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Pairing correlations in rotating nuclei are discussed within the Lipkin-Nogami method. The
accuracy of the method is tested for the Krumlinde-Szymanski R(5) model. The results of calcula-
tions are compared with those obtained from the standard mean field theory and particle-number

projection method, and with exact solutions.
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I. INTRODUCTION

The mean-field approach to the phenomenon of super-
conductivity introduced by Bardeen, Cooper, and Schri-
effer (BCS) [1] allows for a simple and elegant treatment
of pairing correlations in nuclei [2,3]. The main draw-
back of the BCS method is that its wave function is not
an eigenstate of the particle number operator. The ac-
curacy of the BCS approximation is satisfactory if the
pairing interaction strength is strong or the number of
particles is very large [4,5]. These conditions are not sat-
isfied in nuclei. Indeed, the critical value of the effective
pairing strength, G.it, above which the static gap exists,
is inversely proportional to the single-particle level den-
sity around the Fermi level [3], i.e., it becomes very large
around subshell closures.

It was demonstrated by Lipkin [6] that the effect of
the nucleon number fluctuation can be suppressed by us-
ing a model Hamiltonian H -\ N — /\2]\72 instead of
the conventional Routhian H — AN, where H is the orig-
inal Hamiltonian (involving pairing interaction) and N
is the nucleon number operator. The approach by Lip-
kin was then developed by Nogami and his collaborators
[7-11]. The important feature of the Lipkin-Nogami (LN)
method is that (i) there always exists a nontrivial (super-
fluid) solution regardless of the strength of pairing force
and (ii) the LN wave function has a similar form to that
of the BCS method, thus allowing a simple interpretation
of excited states in terms of quasiparticles.

In this respect it seems to be of considerable interest to
extend the LN method to the case of rotation, where the
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short-ranged attractive pairing force plays a significant
role. For instance, at low spins the pairing correlations
tend to significantly reduce the nuclear moment of in-
ertia as compared to the rigid-body estimate. On the
other hand, it was well known that at very high spins
many nuclei behave as macroscopic rotors, i.e., their mo-
ments of inertia are fairly constant and close to their
rigid-body values. More examples illustrating the impor-
tance of pairing correlations at high spins can be found
in the review in Ref. [12].

In this connection further studies of the Mottelson-
Valatin effect [13] (phase transition from superfluid to
normal state in rotating nuclei) are of great importance
[14,12]. Since the BCS method provides a rather poor
description of the pairing phase transition region, one
expects that the LN method would be a powerful tool
allowing for a better description of pairing correlations
without losing the simplicity of the rotating independent
quasiparticle picture.

The LN method is recently receiving a fairly large in-
terest both in the model studies [15,16] and in applica-
tions [17—20]. However, it has not yet been applied to the
case of Hartree-Fock-Bogoliubov (HFB) theory but only
in connection with a simple BCS approach. The main
objective of this paper is to generalize the LN prescrip-
tion to the case of HFB. In particular, we concentrate
on the influence of the cranking term on pairing corre-
lations, i.e., we consider the HFB theory with broken
time-reversal symmetry.

In Sec. II the cranked LN (LNC) equations are derived.
The equation for the particle number fluctuation is ex-
plicitly written in terms of the single-particle and pair
densities. This will be useful when adopting the LN ap-
proach to the general HFB treatment. The method is ap-
plied in Sec. III to the exactly solvable two-level cranking
model with pairing. The exact solutions are compared to
those obtained within the standard mean-field approach,
particle number projection method, LNC treatment, and
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its particle-number projected version. The conclusions
are presented in Sec. IV.

II. THE METHOD
A. Cranked Lipkin-Nogami equations

Let us consider the BCS Hamiltonian which contains a
single-particle Hamiltonian, H,, and a seniority pairing
(monopole, state independent) interaction:

H= Hsp + Hpai, =>4 eka};ak =G hiso aLaEal-al,
(2.1)

where ey, is the single-particle energy, G is the pairing
strength, and |k) = T'|k).

In order to investigate the pairing interaction in ro-
tating system we consider the cranking Hamiltonian
(Routhian):

HY = Hsp + Hpair — Wes (22)
where J, denotes the component of the total nucleonic
angular momentum on the rotational axis (here x axis).
This axis is assumed to be fixed in space (only one-
dimensional rotation is considered) and the angular ve-
locity of rotation, w, is supposed to be constant.

In the standard rotating BCS (RBCS) approach the
expectation value of the Routhian (2.2), E¥ = (H“), is
minimized in the product state of independent quasipar-
ticles defined through the Bogolyubov transformation:

ol = Z(Aua; + Biiay),
1
(2.3)

o =Y (Afar + Bjal),
l

where a:-f (a;) is the quasiparticle creation (annihilation)
operator. The RBCS wave function represents a mix-
ture of states with different numbers of particles. Conse-
quently, in order to account for the fluctuations, the par-
ticle number should be projected before variation. This
can be done in a good approximation by means of the
LN method outlined below.

Let us assume that the state |¢,,) is the quasiparticle
vacuum, i.e.,

ai'¢n> =0.

The index n stands for the average number of particles
in the state |¢,), determined by means of the particle
number equation

(2.4)

(Won| N [thr) = m, (2.5)
where N = Sk azak is the particle number operator.
The state |,) can be expanded in eigenstates of the
particle number operator,

[%n) = nmolbno)s (2.6)
Nlgno) = no|$no)- (2.7)

The total Routhian (2.2) commutes with the particle
number operator, [H¥, N] = 0.
terms of n

By expanding E“ in

(n|H?|pn) = A(n) = Ao + Ain + Aan® + -+ (2.8)
the following relation is obtained:
<¢no|ﬁw|¢no> = <"/)n|ﬁw|d’1:> - ’\1(<¢H|N|¢n> — no)
X2 (| N?|9hn) = nf) — -+ . (2.9)

The important feature of the above expression is that it
yields the expectation value of H* in the projected RBCS
state, |@n, ), in terms of the expectation value of Routhian
in the RBCS state, |¢,). This implies that, knowing
coefficients )\;, one can minimize the right-hand side of
Eq. (2.9) instead of minimizing explicitly the expectation
value of H* in the projected RBCS state.

So far the considerations are exact. In the next step,
however, the expansion (2.9) is truncated by retaining
the first m terms; the coefficients A, Aa, ..., A,,, are then
calculated from the following set of linear equations:

<¢n|({w{v|¢n> = <"/’n|{%w|¢n)<"/’nl{v|¢n>,
<"/’anwN2|¢n> = <¢n|Kw|wn><¢n|N2|¢n>,

: (2.10)
(¥ K 1) (ton| N™|1h5),

where K¥ = H* — AN — A\yN2 — ... — \,, N™. The
m = 1 case, together with the constraint (2.5), is equiv-
alent to the standard RBCS method. The case of m=2
is discussed below. The generalization to higher orders
is straightforward although algebraic manipulations be-
come tedious.

In the LN method the expectation value of K* is min-
imized assuming that coefficients A; and A, are constant
(the simultaneous variation of A’s would lead to more
complicated equations [5]):

($nl K N™[3pn)

§(¥nl K |9n) = 0. (2.11)

The Lagrange multipliers A and w are determined by fix-
ing expectation values of the particle number and angular
momentum, respectively,

(Yn|N|thn) = n, (2.12)

<¢n|3w|"/’n> =1I

It is convenient to express the results through the density
matrices p and u and the pairing tensor x, which are
defined by means of the transformation matrices A and

B:

(2.13)
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Pkl = ZBZ,-BM,
3
Up = ZAZ,-AH = Ok — Pk,

k3
Xkl = ZAziB;i-
B

(2.14)

Expressed in terms of quasiparticles the operator K
takes the form

K* =K+ K¢ + Ky + Ky, + K3 + K3, (2.15)
where
w . A% 1
Ky =Y lexdi —w(ia)ual oot — 5 = EGZPMPET
kI k,l
2171 — Agn? — 2), Z PriUkl, (2.16)

k,l

K = E{ [Z[Ekt = A — w(Ja)ki](AkiA1; — BriBr;)

.3 k.l

+AR AL By — A By A

+ Az(;ij }a}aj,

(2.17)

K5 -% {z fent — A — wlia)ull ALBS
k,l

i
1 * * 1 * * o* t .t
+‘2’AklAkiBlj + EAHBH‘BH e3le + H.c.
(2.18)

The terms K%, K%, K5, represent the residual interac-
tion between quasiparticles and are neglected in this ap-
proximation. In the above relations the following quan-
tities are introduced:

€xt = exdr — Gsgn(k)sgn(l) prr + 4A2p51) (2.19)
A = —Sysgn(k)d = —Gysgn(k) D xap-  (2:21)
k>0
Condition (2.11) leads to the HFB equations:
Z{(V;;’z — Aor1) A + A B} = EF Awi,
N . (2.22)
D {wi = Ak B + Af A} = —EF Bui,
[
where
Vi = €kt — W (Ja )kl (2.23)
EY = Ef — Aa. (2.24)

The difference between the usual HFB equations and the
above ones consists in the appearance of the parameter
A2 which should be determined self-consistently from Eq.
(2.10). It is important to note, that the eigenvalues of the
LN+HFB equations (2.22), £, are related to quasiparti-
cle Routhians E¥ through relation (2.24). Consequently,
special care should be taken when interpreting the results
using the standard technique of quasiparticle diagrams of
the cranked shell model.

The total LNC energy of the quasiparticle vacuum is
given by

Einc = Kgo + Ain + Aon? + wl
AZ 1
= ;ekl)kk e EG;PMPH

-2 Z PrIUKL,
kL

(2.25)

where the term proportional to A, represents the nucleon
number fluctuation correction.

The presence of self-consistent symmetries very often
facilitates the calculations. One such symmetry, impor-
tant in the context of cranking model and high spins,
is the signature symmetry, i.e., the symmetry with re-
spect to the rotation of the system by 180° around the
z axis. The single-particle states with good signature r
are related to the original fermionic basis by the so-called
Goodman transformation [21]

K,r=—i) = Z5[-Ik) + (-)™R)],
(2.26)
Byr=+i) = [0k +1R),

where my, is the projection of the single-particle angular
momentum on the symmetry axis. Application of trans-
formation (2.26) leads to immediate selection rules for
the coeflicients of the Bogolyubov transformation,

Agi = Agr = Bxr = Bgp =0, (2.27)

and, consequently, for the matrix elements of the
LN+HFB Routhian [21]. In the following it will be as-
sumed that the system is invariant with respect to the
signature symmetry.

B. Calculation of Ay

In order to compute A one can use the set of equations
(2.10) which in the case of LNC is reduced to the two
relations:

(Won | KN |tpn) = (| K [ (| N [th)
(2.28)

(Wnl K N2[tn) = ($n| K thn) ($n | N2 [0r).
Because of the requirement K 5o = 0, the first equation is

satisfied automatically and the second one is simplified
to

(O &%) (4 8%)3) = o, (2.29)
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where |0) denotes the quasiparticle vacuum and |4)(4] is
the projection operator on the four-quasiparticle space.
The matrix elements of K“ and N2 that appear in (2.29)
are given by

. G
K=Y {ZBKPle{pzAzpsALm
K,L,P

+X2Bkp, Axp,BLp,ALP, } ap,ap,ap,ap,

2 [P A R
Nio = Z A;VQlB;VQzA;VIQsB;WQtananaQaaQq
M,N,Q
+H.c., (2.31)

where we have already applied the Goodman transfor-
mation to states with well-defined signature. By means
of relations (2.30), (2.31), and (2.29) one can now obtain

+H.c., (2.30)  the expression for As:
|
3 XGep(Prz +oxn)} Y xkr(ugr +uko)} -2 0oex ok
G K,L>0 K,L>0 K,L
Ao = 5 (2.32)
[Z(xx*)xx] -2 Ooxxx) ke
K

It is easy to show that for w = 0 the above relation
reduces to the well-known result (see Ref. [11]):

D (wvd)D (o) — D (wrvr)*

k>0 k>0 k>0
Ay = —

4 2
(ZUivzf) - > (ukvi)*

k>0 k>0

(2.33)

Relation (2.32) together with Egs. (2.22) completes the
derivation of the LNC equations.

III. RESULTS FOR THE R(5) MODEL

In order to examine the accuracy of the LNC approx-
imation we consider the two-level Krumlinde-Szymanski
R(5) model (see [22-24,14,25]). The Hilbert space of this
model consists of j:% multiplets. Asshown in Fig. 1,
the single-particle levels are split by the deformation of
the average nuclear potential. The single-particle split-
ting is 2e, i.e., the energy of the upper levels (labeled
as [1)=|m = 3/2) and |1)=T|1)) is +e and that of the
lower levels (labeled as |2)=|m = 1/2) and |2)=T2)) is
—e. We begin our analysis by considering the half-filled
(symmetric) system, i.e., the number of particles is equal
to n=2Q. In the particular version of the two-level model
considered in this paper the Coriolis coupling between

FIG. 1. Energy levels for the R(5) model. The above pat-
tern is repeated 2 times.

K

[
the lower levels is neglected, i.e., (jz)23 = 0. As dis-
cussed in Ref. [25], this leads to the absence of signature
splitting. In our paper we concentrate on the influence of
the time-odd components of the wave function on the LN
solution rather then on the comparison with the actual
data where the exact treatment of the Coriolis coupling is
important. The two-body pairing interaction is assumed
to be of the monopole type. The main advantage of this
simple model is that it can be solved exactly using the Lie
algebra associated with the symmetry group R(5) [23].
In the standard notation of representing HFB equa-
tions in doubled dimensions [5], the single-particle field
v has the form of a 4 x 4 matrix:

10 v |
where

w _ [ —e — Gp1i + 4A2p];, —w — Gpiz + 4A207; ] ,

(3.1)

v —w — Gp31 +4X2p3;, € — Gpzz +4A2p5,
(3.2)
o= | 7€~ Gp11 +4Xz2p71, w — Gpiz + 4X2p75 )
! w — Gpz1 + 42057, e— Gpaz +4A2p35
(3.3)
In the above relation it was assumed that [14,25]
(Jz)21 = (Ja)12 = —(Jz)31 = —(J=)12 = L. (3.4)
Similarly, the pairing field is given by
0O 010
A 0 001
A= —'GQ(Xli + XZE) -1 000 (3'5)
0-100

The LNC equations are solved iteratively with respect to
the density matrix and pairing tensor. The initial val-
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ues can be taken from the standard RBCS equations.
Then the coefficient A5 is found and the matrices A and
B are computed from Eq. (2.22). This gives a new ap-
proximation for the density matrix and pairing tensor.
One should choose properly A (the chemical potential)
at every iteration step to satisfy the relation n=Tr(p).
The above procedure is continued until the convergence
is achieved. For more complicated Hamiltonians it is sug-
gested to use the so-called gradient method (see Refs.
[26-28]).

Having found the Bogolyubov transformation matrices
A and B, one can calculate p and u, Eq. (2.14), and then
the total energy,
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the pairing potential (energy gap),

A = GQxa1 + X232)s (3.8)
the total angular momentum,
I = Tr(jzp) = 2(p12 — p13)- (3.9)

In the light of the recent results [16], it is advantageous
to carry out the particle number projection after Lipkin
and Nogami (LNC+PNP). This can easily be done by
following the formalism of Ref. [14]. The particle-number
projected energy and angular momentum are given by

Eior = eQ(p11 + pi1 — P22 — P33) EY, = EY + EN + E}, (3.10)
A% 1
—& ~ 3%% D (priprr) = 2222 Y (prauir),
k>0 k,l>0 P (6)
(3.6) N =40 P12 1‘;“(1 5 (3.11)
the pairing energy, P+) — P o
where
EL.ir = Eio — Eunpair = Fio 2Q _
pair tot P tot + 232€ Eé}’) = —2Qe k Pa-1(€) (3.12)
) P+ — P(—) Pa()
+GQ [1 — (%) ] ,  (3.7) s the single-particle energy, and
|
Epyp—) [ 2pp—) Ph_1(§) Po_1(¢)
EN _ _0Gq? (HP(-) { P Paa &) ) ___} 313
Pl o) =Pt L Q-1 Pa(f) Pen = bl Po(£) (3:13)
and
1 4004y P(- Py () Po_1(€)
EN = _Ggo— k2 |1- H7) e A [1—&—1] 3.14)
P2 [o(+) — P { Q@ =Dlp) — )2 Pal) 2 Pq(€) (

are two contributions to the pairing energy (cf. Eqgs. (A7)
and (A8) of Ref. [14]), and

k = p22 — p11, (3.15)

pay = 1 (1 +/k2 + 4p'~1’2> , (3.16)
2 2
P, + PP

R COREA O (3.17)

P(+) ~ P(-)

In the above equations P,(z) is the Legendre polynomial
of the nth order. It is easy to see, that in the limit
of very weak pairing [§ —1, P,(1)=1] the total pairing
energy given by Egs. (3.13) and (3.14) becomes equal
to Eynpair- On the other hand, if pairing is very strong
[ =00, Po1/Pp = n/(2n— 1), P, /P, — n(n—
1)/(2n — 1)€~2], the pairing energy approaches the limit
of the seniority model, —GQ(Q + 1).

We have performed calculations within the symmetric
variant of the R(5) model for e=1, 2=20 (i.e., the half-
filled symmetric system with n=40 particles), and for

[

three values of the pairing strength, G=0.015, G=0.065,
and G=0.1 [29]. Without rotation, the mean-field (BCS)
solution undergoes a transition to the paired regime at
the critical strength G=2¢/(2Q2 — 1)~0.051. Therefore,
the intermediate value of G=0.065 corresponds to the
phase transition region, and allows us to study the de-
structive role of rotation on pairing correlations, while
the other two values of G represent the weak and strong
pairing limits, respectively.

The results of the BCS method are in Figs. 2-5 de-
noted by the solid triangles and solid circles for RBCS
and RBCS+PNP (RFBCS), respectively. The latter re-
sults are obtained by the variation after projecting the
good particle number component of the RBCS state. The
results based on the LNC method are denoted by open
symbols. The open triangles and open circles represent
the LNC and LNC+PNP (exact particle number projec-
tion of LNC solutions) results, respectively. The exact
results are denoted by the waterwheel symbols.

Calculations have been performed for w ranging from
0 to 1.2 [29]. For each w, the energy and angular momen-
tum have been determined from Egs. (3.6) and (3.9), or
Egs. (3.10) and (3.11), and the pairing energies have been
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computed by means of Eq. (3.7). In this way, the plots
of pairing energy versus angular momentum have been
constructed and are shown in Fig. 2.

For the weak pairing strength, Fig. 2(a), the RBCS

a) G=0.015

0.00 4 2 =4 2 A= & 723 2 A=A hbn orhsomse)

—-0.01

xepoeeit EXACT

-0.02 - Peg
aaasaa |NC

-7 veooo LNC+PNP
M/ eeees RFBCS
*e a»aaa RBCS
-0.03 . - . ' -
. b G=0.065
,>-4 0.0 ) - A A A-AA:"‘A‘.‘&‘AM
(o] i r's s ™
o, :
€3] L
z -0.5 )
[’_T_'J A
A
A

O —1.0|
Z. “*
[—
o s EXACT
— 15 Aaas-a LNC
< . oeoeoe LNC+PNP
A, | eeeee RFBCS

F aaasaa RBCS

2.0 - : : :

—2 I
—4 |
-6 |
-8 st EXACT
aaas-a NC
1 oecoe LNC+PNP
-10, eeese RFBCS
| A4 aaa RBCS
-12 ' Il 2 1 2
0] 10 20 30

SPIN

FIG. 2. Pairing energy versus angular momentum for three

values of pairing strength, (a) G=0.015, (b) G=0.065, and (c)
G=0.1.

method gives only the unpaired solution for all spin val-
ues [25]. Although the solutions of the LNC method con-
tain some pairing correlations, the approximate formula
for the energy with the corrective A; term, Eq. (3.6),
gives the pairing energy much too small. On the other
hand, when the LNC solutions are projected on the good
particle number one obtains a fair qualitative agreement
with the exact results (the maximum relative difference
is of the order of 20%). This illustrates the fact that the
LNC wave function describes resonable well the pairing
correlations in a weak-pairing limit even if the average
value of the auxiliary Hamiltonian K“ is not a very good
approximation to the exact energy of the system.

As seen in Fig. 2(a), the RFBCS results provide an
excellent approximation to the exact values. This indi-
cates, that there is still some room for improvements of
the LNC+PNP method. From Ref. [16] it follows that
the difficulties of the LN method in describing the half-
filled (n=22) system in the weak-pairing limit stem from
the fact that its exact ground-state energy cannot be ap-
proximated by a second-order expansion in n centered
at nog=2. However, the parabolic expansion works very
well for the ground-state energies of asymmetric systems
with n#2Q. Based on this result, a useful two-step pro-
cedure is suggested. Firstly, the LN or LNC equations
are solved for the system with no=2Q + 2. In the second
step, the n=2Q component is projected out from the re-
sulting LNC wave function. Such a hybrid method relies
on extrapolating the n=2%Q solution from either those for
n <2Q or those for n >29, instead of interpolating be-
tween solutions for n <22 and those for n >2Q. Results
of LN+PNP calculations for no=2£2+2=42 are presented
in Fig. 3 and agree remarkably well with those using the
RFBCS method and with the exact values.

The weak-pairing regime is realized in nuclei around
shell or subshell closures where e>GS2. Therefore, the
hybrid method described above can be useful for study-

G=0.015
= 0.00 -
)
o L
=
—0.01 F
=
(@)
Z .
-0.02 o
o -0 A
— # pxeree EXACT
<t L eoe®® LNC+PNP, no=42
i} 2 oecoe LNC+PNP, no=40
eeeee RFBCS
-0.03 ' L : : .
0 0 10 20 30

SPIN

FIG. 3. Pairing energy versus angular momentum for the
weak pairing strength, G=0.015. The LNC+PNP results
calculated for n=20Q=40 from the no=42 solutions are also
shown.



1692

ing properties of, e.g., spherical magic nuclei at low spin
or superdeformed magic nuclei (}52Dy or °2Hg) at high
spin.

For the intermediate pairing strength, Fig. 2(b), the
RBCS method yields the unpaired solution above a cer-

0.20
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eeeee RFBCS
a4 aa4a RBCS

0.05 |

A A A A
A A - A
i .
&
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0.00 4244424 A AAAAsaddhirddadihhbra
L L ' L . ' L i L L 2
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e
—
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1 1 I} 1 1 L 1 1

201 ¢) G=0.1
I TR
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P . I - s
0.0 0.4 0.8 1.2
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FIG. 4. Pairing A versus rotational frequency wy for three
values of pairing strength, (a) G=0.015, (b) G=0.065, and (c)
G=0.1.
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tain critical angular momentum. Such a sharp transition
is not present in the exact results. Although the low-spin
LNC results are in much better agreement with the exact
solutions than those of the RBCS method, this method
yields too small a pairing energy at higher spins. Not sur-
prizing, the pairing energies of the PNP+LNC method
agree quite well with those obtained by means of the
RFBCS treatment. The latter ones describe fairly well
the exact values, while the remaining small difference,
which cannot be accounted for by using the BCS-type
wave function, illustrates the presence of large correla-
tions (due to the quasiparticle interaction) at the phase
transition region.

For the strong pairing limit, Fig. 2(c), the RBCS
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[ sexesx EXACT e
30 | aneen LNC SO
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method is the only one which fails to describe exact re-
sults. All other methods give very good agreement at
low and high angular momenta and leave a gap of miss-
ing solutions around I=18, i.e., in the region where the
adiabatic cranking approximation breaks down (the so-
lutions in the phase transition region correspond to the
maximum of the total Routhian rather than to the mini-
mum [14]). Interestingly, the region of instability is very
large for the RFBCS method, where it extends down to
I=10, while the LNC method is able to follow solutions
up to I=16. The particle number projection does not
lead to a significant improvement here.

Figure 4 shows the pairing delta Agcs as a function
of w. This quantity characterizes the BCS states used in
RBCS, LNC, and RFBCS methods and defines the BCS
occupation probabilities (for the LN occupation proba-
bilities, see, e.g., Ref. [19]). In fact, in the methods
employing the concept of PNP, Apgcs is not related to
any particular observable; it should not be understood
as the energy gap, but rather as a variational parame-
ter (see Ref. [14]). Figure 4 shows Apcs together with

Aexact= —G(prair) where the average value is calcu-
lated with respect to the exact ground-state wave func-
tion. By definition, Aexact is a direct measure of pair-
ing correlations and it should reflect Agcs in the limit
of large pairing. Note that the Apcs parameter for
LNC+PNP is the same as for LNC, and, therefore, is
not shown in Fig. 4. It is seen in Fig. 4(a) that in the
weak pairing limit the two quantities Agyact and Apcs
differ very much even if the RFBCS pairing energy is
rather close to exact values, Fig. 2. In the intermediate
and strong pairing limits the Agcg parameter of RBCS
goes to zero at the critical angular momentum, which
illustrates the Mottelson-Valatin phase transition. The
exact results do not show such a sharp transition, and
the Apcs parameters of the LNC and RFBCS method
qualitatively reproduce the exact values.

The angular momentum alignment is illustrated in Fig.
5 where the kinematical moment of inertia,

go- L

(3.18)
wr

is shown as a function of rotational frequency w;. At this
point it should be stressed that the rotational frequency,
wy, obtained from the canonical relation

dE

o (3.19)

wr =
is equivalent to the cranking-model frequency w only for
the exact eigenstates of a model cranking Hamiltonian.
Consequently, the relation

(3.20)

W =wy

holds exactly for the exact solutions of the R(5) model,
and also for the RBCS variant (the solution is an eigen-
state of the independent-quasiparticle Hamiltonian). On
the other hand, the relation (3.20) does not hold for the
approaches based on the PNP treatment, since the result-
ing states are determined from the restricted variational

principle. Consequently, the rotational frequency in Fig.
5 is determined using Eq. (3.19). The moment of inertia,
Eq. (3.18), illustrates the Mottelson-Valatin phase transi-
tion. It can be seen that for all pairing strengths the LNC
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FIG. 6. Pairing energy versus angular momentum for the
asymmetric variant of the R(5) model with n=48 and for three
values of pairing strength, (a) G=0.015, (b) G=0.065, and (c)
G=0.1. Only the exact, RBCS and LNC results are displayed.



1694 MAGIERSKI, CWIOK, DOBACZEWSKI, AND NAZAREWICZ 48

method correctly describes this transition, both with and
without the subsequent particle number projection.

We have also performed calculations for the asymmet-
ric system, n#2Q. Here, the static RBCS solution is
always present, independently of the value of the pairing
strength [25], and the results and conclusions are very
similar to those for the symmetric system, n=2¢, in the
strong pairing limit. The results for the n=48 system
are shown in Fig. 6. It is seen that the LNC method pro-
vides an excellent approximation to the pairing energy,
even without a subsequent particle number projection.

IV. CONCLUSIONS

We have studied the pairing correlations in rotating
nuclei using the cranked Lipkin-Nogami LNC method
which is based on employing the auxiliary Hamiltonian
K = H — AN — X\;N? — wj,, where the parameters \;
and )\, are chosen so that the influence of the nucleon
number fluctuation is strongly reduced. One should em-
phasize the simplicity of the LNC approximation, espe-
cially when compared with more sophisticated projection
methods. In practice, the LNC method is a simple ex-
tension of the usual RBCS treatment.

Good accuracy was obtained for the ground-state en-
ergy, particularly in the case of strong pairing interaction.
It means that the method suppresses correctly the “dan-

gerous” (particle-number violating) part of the quasipar-
ticle interaction. The weakness of the LNC method in
the weak pairing limit can be overcome by performing the
projection after variation. Therefore, the LNC+PNP ap-
proach can provide us with a fair description of rotating
nuclei near shell and subshell closures.

Another welcome feature of the LNC method is that
it provides us with a very good description of the pair-
ing phase transition region, regardless of the strength of
pairing interaction. Note that using the LNC method one
can obtain nontrivial solutions even for very fast rotation
where the RBCS method breaks down.
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