effective interaction by
comparing energy spectra obtained from different treatments of these insertions as a function of
the size of the no-core model space. The Brueckner reaction matrix used in the first calculation
includes the single-particle potential insertions in ladder diagrams to all orders, while the Brueckner
reaction matrix used in the second calculation only keeps the single-particle potential term in the
lowest-order ladder diagram. The two calculations yield almost identical ground-state energies and
low-lying excitation spectra for He and Li for large enough no-core model spaces, indicating that
the effects of the single-particle potential insertions in second- and higher-order ladder diagrams
are small. We explain the reason for the diminishing role of these insertions with increasing size

of the model space. We also show that, through a standard method of instilling a single center-of-
mass wave function into all low-lying states, the spurious center-of-mass kinetic-energy term shifts
the energies of all the low-lying states by nearly a constant and, therefore, has little effect on the
excitation spectrum.

PACS number(s): 21.60.Cs, 21.10.—k, 27.10.+h, 27.20.+n

I. INTRODUCTION

Since the investigations of Starkand and Kirson [1],
it has generally been accepted that an order-by-order
treatment of single-particle (SP) potential (U) insertions
is not an adequate procedure in developing an effective
interaction. In their treatment, they took a fixed s-d
shell-model space and studied the effects on A =17 and
18 nuclei as a function of the order in perturbation the-
ory through which the U insertions were included. They
showed that an order-by-order approach appeared to be
slowly convergent and that putting the SP potential in-
sertions in using perturbation theory could produce mis-
leading results.

In this work we investigate two different treatments
of the SP potential insertions. We compare the results
for the low-lying energy spectra of He and Li obtained
from two effective Hamiltonians, one of which is "exact,"
that is, we include the U term in ladder d.iagrams to all
orders in calculating the G matrix; the other is approxi-
mate but conventional, for which the U term is kept only
in the lowest-order ladder diagram (i.e. , the diagram with
only one interaction line). As the size of the model space
increases, the differences in the two treatments of the U
insertions decrease rapidly for reasons that we will make
clear. Our conclusions are especially applicable to prob-
lems with few active nucleons, where large model spaces
can be utilized.

In Sec. II, formalisms for the two methods are out-
lined. Section III discusses the calculation of the effec-
tive interaction, followed. by Sec. IV, where the effects
of the two methods on the low-lying spectra of He and
Li are shown along with a discussion of the SP inser-

tions and their role. Also, the effect of the spurious c.m.

component of the kinetic-energy operator on energy spec-
tra is assessed, by comparing the above results for He
and I i to calculations where the c.m. component of the
kinetic-energy operator has been retained in the nuclear
Hamiltonian.

II. FORMALISM

The conventional nuclear Hamiltonian is written

A A

H'=T+V=) t;+) v,, =H+T.
i=1 i&j

where ti is the one-body kinetic-energy operator and v,z
is the two-body NN potential. The Hamiltonian H' con-
tains the spurious c.m. kinetic energy, T, , which is not
present in the exact Hamiltonian H. In standard effec-
tive interaction calculations, a one-body SP potential, U,
is added to and subtracted from H' to yield

A ( A A

H'=) (t +u)+ ) v,, —) u;
i=1 i&j i=1

= (T + U) + (V —U) = Ho + HI,

where eigenstates and eigenenergies of the unperturbed
Hamiltonian, Ho,

Ho
I &o') = eo'14o;)

define the SP basis and the SP spectrum for the calcula-
tion. The residual interaction HI ——V —U is then used
to calculate the Brueckner two-particle G matrix [2] (the
two-particle ladder diagrams to all orders), which is the
usual starting point for constructing the two-body effec-
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tive interaction for shell-model calculations.
In practical calculations for the G matrix, a harmonic-

oscillator basis is often used. However, the U insertion is
usually ignored. in the calculation of the G matrix, leav-
ing only Hy ——V as the source of the effective interac-
tion. The neglected U term is sometimes perturbatively
inserted back into the diagrams for calculating the effec-

I

tive interactions based on the Brueckner reaction matrix
G [3, 4]. But, as noted in Ref. [1], such a perturbative
treatment of the U-insertions is often ambiguous and in-
complete.

In a harmonic-oscillator SP basis, the SP potential, U,
for A particles can be written in terms of its relative and
c.m. components:

A

= —) u;. + 0 R ,
A . 2i(g

where we define R = (P, 1 r;)/A and u;~ =
2 2 0 (r; —r~) . With the above equality we rewrite Eq. (2) as

A A

H'=) h+) v;, ——u;,
A

0 R—:Hp+) v,, —U,
i(j

where Hp —— p,. 1h; with h, = t; + u, , U,

2 (mA)O R . We also define

2
ij = ~ij ——~ij. (6)

A

H = H' —T, = Hp+ ) v;~ —H,
i(j

(7)

The corresponding Brueckner two-particle G matrix [2]
is given by

G12((d) V12 + V12, , V12
4 ( a+ 2+Va2)

2= G 12 (~) u12
A

where we for later convenience define

Similarly, the nonspurious (i.e. , the c.m. kinetic energy
removed) nuclear Hamiltonian H [see Eq. (1)] can be
rewritten as

A A

~=) h, +) G,, —H.
i=a

(1O)

Using the definition for G, . in Eq. (9), we can rewrite
this effective Hamiltonian in a more transparent form
('R—:'R'").

f A

) t, —T,
k;=i

A A

+) G',, —= T...+) G'...
i(g i(g

timal choice of the starting energy can minimize certain
higher-order terms, such as the folded diagrams [8]. Our
main justification for this approximate treatment of cu is
that, as the model space increases, the u dependence of
the results decreases [5].

In this work, the effective interaction is taken to be the
Brueckner reaction matrix evaluated at an empirically
determined value of u. Therefore, our effective Hamilto-
nian is given by

G12(M) = V12 + V12, ~ V12.
(d —(ka + h, 2 + Va2)

(9)

With a no-core model space [5, 6], the effective two-
body interaction becomes particularly simple, containing
only the Brueckner reaction matrix G plus the two-body
folded-diagram series.

The starting energy, ~, in the G matrix represents the
energy of the two particles where they appear io. a given
process. In principle, this energy is well defined, but in
practice, it is diKcult to incorporate exactly, due to its
dependence on spectator particles. Also, in principle, the
calculation should. be independent of the starting energy
if the perturbation series for the effective interaction is
computed to all orders, although in practice this is never
done, except for special cases using the Lee-Suzuki itera-
tion procedure [7]. Because G depends sensitively on ur,

i.e., the value of G tends to become more negative as ~
becomes more positive, we will treat ~ as a free param-
eter to optimize agreement with the experimental value
for the binding energy. It has been shown that an op-

which explicitly shows a relative kinetic-energy term (the
usual one-body kinetic-energy term from which the c.m.
component has been subtracted) as well as a "potential"
term.

The results obtained for the above effective Hamilto-
nian, 'R ", are referred to as "exact" results, and they
are compared to the results obtained from the following
effective Hamiltonian, 'R

A A

X" =) h, +) G,, —H.
i=a

A ) A

) t, —T. +) G,',
i=a

A

= T„i+) G,'. ,

i(j
leaving a term linear in the relative kinetic-energy opera-
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Gi2(~) = "» +»2 'U&2 ~

(kl + 62 + v12)
(14)

Note that Gi2 difFers from Gi2 in Eq. (9) [or Gi2 from
Gi2 in Eq. (8)] in that the two-body U insertion (—&u,~)
is neglected in the second term in Eq. (14) [or Eq. (13)],
which corresponds to ladder diagrams with two or more
interaction (V) lines. The resulting effective Hamilto-
nian, Q I'P, is, therefore, not exact. It should be pointed
out that this approximate G matrix G,'- has often been
used in the past to obtain efFective interactions in cal-
culations for which all higher-order U insertions are sys-
tematically neglected.

tor plus the Brueckner reaction matrix, calculated with-
out taking into account the higher-order U insertions.
The reaction matrices, Gq2 and G~» are de6ned by

2 Q2i
G12(Cd) —V12 u12 + V12 V12

A id —(hi + hg + vi2)
2—:G', 2 (id) ——u, 2,

III. SHELL-MODEL H.ESULTS

For the free NN interaction we use the Reid soft-core
potential [9] as modified for the inclusion of higher-partial
waves by Day [10]. To both the efFective Hamiltonians
in Eqs. (11) and (12) A(H, —zhB) with A )) 1 is
added to ensure that the c.m. motion for all low-lying
states of the spectra is in its lowest c.m. configuration.
The shell-model diagonalization is carried out with the
OXBASH shell-model code [11]. Calculations for He are
performed employing no-core model spaces starting with
the 08 shell successively adding one shell at a time un-
til the 1p0f shell is included. These model spaces are
referred to as the %=1, %=2, %=3, and %=4 spaces,
respectively. No restrictions are imposed on the shell-
model diagonalizations in those model spaces. Table
I displays the results for the two Hamiltonians in the
four diferent model spaces for He, employing a start-
ing energy of w = 7 MeV and an oscillator parameter of
h, O = 21 MeV. The third column displays results calcu-
lated with a nuclear Hamiltonian in which the spurious
c.m. component of the kinetic-energy operator T, has
been retained. This is discussed further below. The last

TABLE I. The calculated ground-state energies and excitation energies of low-lying states of
He, in units of MeV. The effective Hamiltonians A.', 'R, and 'R, used in the calculations

are defined in Eqs. (11), (12), and (15), respectively. The starting energy id = 7 MeV and the
oscillator parameter hO = 21 MeV are chosen so as to yield a reasonable ground-state energy. The
calculations are performed using the OXBASH shell-model program [11], in a no-core model space
of diferent sizes, signified by N, the number of major shells contained. The experimental data are
taken from Ref. [12] for He. The numbers in parentheses are taken from Ref. [13].

4He

%=1
%=2

J"
p+

1
0+

1
p+

2

21
21
11
11

12
p+

1
0+

2
0
21
2 1

11
11
01
12
p+

1
p+

2

01
21
2 1

11
1
0
12

T
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
0
1
1
0

0
0
1
1
0
1
1

gex
-23.490
-24.087
57.152
30.403
31.406
32.159
35.546
39.273
35.278
39.298
-21.691
34.478
26.742
28.282
29.685
33.084
35.943
32.276
37.697
-21.918
33.807
22.351
25.467
27.236
27.545
30.443
29.137
29.741

+HAPP

-26.128
-25.249
60.357
32.302
32.932
33.401
37.401
42.425
37.566
42.083

-21.386
35.677
26.586
28.196
29.638
33.079
36.205
32.351
37.079

-21.955
34.257
22.505
25.721
27.554
27.791
30.804
29.491
30.063

+&PP
t

-10.378
-9.735
60.607
32.271
33.053
33.517
37.440
42.644
37.834
43.003
-5.866
35.687
26.844
28.388
29.818
33.314
36.510
32.581
38.300
-6.392
34.580
22.500
25.728
27.554
27.861
30.827
29.493
30.050

Experiment
-28.296
-28.296

20.21 (20.1)
21.01 (21.1)
21.84 (22.1)
23.33 (26.4)
23.64 (27.5)
24.25 (31.0)
25.28 (29.5)
25.95 (30.5)

See above.
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column displays experimental values [12—14] for compar-
ison. The results for the Hamiltonians in Eqs. (11) and
(12) for all the model spaces improve in agreement as the
size of the model space is increased. There is excellent
agreement between the two Hamiltonians for the largest
model space used, i.e. , N = 4. The ground-state energies
dier by a few MeV for the N=1 space and only by a
few tens of keV for the N=4 space calculations. In all
calculations, the excited-state spectra display the same
level systematics.

In the I.i calculation, model spaces from N=2 through
N=4 are employed. The N=2 space calculation is per-
formed without any many-body excitation restrictions.
Excitations up to 6h, O are allowed for the N=3 space cal-
culation, and for the N=4 space excitations up to 4h, O
are allowed. These calculations are done for a starting
energy of 20 MeV and an oscillator parameter of 16 MeV.
In Table II, where the results for Li are displayed, the
columns are arranged in the same manner as the columns
in Table I. We see similar trends to those discussed for
He. Because of the larger nuclear radius, the strength

of the oscillator potential is decreased. Excellent agree-
ment for the two Hamiltonians is seen already for the
N=3 space ground-state energies. The level systemat-
ics of the two approaches are in excellent agreement and
the excitation spectra are within a few tens of keV for
the largest space. The results for the two nuclei indicate
that the two Hamiltonians are practically equivalent if

we employ large enough model spaces.
The origin of the trends we present is easy to find. We

are examining the role of u~2 in the higher-order terms
of the G matri~. Note that uq2 in these terms connects
model space states with those in the Q = 1 space and
connects Q = 1 space states with themselves. As the
Q = 0 space expands, there are fewer U interactions. For
two-particle states within the model space, the cancella-
tion of U insertions is exact in both treatments. Thus,
for two-particle states within the model space, the only
reAection of the choice of U is in the basis-state wave
functions which are the same in both of our calculations.
Furthermore, the harmonic-oscillator potential, uq2, con-
nects only two-particle states diÃering by at most 2 hO,
so that the states it aKects most are at the boundary be-
tween the Q-space and the P-space states. As the size
of the model space, P, increases, this boundary recedes
from the states which have the greatest inHuence on the
low-lying spectra.

In Tables I and II we also display the results for an ef-
fective Hamiltonian which retains the c.m. kinetic-energy
term:

A A

Rt —) t~+)G —8+TCM.
i=1 i(j

Again, A(H, —2hA) is added to the above Hamilto-
nian in the shell-model calculations. The results for this

TABLE II. The calculated ground-state energies and excitation energies of low-lying states of
Li, in units of MeV. The e8'ective Hamiltonians 'R', 'R, and 'R, P used in the calculations

are defined in Eqs. (11), (12), and (15), respectively. The starting energy u = 20 MeV and the
oscillator parameter hO = 16 MeV are chosen so as to yield a reasonable ground-state energy. The
calculations are performed using the oxBAsH shell-model program [11],in a no-core model space of
diferent sizes, signified by N, the number of major shells contained. Unless indicated, there is no
restriction imposed on nucleon configurations within the model space. The experimental data are
taken from Ref. [14]. When significant (and available), the error bars are given for the experimental
results.

Ll
N=2

N=4

J7l'

1+
1

3+
1

0+
1

2+
1

2+
1

1+
2

1+
1

3+
1

0+
1

2+
1

2+
1

1+
2

1+
1

3+
1

0+
1

2+
1

2+
1

1+

T
0
0
1
0

0
0
0
1
0
1
0
0
0
1
0
1
0

gex
-28.020
2.165
3.036
3.810
5.080
7.059

-28.296
3.307
3.079
5.991
6.295
8.166

-25.477
3.078
3.313
4.880
6.210
7.023

g&PP

-30.200
1.657
3.097
3.920
5.047
7.339

-28.814
3.231
3.038
6.123
6.249
8.263

-25.300
3.077
3.311
4.866
6.214
7.260

~~PP
t

-18.375
1.689
3.142
3.966
5.092
7.368

-16.881
3.224
3.048
6.115
6.253
8.279

-13.373
3.075
3.305
4.867
6.211
7.260

Experiment
-31.996
2.186
3.563

4.31 + 0.022
5.366 + 0.015
5.65 + 0.05

In the N=3 calculation, up to 6h, O excitations are allowed.
In the N=4 calculation, up to 4h, O excitations are allowed.' See above.
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effective Hamiltonian are compared to those of '8 of
Eq. (11) and 'R P of Eq. (12). From the tables, it is
clear that the inclusion of T, in a shell-model calcula-
tion appears only to shift the entire spectrum by nearly a
constant and does not affect the excitation-energy spec-
trum. This constant is largely governed by the virial
theorem and is about 2(zhO): 15.75 MeV for He and
12 MeV for Li. This is not surprising, because we force
the c.m. motion to be in its lowest c.m. configuration
by adding A(H, —2M) to the Hamiltonians. In fact,
the degree to which the shift is a constant is a measure
of the degree to which each state has the same c.m. wave
function. The trend of our calculation indicates that the
elimination of the spurious c.m. wave functions gener-
ally improves with the increasing of the size of the model
space.

IV. CONCLUSION

lying nuclear-energy spectra, when the above outlined
prescription is used as a starting point for constructing
effective shell-model Hamiltonians. Furthermore, includ-
ing the c.m. kinetic-energy term T, in the nuclear
Hamiltonian merely shifts the whole energy spectrum up
by an amount z(zhA); hence, it can be ignored in a
calculation for the excitation spectrum, or replaced by
a constant z (she), provided that spurious c.m. excita-
tions are eliminated from the low-lying spectrum by the
addition of A(H, ——M) (A )) 1) in the shell-model
diagonaliz ation.

It is found that the convenient choice of T, ~+G for the
effective shell-model Hamiltonian yields accurate results
in the large (N = 4) model space. This choice greatly
simplifies calculations, because G is calculated using only
n,~ and, hence, is A independent. Thus, G can be calcu-
lated and stored and used for calculating the structure of
several neighboring nuclei.

Two effective Hamiltonians have been used to calculate
the low-lying energy spectra for He and Li in various
no-core model spaces. The first effective Hamiltonian is
obtained from the Brueckner reaction matrix which in-
cludes the SP potential insertions in the ladder diagrams
to all orders. The second effective Hamiltonian is ob-
tained from the reaction matrix which only keeps the
SP potential term in its lowest order, i.e., the higher-
order insertions are neglected from the ladder diagrams
with two or Inore interaction lines. Shell-model results
for these two effective Hamiltonians are in remarkable
agreement with each other for both nuclei under con-
sideration, especially when large no-core model spaces
are employed. The results indicate that the higher-order
SP potential insertions have a negligible effect on low-
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