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Microscopic calculation of in-medium nucleon-nucleon cross sections
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We derive in-medium nucleon-nucleon (NN) cross sections in a microscopic model. Our cal-
culations are based upon the Bonn NN potential and the Dirac-Brueckner approach for nuclear
matter. We consider energies up to 300 MeV (in the laboratory frame) and densities up to twice
nuclear matter density. Our results deviate substantially from cross section parametrizations that
are commonly used in the nuclear medium.

PACS number (s): 21.65.+f

I. INTRODUCTION

An exciting topic in contemporary nuclear physics is
the study of the medium (density and/or temperature)
dependence of the properties of hadrons and hadronic
processes. A well-known example is the mass of the
nucleon which decreases with increasing density. This
is implied by relativistic (e.g. , Walecka model [1,2] and
Dirac-Brueckner approach [3—10]) as well as nonrelativis-
tic (e.g. , momentum dependent Skyrme forces [11,12])
models. Based on effective chiral Lagrangians, Brown,
Rho, and Koch [13,14] argue that the masses of other
hadrons also decrease with increasing density, at about
the same rate as the mass of the nucleon. Recent finite
density QCD sum rule calculations also indicate that the
masses of hadrons should decrease with increasing den-
sity [15—17].

Not only the static properties of hadrons (e.g. , their
masses) but also the dynamical ones (e.g. , two-body scat-
tering ) are modified due to the presence of the medium.
In-medium nucleon-nucleon (NN) scattering differs from
the corresponding one in free space, mainly due to Pauli
blocking of intermediate and final states as well as the
mean Beld. In conjunction with nucleus-nucleus colli-
sions, Faessler and co-workers [18—20] have studied in-
medium NN scattering, based on nonrelativistic Brueck-
ner calculations and the Reid soft-core potential. This
approach has been applied in calculations of the nucleus-
nucleus optical potential at low energies [18—21] and in
the transport model description of nucleus-nucleus col-
lisions at intermediate energies [22—24]. It should, how-
ever, be emphasized that nonrelativistic many-body the-
ory, e.g. , the Brueckner approach [25—27] and the varia-
tional method [28—30], is not able to reproduce correctly
the saturation properties (saturation density and energy)
of nuclear matter, when two-body forces are applied [5].

The investigation of in-medium NN scattering is of
interest for intermediate-energy heavy-ion reactions. Ex-
perimentally, nucleus-nucleus collisions at intermediate
energies provide a unique opportunity to form a piece
of nuclear matter in the laboratory with a density up
to (2—3)po (with po, in the range of 0.15—0.19 fm, the
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saturation density of normal nuclear matter; in this pa-
per we use po

——0.18 fm ) [31,32]. Thus it is possible
to study the properties of hadrons in a dense medium.
Since this piece of dense nuclear matter exists only for a
very short time (typically 10 —10 22 s), it is necessary
to use transport models to simulate the entire collision
process and to deduce the properties of the intermediate
stage from the known initial conditions and the final-
state observables. At intermediate energies, both the
mean Beld and the two-body collisions play an equally
important role in the dynamical evolution of the collid-
ing system; they have to be taken into account in the
transport models on an equal footing, together with a
proper treatment of the Pauli blocking for the in-medium
two-body collisions. The Boltzmann-Uehling-Uhlenbeck
(BUU) equation [33,34] and quantum molecular dynam-
ics (QMD) [35,36], as well as their relativistic extensions
(RBUU and RQMD) [17,37—40], are promising transport
models for the description of intermediate-energy heavy-
ion reactions. In addition to the mean field, the in-
medium NN cross section is also an important ingredient
of these transport models. Specifically, the in-medium to-
tal as well as differential NN cross sections are needed
by these models in dealing with the in-medium NN scat-
tering using a Monte Carlo method. Moreover, if these
models are used to calculate the spectrum of particles
produced in heavy-ion collisions, such as photons, pions,
and kaons, one also needs to know the in-medium ele-
mentary particle production cross section [34,38,41—44];
e.g. , the in-medium cross section of neutron-proton (np)
bremsstrahlung (np ~ npp) is needed in the calculation
of the photon production cross section in nucleus-nucleus
collisions. Up until now, most calculations of particle
production in nucleus-nucleus collisions are based on the
free production cross sections.

It is the purpose of this paper to calculate the elas-
tic in-medium NN cross sections in a microscopic way.
We base our investigation on the Bonn meson-exchange
inodel for the NN interaction [5,45] and the Dirac-
Brueckner approach [5—7] for nuclear matter.

Speaking in more general terms, it is the fundamen-
tal goal of traditional nuclear physics to describe nuclear
structure and nuclear reactions in terms of the same re-
alistic NN interaction. This bare interaction should be
based as much as possible on theory and describe the two-
nucleon system (NN scattering as well as the deuteron)
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accurately.
There are two aspects to the problem. First, one needs

a realistic NN interaction which is ultimately determined
by the underlying dynamics of quarks and gluons and
should in principle be, derived from quantum chromo-
dynamics (@CD). However, due to the nonperturbative
character of @CD in the low-energy regime relevant for
nuclear physics, we are far away from a quantitative un-
derstanding of the NN interaction in this way. On the
other hand, there is a good chance that conventional
hadrons, such as nucleons and mesons, remain the rel-
evant degrees of &eedom for a wide range of low-energy
nuclear physics phenomena. In that case, the overwhelm-
ing part of the NN potential can be constructed in terms
of meson-baryon interactions. In fact, the only quanti-
tative NN interactions available up until now are based.
upon the idea of meson exchange; two well-known exam-
ples are the Paris potential [46,47] and the Bonn poten-
tial [5,45] (see Ref. [5] for a comprehensive overview of
the history of meson-exchange models).

The second aspect of the problem concerns a suit-
able many-body theory that is able to deal with the
bare NN interaction which has a strong repulsive core.
The Brueckner approach [25—27] and variational method
[28—30] have been developed for this purpose. How-
ever, when using two-body forces, the Brueckner ap-
proach and the variational method are not able to re-
produce correctly the saturation properties of nuclear
matter. Inspired by the success of the Dirac phe-
nomenology in intermediate-energy proton-nucleus scat-
tering [48—50] and the Walecka model [quantum hydro-
dynamics (QHD)] for dense nuclear matter [1,2], a rela-
tivistic extension of the Brueckner approach has been ini-
tiated by Shakin and co-workers [3,4], frequently called
the Dirac-Brueckner approach. This approach has been
further developed by Brockmann and Machleidt [5,6,51]
and by ter Haar and. Malfiiet [8—10]. Formal aspects
involved in the derivation of the relativistic G matrix
have been discussed in detail by Horowitz and Serot
[52,53]. The common feature of all Dirac-Brueckner re-
sults is that a repulsive relativistic many-body efFect is
obtained which is strongly density dependent such that
the empirical nuclear matter saturation can be explained.
The Dirac-Brueckner approach thus provides a reason-
able starting point for pursuing the longstanding goal of
self-consistently describing nuclear matter, finite nuclei,
and nuclear reactions based on the same realistic NN in-
teraction. The extension of this relativistic approach to
the domain of finite nuclei has been discussed by Miither
et al. [54] and recently by Brockmann and Toki [55], while
the investigation of nucleon-nucleus scattering has been
initiated by Nuppenau et al [56]. .

This paper is the first in a series in which we investigate
systematically in-medium NN scattering based on the
Bonn potential and the Dirac-Brueckner approach. In
this paper, we are concerned with elastic in-medium NN
scattering which is the most important two-body process
in nucleus-nucleus collisions at incident energy below 300

I

MeV per nucleon. In Sec. II we give a brief description
of the Bonn potential and compare theoretical predic-
tions with experimental data for free-space NN scatter-
ing. The Dirac-Brueckner approach and the predictions
for nuclear matter are discussed in Sec. III. The results
for the in-medium NN cross sections are presented and
discussed in Sec. IV. Finally we give a brief summary and
outlook in Sec. V.

II. BONN MODEL AND NN OBSERVABLES

Two-nucleon scattering is described covariantly by the
Bethe-Salpeter equation [57]. As this four-dimensional
integral equation is very difIicult to solve, so-called three-
dimensional reductions have been proposed, which are
more amenable to numerical solution [58,59]. Among the
different forms of three-dimensional reductions, the one
suggested by Thompson [59] is particularly suitable for
the relativistic many-body problem [5,6]. In terms of the
B matrix (or K matrix) the Thompson equation reads,
in the center-of-mass system [60],

B(q', q) = V(q', q)
d3k I

m2 1

where q, k, and q are initial, intermediate, and final
relative momenta, respectively, of the two scattering nu-
cleons. E~ = (m2 + q2)~~2 with m the mass of the free
nucleon. 7 denotes the principal value.

In the one-boson-exchange (OBE) model, the ker-
nel of this integral equation, U(q', q), is the sum of
one-particle-exchange amplitudes of certain bosons with
given mass and coupling. In the OBE Bonn model [5],
six nonstrange bosons with mass below 1 GeV are used;
they are pseudoscalar mesons (vr and rI), scalar mesons (h
and 0), and vector mesons (p and w). The meson-nucleon
interactions are described by the Lagrangians

with g the nucleon and P~ l
the meson fields (notation

and convention as in Ref. [61]). For isospin-1 mesons
(7r, 8, and p ), P~ l is to be replaced by 7 P~ &, with
7 the usual Pauli matrices. Note that the pseudovector
coupling is used for pseudoscalar mesons in order to avoid
unrealistically large antiparticle contributions.

Prom the above Lagrangians, we can derive the OBE
amplitudes; e.g. , the contribution from the isoscalar-
scalar meson is given by

(q'&I &', ~V, ~q&~&2) = —g,'u(q', &', )u(q, &&)u( —q', &', )u( —q, &2) q' —q2+m2 ' (5)
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TABLE I. Parameters of the OBE Bonn potentials used in this work (reprinted from Ref. [5],
Appendiw A, Table A.2, therein).

Meso ns
7r

P
b

b

m (Me V)
138.03
548.8
769
782.6
983
550

Bonn A

g /47r A (GeV)
14.9 1.05
7 1.5
0.99 1.3
20 1.5
0.7709 2.0
8.3141 2.0

Bonn B
g /4s. A (GeV)
14.6 1.2
5 1.5
0.95 1.3
20 1.5
3.1155 1.5
8.0769 2.0

Bonn C
g /4vr A (GeV)
14.6 1.3
3 1.5
0.95 1.3
20 1.5
5.0742 1.5
8.0279 1.8

0
O

0
U

20

15—

g = f fors andri.
We use ~=6.1 and ~=0.

Qp g~

where A; (A';), with i = 1, 2, denotes the helicity of the
incoming (outgoing) nucleons. X, [(q' —q) ] is a form
factor of monopole type which simulates the short-range
physics governed by quark-gluon dynamics:

8

with A, the cutoff mass of the isoscalar-scalar meson.
The Dirac spinors are normalized covariantly:

0
O
Q)

10
0

15

10—

5—

0

I
f
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(b) E1+b
——129 MeV
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u(q, A)u(q, A) = 1.

The OBE amplitudes for other mesons are given in Refs.
[5,45,6O].

Three sets of OBE potential parameters, denoted by
Bonn A, B, and C, have been proposed [5]. We reprint
them in Table I. The main difference between the three
parameter sets is the cutofF parameter for the vrNN ver-
tex, which is 1.05, 1.2, and 1.3 GeV for Bonn A, B, and
C, respectively. Consequently, the three potentials differ
in their strength of the tensor force component which is
not well constrained by present NN data. Bonn A has
the weakest tensor force and Bonn C the strongest. All

200
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FIG. 1. Neutron-proton differential cross sections at (a)
50 MeV, (b) 129 MeV, and (c) 212 MeV. The curves are
predictions by the Bonn potentials. The data at 50 MeV are
from Ref. [62] (solid circles) and Ref. [63] (solid squares),
while the data at 129 MeV and 212 MeV are from Ref. [64]
and Ref. [65], respectively.
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0
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FIG. 2. Neutron-proton total cross sections in the energy
range 50—300 MeV. The curves are the predictions by the
Bonn potentials. The data are from Ref. [66] (solid circles),
Ref. [67] (solid triangles), and Ref. [68] (solid squares).
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three potentials reproduce the deuteron properties and
the phase shifts of NN scattering up to about 300 MeV
accurately (cf. Refs. [5,6]).

Our goal is to calculate the in-medium NN cross sec-
tions microscopically. For this purpose it is important
that the bare NN interaction describe the free NN scat-
tering cross sections correctly. In Fig. 1, we compare
the predictions by the Bonn potentials with the neutron-
proton (np) differential cross section data at 50, 129, and
212 MeV. It is seen that all three potentials reproduce
the data very well. In Fig. 2 we show the np total cross
sections in the energy range 50—300 MeV. There is good
agreement between theory and experiment.

u(k, s) =
2m )

o"k
EI, +m

+80

with

m=m+Us,

EI, = (I,' + k') '/',

mental mass of the free nucleon. The solution of this
equation is

III. DIRAC-BRUECKNER APPROACH
AND NUCLEAR MATTER PROPERTIES

[n k+ P(m+ Us) + Uv]u(k, s) = Et,u(k, s), (8)

where Us is an attractive scalar field and Uv the timelike
component of a repulsive vector Geld. m is the experi-

I

As mentioned in the Introduction, the essential point
of the Dirac-Brueckner approach is the use of the Dirac
equation for the description of the single-particle motion
in the nuclear medium,

and y, is a Pauli spinor. Note that the in-medium Dirac
spinor is obtained from the free Dirac spinor by replacing
mby m.

The single-particle energy resulting from Eq. (8) is

~
= Ek+Uv. (10)

Similar to conventional Brueckner theory, the basic
quantity in the Dirac-Brueckner approach is a t matrix
which satisfies the in-medium Thompson equation (also
known as relativistic Bethe-Goldstone equation) [5—7],
which reads, in the nuclear matter rest frame,

G(q', q~P, z) = V(q', q) + P 'V(q', k)
d k —, m2 Q(k, P)

E(1/2)P+k z 2E(1/2)P+k
G(k, q~P, z),

with

z = 2E(i(2)p+~

and P is the c.m. momentum of the two colliding nu-
cleons in the nuclear medium. Equation (11) is density
dependent which is suppressed in our notation. Notice
that in the energy denominator of Eq. (11) [which is the
difference of single-particle energies of the kind Eq. (10)],
Uv drops out since it is constant.

The in-medium Thompson equation differs from the
free one mainly in three points [comparing Eq. (11) with
Eq. (1)]. First, the Pauli operator Q prevents scattering
into occupied intermediate states ("Pauli effect"). Note
that this is different from the Pauli blocking factor for
the final states which is always included in the transport
models describing nucleus-nucleus collisions. Second, the
nucleon mean field due to the medium reduces the mass
of the nucleon and affects the energy denominator in Eq.
(11) which is now density dependent, while in Eq. (1) the
energy denominator uses free relativistic energies ("dis-
persion effect" ). Finally and most importantly, the po-
tential used in the in-medium Thompson equation, as in-
dicated by the tilde, is evaluated by using the in-medium
Dirac spinors of Eq. (9) instead of the free ones that are
used for the V in Eq. (1). This leads to the suppression
of the attractive 0. exchange which increases with den-

sity. The fact that the Dirac-Brueckner approach is able
to reproduce quantitatively the saturation properties of
nuclear matter is mainly due to this relativistic effect.
This observation also implies that the in-medium NN
cross sections based on the nonrelativistic Brueckner ap-
proach lack one important aspect [20,22,23], namely, the
effect which is due to the medium modiGcation of the
potential.

The scalar and vector fields of the Dirac equation (8)
are determined from

which is the relativistic analog to the nonrelativistic
Brueckner-Hartree-Fock deGnition of a single-particle po-
tential.

Since the kernel of the in-medium Thompson equation
[Eq. (11)] depends ou the solution of the Dirac equa-
tion [Eq. (8)], while for the Dirac equation one needs
the scalar and vector potentials which are related to the
G matrix via Eq. (12), one has to carry out an itera-
tive procedure with the goal to achieve self-consistency
of the two equations [5—7]: Starting from reasonable ini-

tial values for Us and Uv, one solves the in-medium(o) (o)

Thompson equation in momentum space by means of the
matrix inversion method [71] to get the G matrix which
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leads by means of Eq. (12) to a new set of values for U&
(~)

and Uv to be used in the next iteration; this procedure
is continued until convergence is achieved.

The nuclear equation of state, that is, the energy per
nucleon, E/A, as a function of density, p, is obtained from
the G matrix [5,6]:

1 ) mm+p2
A A, „.

—2

+ )™(ij~G(z)~zj —jz) —m.
2A

x,g (IcF

We show in Fig. 3 the energy per nucleon F/A as func-
tion of nuclear matter density, p/po (pe

——0.18 fm s). The
solid, dashed, and dotted lines are the results correspond-
ing to the Bonn A, B, and C potentials, respectively. The
open rectangle indicates the empirical region for nuclear
matter saturation. There is some difference between the
results obtained with the different potentials, especially
for the nuclear equation of state at higher densities, al-
though these potentials predict the same in free-space
NN scattering. This difference can be traced back to
differences in the strength of the tensor force, as reflected
in the predictions for the D-state probability, PD, of the
deuteron [5,45,70]. The Bonn A potential, with the low-
est D-state probability (PD=4.47%), indicating a weak
tensor force, yields the best prediction for the empirical
values of nuclear matter saturation. More results and dis-
cussion of the properties of (dense) nuclear matter and
neutron matter can be found in Refs. [5—7].

IV. IN-MEDIUM N N CROS S SECTIONS

In the previous sections, we discussed briefly the Bonn
potentials, their predictions for free-space NN scatter-
ing, and the Dirac-Brueckner approach for nuclear mat-
ter. The potentials describe &ee-space NN scattering
accurately and nuclear matter saturation is reproduced
well in the Dirac-Brueckner approach (especially with the

density (in units of po)

FIG. 3. Energy per nucleon in nuclear matter as obtained
in the Dirac-Brueckner approach using the Bonn potentials.
The box denotes the empirical region of nuclear matter satu-
ration.

Bonn A potential).
In-medium NN cross sections can be calculated di-

rectly from the G matrix [22,9,69]. Alternatively, one can
also calculate first the in-medium phase shifts, which are
de6ned in terms of the partial-wave G-matrix elements
like the free-space NN phase shifts are defined in terms of
the R-matrix [60] elements. From the in-medium phase
shifts, the in-medium NN cross sections are obtained in
the usual way.

We calculate the G matrix, from which we obtain the
in-medium cross sections, in the center-of-mass (c.m. )
frame of the two interacting nucleons; i.e. , we use Eq. (11)
with P = 0. For the starting energy in Eq. (11),we have
now z = 2' = 2/m2 + q2, where q is related to the
kinetic energy of the incident nucleon in the "laboratory
system" (Ei b), in which the other nucleon is at rest, by
Ei b = 2q /m. Thus, we consider two colliding nucleons
in nuclear matter. The Pauli projector is represented
by one Fermi sphere as in conventional nuclear matter
calculations. This Pauli projector, which is originally de-
fined in the nuclear matter rest frame, must be boosted
to the c.m. frame of the two interacting nucleons. For
a detailed discussion of this and the explicit formulae,
see Refs. [8,53]. In summary, for in-medium NN scat-
tering K matrix, we use the G matrix of Eq. (11) with
P = 0, z = 2E~, and the Pauli projector Q replaced by
the ellipsoidal one due to Lorentz boosting.

In Fig. 4 we show the in-medium np phase shifts for
the So, Pp, and S~ partial-wave states as a function of
the laboratory energy. For each partial wave, we present
three different results corresponding to density p=O (free-
space scattering, solid lines), po (dashed lines), and 2po
(dotted lines). The results presented in this figure are
obtained with the Bonn A potential. A clear decrease of
the NN phase shifts with increasing density is observed.
This is due to the Pauli and dispersion effect as well as
the relativistic medium effects.

In Fig. 5 we show the results for the in-medium np
differential cross sections as a function of the c.m. an-
gle for E) b

——50, 100, 250, and 300 MeV. For each inci-
dent energy, we present four different results correspond-
ing to the medium density p=O (free-space scattering,
solid lines), (1/2) po (long-dashed lines), po (short-dashed
lines), and 2ps (dotted lines). The results are obtained
by using the Bonn A potential. At low incident energies
[Figs. 5(a) and 5(b)], the np difFerential cross section al-
ways decreases with increasing density, at both forward
and backward angles. At high incident energies [Figs.
5(c) and 5(d)], the np differential cross section for for-
ward angles decreases when going &om p=0 to (1/2) pn
and then increases for higher densities. The differential
cross section at backward angles always decreases with
density. While the &ee np differential cross sections are
highly anisotropic, the in-medium cross sections become
more isotropic with increasing density.

In Fig. 6, we compare the in-medium np differential
cross sections as predicted by different potentials. The
cross sections in free space are shown in Fig. 6(a), while
Figs. 6(b) and 6(c) display them for p = pn and p = 2po,
respectively. The incident energy is fixed at 100 MeV.
While the predictions for the np differential cross section
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in &ee space are essentially the same, these potentials
lead to slightly different in-medium np differential cross
sections at higher densities [see Figs. 6(b) and 6(c)j: At
p = p0, the prediction by the Bonn A potential is larger
than those by Bonn B and C in all directions, while at
p = 2p0, the prediction by the Bonn A potential is small-
est in the forward direction and largest in the backward
direction. This difference is mainly due to differences in
the strength of the tensor potential. The purpose of Fig.
6 is to give some idea of the model dependence in our ap-
proach, due to our incomplete knowledge of the nuclear
force. Fortunately, this model dependence turns out to
be quite moderate.

It is also interesting to compare the results obtained in
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FIG. 4. In-medium np phase shifts for (a) Sa, (b) Po, and
(c) Sq. The results are obtained with the Bonn A potential.
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FIG. 5. In-medium np difFerential cross sections at (a) 50
MeV, (b) 100 MeV, (c) 250 MeV, and (d) 300 MeV labora-
tory energy, as obtained for various densities. The Bonn A
potential is used.



1108 G. Q. LI AND R. MACHLEIDT 48

this work with the parametrized NN cross sections pro-
posed by Cugnon et al. [72] which are often used in trans-
port models such as BUU [33] and @MD. This is done in
Fig. 7 for a laboratory energy of 300 MeV. We compare
our predictions for three different densities (using the
Bonn A potential) with the parametrization of Cugnon
et al. It is clearly seen that, while the parametrization of
Cugnon et a/. is almost isotropic, the microscopic results
still have some anisotropy at all densities considered. The
anisotropy in the present results decreases with increas-
ing density (mainly due to the decrease of the magnitude

s 12
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solid: p=O

long —dashed p=p
short —dashed: p
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FIG. 7. In-medium np differential cross section at 300 MeV
laboratory energy for the densities p = 0, p = po, and

p = 2po, using the Bonn A potential. The dotted curve is
the parametrization of Cugnon et' al. [72].

of the ~Pq phase shift). There is also density depen-
dence in the microscopic differential cross section, while
the parametrization of Cugnon et al. is density indepen-
dent.

We mention that Cugnon et al. [72] have parametrized
the free pp cross sections. This explains the almost
isotropy in their differential cross sections as well as the
lack of the density dependence. Note that in the work
of Cugnon et al. [72] no difference is made between pro-
ton and neutron; thus, the pp cross sections are also used
for np scattering. There are, however, well-known differ-
ences between pp and np cross sections which in the more
accurate microscopic calculations of the near future may
be relevant. The difference between the (in-medium) np
and pp cross sections will be discussed in detail in a forth-
coming paper [73]. In this paper, all "KK cross sections"
are np cross sections.

The np differential cross section in free space can be
well parametrized by the following simple expression:

do 17.42
dn( ' ) 1.O+ O.O5(EIo b' —15.5)

8
N

E

0
O
Q)

(c) p=2po, Elab ——100 MeV

solid: Bonn A

dashed: Bonn B

dotted: Bonn C

with

. , 0
x exp 6 cos 0+ sin ——1.0, (14)

b = 0.0008(EI b
—4.625) for EI b & 100 MeV

and

~ ~ 2(d

ID

(D

0
0

I I
I

I
I

30 60 90 120 150

c.m. angle (deg. )

180

FIG. 6. In-medium np difI'erential cross sections at 100
MeV laboratory energy for the densities (a) p=O, (b) p = pc,
and (c) p = 2pc. Predictions by three difFerential potentials
are shown.

6 = 0.0006(36.65 —El 'b ) for El b ) 100 MeV,

with Ej b in the units of MeV.
The quality of this parametrization is demonstrated

in Fig. 8, where it is compared with the microscopic
results (points) based on Bonn A at three energies. It
would be useful to parametrize the in-medium np differ-
ential cross section as well. However, the complicated
dependence of the in-medium differential cross sections
on angles, energy, and especially density makes this very
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FIG. 8. Free-space np differential cross sections at three en-
ergies. The lines are the predictions by the parametrization,
Eq. (14); the squares, circles, and triangles are the micro-
scopic results at El b

——50, 100, and 300 MeV, respectively, as
predicted by the Bonn A potential.

diKcult. Instead, we have prepared a data file, contain-
ing in-medium differential cross sections as a function of
angle for a number of densities and energies, from which
the differential cross sections for all densities in the range
(0—3)po and all energies in the range 0—300 MeV can be
interpolated. This data file is available from the authors
upon request.

In addition to the in-medium NN differential cross sec-
tions which enter the transport models to determine the
direction of the outgoing nucleons, the in-medium total
NN cross sections, o~~, are also of interest. They pro-
vide a criterion for whether a pair of nucleons will collide
or not by comparing their closest distance to go'aviv/n.
We show in Fig. 9(a) the in-medium total cross sections
as function of the incident energy Ei b and in Fig. 9(b)
as function of density. For completeness, we also list in
Table II the microscopic in-medium np total cross sec-
tions as function of density and energy. All results are
obtained by using the Bonn A potential.

It is seen that the in-medium total cross sections de-
crease substantially with increasing density, particularly
for low incident energies. This agrees well with the find-
ings af Ref. [9], but disagrees with Ref. [22]. In Ref. [22],
an enhancement of the cross section was found below 150
MeV and little change (as compared to the free cross sec-
tion) abave 150 MeV. The major difFerence between our
(and Ref. [9]) calculations and the ones of Ref. [22] is
that we include relativistic many-body effects, which are
ignared in Ref. [22]. Besides this, we as well as Ref. [22]
include the Pauli and dispersion effects (which are larger
than the relativistic efFects). The latter two efFects re-
duce considerably the magnitude of, in particular, the
S0 and Si G-matrix elements. This fact is well known

since the work of Bethe and his group on Brueckner the-
ory in the 1960s [74]. This leads to a substantial reduc-
tion of the binding energy in nuclear matter as well as
the in-medium NN cross sections, since both are based
upon the G matrix. On the background of these well-
established facts, it is hard to understand the results o
Ref [22), whil. e our results and the ones of Ref. [9] are
physically quite meaningful.

80
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m 40-
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2.0

FIG. 9. In-medium np total cross sections (a) as function
of the incident energy and (b) as function of density. The
results are obtained with the Bonn A potential.

TABLE II. Microscopic in-medium np cross section o~ ~

(mb) obtained in this work with Bonn A. po ——0.18 fm

p
0
(1/2)po
po
(3/2) po
2pp

50
164.8
93.92
54.67
37.76
28.48

100
72.18
47.96
28.50
20.93
17.96

Ei b (MeV)
150 200
49.17 39.57
26.71 20.62
18.17 15.14
15.53 13.91
15.96 14.94

250
34.27
18.76
14.93
14.41
15.14

300
30.85
18.14
15.40
15.26
15.97

At higher energies ( 300 MeV), the medium ef-
fect becomes smaller as compared to lower energies
[cf. Fig. 9(a)], but it does not vanish. We use the con-
tinuous choice for the single-particle potential, and so
there is a dispersive effect also for higher momenta; in
addition, there are the relativistic effects. This explains
the non-negligible medium effects at intermediate ener-
gies. Again, in this we agree with Ref. [9], and disagree
with Ref. [22] where above 150 MeV the free cross sec-
tions were obtained. The use of the "gap choice" for
the single-particle spectrum (i.e. , &ee energies above the
Fermi surface) and the omission of relativistic efFects in
Ref. [22] may be the explanation here.

In Fig. 10 we compare the total in-medium cross sec-
tions obtained with different potentials. Figures 10(a)
and 10(b) correspond to the density p = po and 2po, re-
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FIG. 10. In-medium np total cross sections as predicted by
different potentials at densities (a) p = pa and (b) p = 2pa.
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FIG. 11. In-medium np total cross sections as described by
the parametrization of Cugnon et al. [72] (dotted line) are
compared with the predictions by our microscopic calculation
using the Bonn A potential.

spectively. The solid, dashed, and dotted lines refer to
Bonn A, B, and C, respectively. By comparing Fig. 10
with Fig. 2 we see that, although the potentials lead
to essentially the same predictions in free space, there
is some difFerence in the medium, and this difFerence in-
creases with density. The prediction by the Bonn A po-
tential is the largest at low energies and the smallest at
high energies. Again, fortunately, the model dependence
is moderate.

We compare in Fig. 11 the total in-medium cross sec-

tion obtained in the present work using the Bonn A po-
tential with the one used by Bertsch and Das t upta [33]
and Cugnon et al. [72]. The solid, long-dashed, and short-
dashed lines are the present results corresponding to the
medium densities p = 0, I/2po, and 3/2po, respectively,
while the dotted line represents the parametrization of
Cugnon et al. It is seen that at low energies and low
densities, the parametrization of Cugnon et aL underes-
timates the microscopic results, while at higher energies
and higher density it is the other way around. Note that
the parametrization of Cugnon et al. is not density de-
pendent and thus predicts the same for all densities.

Finally, we propose a parametrization for the total np
cross section as a function of the incident energy E~ p

and density p:

rr~„(@ab,p) = [31.5 + 0.092 abs(20. 2 —EI 'b )
'

]

1.0 + 0.0034E)~ bar pz

1.0 + 21.55@i-34

where E~ h and p are in the units of MeV and fm
respectively.

We compare in Fig. 12 this parametrization (lines)
with the microscopic results (points) based on Bonn A
at four densities. It is seen that the parametrization re-
produces well the microscopic results for energies and
densities considered in this work.

V. SUMMARY AND OUTLOOK

In this paper, we presented a microscopic derivation of
elastic in-medium N% scattering cross sections for ener-
gies up to 300 MeV and densities up to 2p0. This inves-
tigation is based upon the Bonn KN potential and the
Dirac-Brueckner approach for nuclear matter.

The "bare" Bonn potential reproduces the free 2VK
scattering cross sections (difFerential as well as total) ac-
curately. When the potential is applied to nuclear mat-
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ter using the Dirac-Brueckner approach, the saturation
properties (saturation density and binding energy) are
reproduced correctly. Thus, the Bonn model provides a
good starting point for other investigations. The major
conclusions of the present microscopic calculations are
the following.

(I) There is strong density dependence for the in-
medium cross sections. With the increase of density,
the cross sections decrease. This indicates that a proper
treatment of the density dependence of the in-medium
N% cross sections is important.

(2) Our microscopic predictions differ from the com-
monly used parametrizations of the difFerential and the
total cross sections developed by Cugnon et al. [72]. The
parametrization of Cugnon et al. underestimates the
anisotropy of the in-medium np difFerential cross sections.
In the case of the total cross sections, the parametrization

of Cugnon et al. either underestimates or overestimates
the microscopic results, depending on energy and density.

At energies above 300 MeV, inelastic channels enter
the picture. Microscopic models that also describe the
inelasticity [9] have to be applied. These models will
then also allow one to calculate the in-medium pion pro-
duction. This is under investigation.
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