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Longitudinal response functions of heavier nuclei
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The electronuclear longitudinal response is studied in a large class of nuclei. Medium weight as
well as heavy nuclei are considered. Beyond mean Geld effects short range correlations are taken into
account by means of a local density approach. They are responsible for a decrease of the response
up to 15% in the quasielastic region. The amount of quenching is proportional to the average proton
density reaching its maximum for medium heavy nuclei.
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I. INTRODUCTION

In the last years much experimental effort has been
devoted to the separation of the inclusive electronuclear
response functions. Today data are available in the
quasielastic region for light [1—4], medium-weight [5—9],
and heavy nuclei [10, ll]. In most cases they show com-
mon features such as a quenching of the longitudinal re-
sponse in the peak region and an overall missing longi-
tudinal strength compared to results in the plane wave
impulse approximation (PWIA) and to the Coulomb sum
rule [12], respectively. The disagreement is generally
smaller for lighter nuclei, but can become much more
sizable for the heavier ones. Many theoretical calcula-
tions of the longitudinal response functions exist for light
and medium-weight nuclei. On the contrary for heavier
nuclei only a few calculations have been performed [13]
and nuclear matter (NM) results [14] are often used for
comparison with these data.

It is the aim of the present work to study the longitudi-
nal response for a large number of nuclei within a unique
scheme. To this end we propose an ansatz which com-
bines the nucleon-nucleon correlation effects of a NM cal-
culation with the finite size and shell effects of a Hartree-
Fock (HF) description of the nuclear systems. The ap-
proach is based on a local density approximation that in
similar form has already been applied in the studies of
nucleon momentum distributions [15] as well as for the
Coulomb sum rule [16] in heavier nuclei. Such a model
has the great advantage of allowing the study of sys-
tematic correlation effects as a function of the density
distribution.

The paper is organized as follows. The model is de-
scribed in Sec. II while in Sec. III results for various
nuclei from Ca to U are presented. That section
also contains a comparison with experimental data and a
brief discussion on the effects due to a density-dependent
proton form factor.
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II. RESPONSE OF NUCLEAR MATTER
AND OF HEAVY NUCLEI

The longitudinal nuclear response function is given by

R(lql ~) = ) l(&IS(q)I0)l'~(~ —& +&o) (1)

where the charge operator for pointlike nucleons is
Z

P(&) = ) e' '*, (2)

where now the single-particle response is evaluated

where Z is the number of protons. Equation (1) shows
that knowledge of nuclear initial and final state wave
functions is necessary for the calculation of the response.
Unfortunately, today, realistic evaluations of the response
can be performed only in light nuclei, while we are far
from being able to perform realistic calculations in more
complex systems. In the present work we propose a
less ambitious approach which allows one to estimate

R(~q~, w) for a large number of medium-weight and heavy
nuclei within a unified approximation.

One may consider the NM response as a good start-
ing point for the calculation of R(iq], w) of heavy nuclei,
since NN correlations in the ground and final states can
be taken into account properly [14]. However, a NM cal-
culation misses the important finite size and shell effects
of real nuclei. Aiming at incorporating the latter effects
into the NM response we first separate off from it the
pure Fermi gas (FG) part, obtaining

»'"(lql ~ kF) = R'"(Iql ~ k~) —R' (lql, ~) (3)

The resulting quantity bB™represents that part of the
response per proton due to the presence of dynamical
correlations generated mainly by the short and medium
range part of the potential [Pauli correlations are in-
cluded in RF (iqi, ~)]. A quite similar quantity can be
defined for finite nuclei, namely,

»"(lql, ~) = R"(lql ~) —R"'(lql ~)
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within a Hartree-Fock (HF) approximation. Once again,
bR+(Iql, u) contains correlations which are not ac-
counted for by the mean field description and are due
to the residual interaction.

While it is evident that the two single-particle re-
sponses (RF and R ) are quite different, it is reason-
able to assume a larger similarity for 6RNM and bRA,
since presumably short and medium range correlations in
finite nuclei and in nuclear matter at the same density are
not too different. This fact suggests the following local
density ansatz for the longitudinal response per proton
of medium-weight and heavy nuclei:

ksF r
bR (lql, cu) = dr 6R (lql, cu, kF(r)), (5)

and therefore

with

M' lqlz
Ipl

where the nucleon effective mass M* is generated in the
NM calculation. Analogously, one has

l&l+

RpwIA(lql ~ kF) = Z dIX I IX I
n"'(Ipl)

with J'nHF(lpl) dipl = l. Similar to the response in Eq.
(3), the NM nucleon momentum distribution nNM can
also be split in an independent particle (nF+) and a cor-
relation part (bn™),so that Eq. (7) can be rewritten
as

R"(lql ~) = R"'(lql ~)
ksF r

dr F bRNM(lql, (u, k»(r)) . (6)
RPWIA(lql ~ kF)

NM 2m'M*
RPWIA(lql, ~, kF) =

lx I+
dlx I lpln™(lxI, k )

The r dependence of the Fermi momentum kF can be
taken from the Thomas-Fermi approximation (kF(r) =
[3vr2p(r)]i~s), where p(r) is the HF density of the protons
normalized to the proton number [fdr p(r) = Z].

This ansatz has the advantage of taking into account
in a transparent way finite size and shell effects as well
as correlation effects. However, such a separation has to
be interpreted with care. In principle, 6R does not only
contain correlation effects but also interference terms be-
tween correlation and single-particle parts. Fortunately,
in a local density approximation it does not seem to be
important what kind of single-particle model is used for
the interference terms. This is implicitly shown in Ref.
[15], where nuclear momentum distributions are calcu-
lated with an ansatz similar to the present one. In fact,
there it turns out that the obtained momentum distri-
butions are very similar to the ones obtained in conven-
tional many-body calculations which include dynamical
correlations.

For an explicit evaluation of the term R one needs
an expression for RHF and the longitudinal NM response
as a function of the Fermi momentum k~, i.e. , of the
density. Indeed to make the calculations simpler one
would need a parametrization of 6RNM as function of
kF. In the following we describe how we get RH and
a parametrization of 6RNM within the PWIA. This ap-
proximation is particularly suitable if one wants to fo-
cus mainly on the properties of the response functions
which are a consequence of the ground state properties
of the system. Moreover, at values of momentum transfer
around 2.5 fm I it represents a rather good approxima-
tion especially in the quasielastic peak region [18]. A
discussion about possible final state interaction (FSI) ef-
fects is postponed to the end of this section.

The longitudinal NM response per proton in PWIA is
given by

2~M* +
dlpllpl n' (Ix I)++n (lpl, kF)

Prom Eqs. (3) and (10) one has

~RpwiA(lql» &F)

2'M* I el+
dlx I lx I

~n (Ipl, kF) (11)

Having the previous expression for 6R, a parametriza-
tion as function of kF has to be found for 6n (lpl).
Following Ref. [15] we take the form of the lowest-order
cluster (LOC) approximation developed in Ref. [17]. A
comparison between 6RpwiA(lql, a, kF = 1.33 fm I) cal-
culated once with the exact 6n [19] and once with the
LOC parametrization of bn is shown in Fig. l. One
sees that the results are very similar. Thus we may use
the LOC approximation in order to get the correct den-
sity dependence of bn
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(dashed line, short range parameter p = 1.1 fm
0.81M).
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Obviously, the ansatz of Eq. (11) does not account for
the correlations in the final state. In Fig. 2 we show
the eKect of FSI's in the case of NM comparing bB
[Eq. (3)] and b'RPw&A [Eq. (11)] at a momentum trans-
fer of 500 MeV/c. They have been calculated making
use of the NM momentum distribution of Ref. [19] and
the NM longitudinal response of Ref. [14], respectively.
In both works the same realistic NN interaction is used.
One notes that correlations are mostly effective in the
quasielastic peak region (up«i, = q /2M*, M* = 0.81
[20], i.e. , u~«i, = 165 MeV for ~q[ = 500 MeV/c) and for
the high-energy tail. While they reduce the response in
the peak region, they lead to an increase at high energies.
Comparing the two curves of Fig. 2 one finds that bR
is more afFected by ground than by final state correla-
tions. Thus our limitation to consider only initial state
correlations in the local density approximation seems to
be reasonable.

Though we do not consider final state correlations in
the local density approximation we give a rough esti-
mate of them. To this aim in Fig. 3 we show the rel-
ative effects of FSI's on the longitudinal response of 2H

and 4He [22] and compare them to the corresponding
NM result. The curves in Fig. 3 represent the ratio
r = (R —RpwIIt, )/RpwIA. In the case of deuteron R is
the exact response obtained rrith the Argonne vrs ]21]
potential model (q = 450 MeV/c). In the case of He
R is the response reconstructed from a Green's func-
tion Monte Carlo calculation of its Laplace transform
(q=400 MeV/c, vi4 Argonne potential). The correspond-
ing PWIA responses are obtained using the exact and
variational Monte Carlo momentum distributions of H
and 4He, respectively. In the case of 4He an average sep-
aration average equal to the difFerence between sH and
4He binding energies has been used. For nuclear mat-
ter the PWIA result is obtained using the NM momen-
tum distribution of Ref. [19] and M' = 0.81 [14]. The
FSI leads to a reduction in the peak region for all three
cases. In general, it seems that FSI effects in NM are
qualitatively rather similar but less pronounced than in
real nuclei, though the results for 4He are at smaller mo-
mentum transfer (~q~ = 400 MeV/c) than those for NM

(~q~ = 500 MeV/c) and FSI efFects tend to be less im-
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portant with increasing ~q~. Thus we do think that the
simple inclusion of NM-FSI effects in our final results for
the responses will probably represent a lower estimate of
these effects in medium-weight and heavy nuclei.

III. RESULTS AND DISCUSSION

In Fig. 4, bR (~q~, ~) is shown for several nuclei with
A ranging from 16 to 208. As in NM the effect of correla-
tions consists mainly in a shift of strength from the peak
region to higher energies. In complete analogy with the
results for the Coulomb sum rule [16] the size of this efFect

6.0
(a)

208pb .

grows from isO to MFe and then decreases with further
increasing A. As was pointed out in Ref. [16] this be-
havior is related to the average proton density (cf. Table
I of Ref. [16]). One has the strongest efFects for the nuclei
with the highest densities, and one finds rather similar
results for nuclei with the same average density, e.g. , for
40Ca and zosPb. Neutron-proton asymmetry efFects have
been neglected for bR+ since results for symmetric nu-
clear matter have been used for the local density approx-
imation. These effects should be proportional to ( & )
and therefore less important. However, in the dominant
HF part of the total response asymmetry efFects have
been taken into account.

Figure 5 shows results of various approximations for
the longitudinal response of o Pb and ssU. Let us con-
sider first the effect of difFerent single-particle models [see
Fig. 5(a)]. One sees that the HF calculation leads to a
narrower peak than the FG model. This is clearly due
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FIG. 5. Longitudinal response function per proton of
Pb (a) and U (b) at ~q[ =500 MeV/c. In (a) the dot-

ted line is R (~q~, u) with kp = 1.33 fm, the dashed line is
R ()q(, u), and the dash-dotted and solid lines are R ((q(, cu)
of Eq. (6) with R and R, respectively. In (b) the dotted
line is R (~q, u), and the dashed line is R (~q~, u) of Eq.
(6), where 6RPwiz is used in the integral. In the solid line the
quantity (bR™—6RPw«) embodying FSI's has been added.
M' = 0.81M for all curves.
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FIG. 6. Longitudinal response functions of Ca and Fe
at ~q~ =500 MeV/c. Dashed line, R; solid line, R with
inclusion of both short range correlations and FSI eRects. The
proton form factor G (q ) [23] has been used. Experimental
data from Ref. [8].



176 M. TRAINI, G. ORLANDINI, AND W. LEIDEMANN 48

to density effects. In fact, in the FG model the width of
the response is proportional to k~, which is larger than
the average kF(r) of a finite nucleus. Furthermore, Fig.
5(b) shows that short range correlations reduce the peak
height by about 7%. Effects due to correlations become
much more important in the tail region; there they can
even double the strength. These results are similar to
those obtained previously in a phenomenological corre-
lated pair model [24]. In Ref. [24] it is shown that the
redistribution of the strength is mainly due to the ten-
sor component of the correlation function. The further
inclusion of NM-FSI effects (bR M —bRPNwM&A) reduces
the peak height by an additional 3—4% and quenches the
strength at high energies considerably. A correct treat-
ment of FSI's, however, might lead to strong reductions
in the peak region as well.

A comparison with experimental data is shown in Fig.
6 for medium-weight nuclei and in Fig. 7 for the heav-
ier ones. The results for R+ have been multiplied by
the proton form factor of Ref. [23]. Contributions of the
neutrons to the response have been neglected, setting the

0.15 I
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I I

208
pb

neutron form factor to zero. Even if correlation and FSI
effects tend to reduce the disagreement between theory
and experiment it is clear that the quenching of the mea-
sured responses is still sizable. The only exception is
2ssU, where one has a satisfactory agreement between
theory and experiment.

It has been argued that one of the possible reasons
for the quenching of the longitudinal response could be
a modi6cation of the proton form factor due to medium
effects [25]. Of the many works which have been per-
formed in this direction we only consider here a recent
one [26], where within the vector dominance model the
nucleon form factor can be written as a sum of a bag and
a density-dependent meson cloud terms. Within our lo-
cal density approach the inclusion of a density-dependent
proton form factor in the longitudinal response function
is straightforward. One has
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where FLz{p(r), q2) is the proton form factor of Ref. [26].
In Fig. 8 we show the efFect of this density-dependent
form factor on the longitudinal responses of zosPb and
2ssU. As expected, one finds a better agreement with ex-
periment in the former case and a worse one in the latter.
Of course, an improvement would also been obtained for
40Ca a„d'56Fe

To summarize, the local density approach to the lon-
gitudinal response allows us to study the role of short
range correlations in a large class of nuclei from medium
weight to heavy ones. We have found that they are re-
sponsible for shifting the strength from the peak region
to the high-energy tail. The amount of quenching in the
quasielastic region and the corresponding increase of the
high-energy strength are related to the average charge
density. The effects become larger going from 0 to
MFe and then decrease with further increasing A. The
comparison with experimental data shows that the size of

I

these effects is not large enough to explain the data, ex-
cept for the case of sU. Other effects such as FSI's can
be responsible for a further reduction of strength in the
quasielastic region. The density-dependent proton form
factor such as that of Ref. [26] in the vector dominance
hypothesis has been included in our local density calcu-
lation of the response. This gives a further quenching of
the response, which brings the theoretical description in
good agreement with the data for Pb, but spoils the
good results in ssU.
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