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We argue on general grounds that nearly identical bands observed for superdeformation and less

frequently for normal deformation must be explicable in terms of a symmetry having a microscopic
basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms
bilinear in fermion creation and annihilation operators. Observed features of these bands and the
general properties of Lie groups are then used to place constraints on acceptable algebras. Additional
constraints are placed by assuming that the collective spectrum is associated with a dynamical
symmetry, and examining the subgroup structure required by phenomenology. We observe that
requisite symmetry cannot be unitary, and that the simplest known group structures consistent
with these minimal criteria are associated with the Ginocchio algebras employed in the fermion
dynamical symmetry model. However, our arguments are general in nature, and we propose that
they imply model-independent constraints on any candidate explanation for identical bands.

PACS number(s): 21.60.Ev

A well-established feature of nuclear structure physics
is the occurrence of systematic behavior as particle num-
ber is changed. A common procedure is to separate the
change of features with A into a slowly varying portion
assumed to be described by a phenomenological liquid
drop, and fluctuations that reflect the local shell struc-
ture and are typically described by some form of de-
formed mean-field calculation. Recently, appreciable at-
tention has been given to the phenomenon of identical
bands: rotational bands in different nuclei that exhibit
similarities to a degree not expected from liquid drop be-
havior, and that occur with sufIicient frequency to call
into doubt any general explanation in terms of cancel-
lations among polarizing effects of the single-particle or-
bitals. Such bands were first discussed for superdeformed
nuclei [1,2]. Two examples are the twinned bands found
in the rare earth region where bands in nuclei differing in
A by one unit have almost identical transition energies
[3—8], and the set of identical superdeformed bands in
the mass-190 region, which exhibit almost identical vari-
ation of the second moment of inertia over a broad range
of frequencies [9,10,2]. More recently, evidence has been
presented that similar behavior also exists for normal de-
formation, though not as frequently as for superdeforma-
tion [11].

With this paper we wish to initiate a general discus-
sion of microscopic symmetries that might account for
strong relationships between rotational bands lying in
different nuclides. As a first step in this direction we
consider a subset of the general problem: What symme-
tries could be responsible for similarities between bands
lying in even-even nuclei that differ by two protons or
two neutrons? In Fig. 1 and Fig. 2 we show two exam-
ples of such regularities: superdeformed bands in some
even-even Hg isotopes, and the low-spin members of the

ground bands in some even-even isotopes of the actinide
nuclei.

Traditional mean-field theories can account for iden-
tical band behavior if an appropriate cancellation oc-
curs between various polarizing influences as the single-
particle orbitals are filled. Under certain special con-
ditions, such behavior has been demonstrated [12,13].
However, there is some consensus that identical bands
are too widespread for accidental cancellations to explain
them, and it is difficult to see how standard mean-field
theories alone can account for identical bands. Several
types of symmetry-based explanations have been sug-
gested (for example, see Refs. [14—16]), but since these
suggestions are basically phenomenological, they prop-
erly should be viewed as an alternative language to de-
scribe such bands and not microscopic explanations. In
particular, none of these approaches seems capable of an-
swering in any simple fashion the question of why there
exist certain identical bands, but at the same time there
are many more bands in similar nuclei that are not iden-
tical.

We take the point of view that unexpected regular-
ity is always a sign of unexpected symmetry, and that
identical bands are without question a consequence of
a symmetry; the challenge is to identify the symmetry
and to relate it to microscopic nuclear structure. Only if
the symmetry can be understood in terms of microscopic
structure do we have a hope of understanding objectively
why the symmetry is essentially unbroken for identical
bands, but broken for those cases exhibiting no identical
band behavior.

We emphasize that a description of identical bands in
terms of a symmetry does not preclude an alternative
description without explicit reference to symmetry. For
example, angular momentum is associated with a sym-

0556-2813/93/48(4)/1739(6)/$06. 00 1739 1993 The American Physical Society



GUIDRY, STRAYER, WU, AND FENG 48

8000

4000

0

42

40

38

36

34

32

30

26

24

22

20
18
16

Hg(b 1) Hg(bl) Hg(b2)

ome Mercury Superdeformed Bands

Composite
Spectrum

FIG. 1. Energies for some states in su-
perdeformed bands in even-even Hg isotopes.
Spins are not known for any superdeformed
bands, but it is thought that they can be
estimated with an uncertainty of 1—2 units.
Therefore, there is a small ambiguity in the
matching of states in adjacent nuclei in this
figure. The spins assumed here are those
adopted in the compilation of [28], where
references to the experimental data may be
found. The energies are normalized at the as-
signed 16+ state for each nucleus. The right
column shows the multiplet structure that re-
sults if each state of a given spin is interpreted
as a member of a representation multiplet of
a weakly broken symmetry.

metry, but angular momentum can be discussed in terms
of differential operators and geometrical concepts with-
out direct appeal to the angular momentum SU2 algebra.
Therefore, we believe it to be self-evident that any valid
explanation of identical bands, whether formulated in the
language of symmetry or not, will be equivalent to an ex-
planation in terms of a yet to be found symmetry with a
microscopic nuclear structure basis.

Let us note in this connection that a symmetry as
an explanation of identical bands sidesteps the objection
common in mean-field discussions of polarization e8'ects
that one can never achieve in a practical calculation the
accuracy required to reproduce identical bands (say, 1
part in 10 ). The starting point in the symmetry ap-
proach is the assumption that identical bands are the
norm, unless disturbed by symmetry breaking terms. We
may illustrate this point of view by the following hypo-
thetical, but historically conceivable, example. Suppose
we did not know that angular momentum was associated
with a symmetry, but we knew that it existed, and we
calculated single-particle contributions to total angular
momentum in the same way that we can calculate single-
particle contributions to say a collective quadrupole mo-

ment (notice that this means we would not have available
the simplifications brought about by Clebsch-Gordan co-
efficients, the Wigner-Eckart theorem, and so on).

Now suppose that rapid advances in experimental tech-
niques allowed a much more precise measurement of large
angular momenta associated with many high-spin collec-
tive states, and we found the unexpected result that there
were whole sets of states that had exactly the same an-
gular momentum (say, 1 part in 10 ) in each nucleus
(the 2J + 1 magnetic substate degeneracy of an angular
momentum J state). In this context, a similar conster-
nation would arise: How could one understand all these
identical states; in particular, how could one achieve a
microscopic theory suKciently precise that the 61 states
that we secretly know to be the magnetic substates of
a U state of angular momentum 30 all get, to 1 part
in 10, the same contributions from the sum over 238
single-particle angular momenta? (Remember, this sum
must be done numerically, and must be based on some
empirically determined single-particle angular momenta;
there are no Clebsch-Gordan coeKcients in our hypothet-
ical example. ) But we know the answer to this puzzle:
Angular momentum is exactly conserved because of a

600—

Same Actinide Cround-State
Rotational Bands

OD
300—

FIC. 2. Low-spin members of ground-state
rotational bands in some actinide nuclei. The
right column is as for Fig. 1.
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symmetry, and the 61 states in our example are in fact
exactly degenerate as a consequence of this symmetry.

One may argue that there is one difFerence between
our angular momentum fable and the proposed identical
band symmetry: the former symmetry is exact, the lat-
ter is not. However, this is not a substantial objection.
Imagine the previous arguments carried out in the pres-
ence of a weak magnetic field (explicit symmetry break-
ing terms). Angular momentum is no longer exactly con-
served, but the symmetry properties of angular momen-
tum still provide a clear understanding of the physics in
terms of splittings of the multiplet degeneracies, provided
the symmetry breakings are not so large that the mul-
tiplet structure is completely obscured. The qualitative
similarity of the right column of Fig. 2 with the splitting
of angular momentum degeneracies by a magnetic field
should be carefully noted.

Thus, we propose that identical bands are describable
in terms of an unknown symmetry that is weakly broken,
in analogy to angular momentum symmetry in the pres-
ence of a small magnetic field. Nonidentical bands then
correspond to a stronger breaking of this symmetry. If
the symmetry can be identified and given a microscopic
interpretation, it is possible that the pattern of symme-
try breaking (large in some cases, small in others) can
be understood, and this would constitute a microscopic
explanation of identical bands. We emphasize that it is
essential for the symmetry to have a microscopic inter-
pretation, precisely because it cannot be an exact symme-
try. Only if one can explain why identical bands occur in
some cases and not in others can one claim to have under-
stood them, and this means that the symmetry breaking
terms and their systematic behavior must be understood
explicitly, not by hypothesis.

In this paper we address the nature of this conjectured
identical band symmetry. Our approach is not to pro-
pose a specific symmetry, but to use general properties of
group algebras and the phenomenology of identical bands
to delimit the class of symmetries that could provide an
acceptable solution.

Guided by examples from varied fields of physics, we
will assume that the candidate symmetry is describable
by a Lie group, with a corresponding Lie algebra. Fur-
ther, we will assume that the appropriate Lie algebra is
generated by forms bilinear in the fermion operators that
create and annihilate nucleons in definite shell model or-
bits. There are four such independent combinations:

a,.a. ,

where at and a create and annihilate particles obeying
Fermi-Dirac statistics and i and j denote all required
quantum numbers. Thus, we assume that the generators
of the desired symmetry can be described microscopically
by a shell model having one- and two-body residual in-
teractions.

We now attempt to identify the minimal set of op-
erators that can (1) satisfy the above assumptions, (2)
provide sufIicient degrees of freedom to account for the
observed features of identical bands, and (3) close a Lie
algebra, thereby defining a symmetry. First, let us note

that the bands in question are strongly rotational, and
manifestly are dominated by collective quadrupole de-
grees of &eedom. Therefore, we require that our operator
set contain the five components of a quadrupole tensor

&~ = [a,'a, ]' 8 = 1i2) ~ ~ ~ ) 5) (2)

where the symbol indicates that we leave open details
such as multiplicative factors or possible sums over inter-
nal indices for now, and the square brackets denote stan-
dard angular momentum coupling. Since the states of
the bands carry definite angular momentum, we require
the three components of an angular momentum operator,

p = 1)2~3 )

and since we deal with states of specific particle number,
we need a particle number operator

n ~ a ~ Q ~ 0

Therefore, the required algebra must involve at least
nine multipole operators of the general form given by Q,I, and n. However, this is not suKcient to de6ne a min-
imal set. The most striking feature of identical bands is
that they occur in difFerent nuclei. Thus the symmetry
that me seek must have irreducible representations con-
taining states that differ in particle number. Symmetries
with this property are well known in nuclear physics. For
example, isotopic spin, quasispin and pairing vibrations,
and pairing rotations all connect states that lie in difI'er-
ent nuclei. However, these represent simple symmetries
that link a restricted number of states in neighboring nu-
clei. The symmetry that we seek to describe identical
bands must be much more comprehensive, because it is
required to simultaneously link many states in a band in
one nucleus to a corresponding number of states in other
nuclei. The observation that the symmetry must be able
to connect states in nuclei difFering in neutron or proton
number by two means that we must include pairing op-
erators in our set of generators. The simplest operators
consistent with nuclear structure phenomenology are the
two 8-pair operators

[a tat]0 S = [a,a, ]', .

However, the requirement of closing the algebra means
that we cannot stop here. Commutation of the S-pair
operators with the quadrupole operators will lead in-
evitably to terms involving D-pair operators, since the
commutators involve the coupling of angular momentum
0 to angular momentum 2; therefore, we must also in-
clude ten angular momentum 2 pairing operators in our
set:

D~ = [a'a']' p = 1&2&. . . &5

Notice that these considerations imply that identical
bands cannot be explained as a consequence of a uni-
tary symmetry. Therefore, pseudo-SU3, interacting bo-
son model IBM, or other unitary symmetries cannot, as
a matter of principle, provide an explanation of identical
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bands. If one obtains within such models a moment of
inertia that is independent of the particle number, this is
a consequence of particular assumptions or constraints;
it is not a consequence of the symmetry.

The assemblage of 21 operators, Q, I, n, S, St, D, and
D~, constitutes a minimal set capable of satisfying our
requirements. This is of course a necessary but perhaps
not sufIicient condition. For example, it is possible that
a particular microscopic choice spanning the preceding
set can be closed under commutation, but the matrix el-
ements associated with the corresponding closed algebra
might still be inadequate to accommodate experimental
observations. Alternatively, a particular choice for this
set may not lead to a closed algebra because commuta-
tions involving D pairs could lead to operators with even
higher angular momentum. However, we reiterate that
our specific goal is to identify the minimal set as a start-
ing point for constructing theories of identical bands.

Prom this analysis, we may conclude that minimal al-
gebras with a chance to describe identical bands require
at least 21 generators. We may now inspect standard
classifications for candidate l,ie algebras (see Wybourne
[17], Table 7.1). It is interesting that the properties of
Lie algebras ensure that there are only a few possibilities,
and that the simplest of these saturate our deduced mini-
mal operator set: the Lie algebras isomorphic to Sp6 and
to SO7 contain exactly 21 generators. The next fewest
number of generators among the standard Lie algebras is
associated with the group SU5, but unitary groups are ex-
cluded by the physical conditions that we have imposed.
The next simplest possibility is isomorphic to SOS and
contains 28 generators, 7 beyond the minimal set. There-
fore we conclude, simply on the basis of counting genera-
tors, that the most fruitful group structures to explore in
search of a minimal description of identical bands are the
groups Spo and SO7, with the next most favorable possi-
blility being the group SOS. We note that this exhausts
all possibilities with fewer than 36 generators.

There is no guarantee that 21 arbitrarily chosen op-
erators will satisfy the physical conditions that we have
imposed and at the same time close an Sp6 or SO7 alge-
bra; to the contrary, these independent conditions set
highly restrictive conditions on the microscopic struc-
ture of the operator set, and it is not clear a priori
that they can be fulfilled simultaneously. Therefore,
it is encouraging that algebras satisfying these condi-
tions are known already. The Sp6 algebra introduced
by Ginocchio [18] that is an integral part of the cou-
pling scheme employed in the fermion dynamical sym-
metry model [19] is a fermion algebra in which the 21
generators have the schematic microscopic structure and
physical interpretation required in the preceding discus-
sion of phenomenology: a quadrupole operator, an an-
gular momentum operator, a particle-number operator,
and I = 0, 2 pairing operators. Furthermore, it has been
demonstrated that this algebra harbors a dynamical sym-
metry Sp6 ~ SU3 & SO3 that may be interpeted physi-
cally as producing axially symmetric rotational bands.

Ginocchio has introduced an SOS algebra that involves
operators of the form that we have discussed, plus 7 addi-
tional generators, that has also been used in the fermion

dynamical symmetry model. This group supports a dy-
namical symmetry SOS & SO6 ~ SO3, with the physical
interpretation of producing p-unstable rotational bands.
Although it is not obvious that such a symmetry is by
itself useful for describing identical bands, it is known
that a coupling of the SOS and Sp6 Ginocchio symme-
tries produces collective modes that have axially sym-
metric equilibrium deformations, but with a degree of
softness to Huctuations into the p plane [20,21]. Such a
coupled symmetry mode might conceivably be relevant
to the present discussion. Finally, for completeness we
note that Ginocchio also introduced an SOT symmetry
through a subgroup of his SOS group, but the physical in-
terpretation for the 21 generators of this particular group
is not consistent with the phenomenological requirements
we have placed on our minimal set of generators [18,22].

Let us now ask whether there may be more constraints
that we can place than those already enumerated. In
particular, let us consider the subgroup structure. Since
the states in question represent nondegenerate collective
modes of a many-body Hamiltonian, we will assume that
what we seek is a dynamical symmetry: the Hamilto-
nian can be written as a polynomial in the invariants
(Casimirs) of a subgroup chain of the highest group.
Since the nature of the collective modes will then de-
pend on the nature of the subgroup chain, this will place
further strong constraints on acceptable symmetries.

Let us now see what general statements we can make
about the subgroups. First, the foregoing arguments
would indeed lead to identical bands, but they would
be too identical, since those arguments concern the high-
est symmetry and would produce completely degenerate
multiplets. But the states of an identical rotational band
are not degenerate [they have a J(J+ 1) spacing]. These
states of a rotational band must be members of a mul-
tiplet of a subgroup of the highest symmetry because of
the following: (1) there are strong transitions between
the states, suggesting that they are members of an ir-
reducible representation (irrep) connected by raising and
lowering operators of the relevant group; (2) each of these
irreps lies in a single nucleus, so by hypothesis the corre-
sponding group cannot be the highest group, which has
irreps spanning difFerent nuclei; therefore, the irreps must
belong to a subgroup of the highest group.

Second, the displayed spectra in Fig. 2 are shown with
respect to the ground state of each nucleus, and those
in Fig. 1 with respect to an assumed 16+ state in each
nucleus. Actually, each spectrum is ofFset by the mass
difFerence of the reference state: the 0+ states in, say,

3 U and U are not at the same energy, but difFer by
the U and U ground-state mass difFerence. Thus,
the highest symmetry must be broken by terms that in-
troduce a nontrivial particle number dependence into the
total Hamiltonian in order to account for the ground-
state mass variation with A, but these terms must have
only weak infIuence on the rotational spacings within
the bands. This means that the dynamical symmetry
must involve subgroups with irreps that correspond to
rotational bands for which the moments of inertia do
not depend on the particle number. To be specific, the
dynamical symmetry must produce a band of collective
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states that has a spectrum n J(J + 1), where a depends
at most weakly on the particle number, while at the same
time yielding a ground-state mass that has a nontrivial
particle-number dependence. Since J(J+ 1) is the eigen-
value of the angular momentum SO3 Casimir operator,
this implies a dynamical symmetry G ~ . . G' p - . . SO3,
where G is the highest symmetry addressed in the pre-
ceding discussion, G' is the subgroup of G that has irreps
corresponding to a band of collective even-spin states
connected by strong E2 transitions and that numbers
among its generators the three of angular momentum,
and SO3 is the angular momentum group generated by
this subgroup of G' generators (dots imply that there
could in principle be intervening groups in the chain).
Although our argument is general, we note that an obvi-
ous candidate for the group G' is SU3.

These are general statements, based on attributes of
the observed bands and the properties of Lie groups and
their associated dynamical symmetries. However, there
is again a known example that can fulfill these conditions.
The Sp6 ~ Uq x U3 & SU3 & SO3 dynamical symmetry
chain of the Ginocchio Sp6 algebra is employed in the
Fermion dynamical symmetry model (FDSM) and cor-
responds to a Hamiltonian that is capable of describing
ground-state mass differences [23,24], but at the same
time produces collective rotational bands that can sat-
isfy the preceding conditions [19,25,26]. In particular,
the rotational bands correspond to irreps of SU3 lying in
individual nuclei that have a symmetry-limit spectrum

E = const + n J(J + 1),

where o; is a function of the effective interaction of the
truncated space, and. only depends weakly on particle
number if the effective interaction parameters have a
small particle-number dependence and symmetry break-
ing is negligible [27]. Therefore, at least one example
exists that satisfies our conditions schematically and has
the potential to satisfy them quantitatively, but we em-
phasize that our arguments have been of a general nature
and should apply to any candidate for a dynamical sym-
metry to describe identical bands. Thus the FBSM ex-
ample might represent only one member of a general class
of dynamical symmetries that lead naturally to identical

bands.
In conclusion, we have proposed that any valid expla-

nation of identical bands will be equivalent to a descrip-
tion in terms of a yet-to-be-identified microscopic symme-
try. We have employed empirical observations and gen-
eral principles of group theory and microscopic nuclear
structure to restrict the classes of theories that one should
investigate in searching for a candidate symmetry. We
conclude that a minimal theory must be based on a Lie
algebra with at least 21 generators and that this algebra
cannot be unitary. Thus, explanations of identical bands
in terms of Elliott SU3, pseudo-SU3, or IBM symmetries
are excluded on fundamental grounds. If such theories
give rise to identical bands, they do so for reasons that
are not dictated by the symmetries of the theory. We
have specified the schematic physical interpretation re-
quired of these generators and the schematic subgroup
structure demanded by the phenomenology. We have
pointed out that the simplest known symmetries consis-
tent with these minimal requirements are derived from
the Ginocchio algebras that are utilized in the fermion
dynamical symmetry model. This provides both a candi-
date symmetry for identical bands and an existence proof
for theories satisfying the minimal requirements. It is our
hope that the present discussion will encourage investi-
gation of whether there are additional symmetries that
meet these conditions, and whether such symmetries can
provide a quantitative and microscopic interpretation of
identical bands.
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