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Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy
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The microscopic corrections to the liquid drop energy are determined by a method that takes simul-

taneously into account shell and pairing effects. For this purpose, a level density with explicit depen-
dence on pairing correlations is defined from the particle number conservation condition in the BCS
theory. This density is expressed in terms of the Dirac 5-generalized function and its derivatives. This
enables one to deduce the expansion of this density as a series of Hermite polynomials. The microscopic
corrections are then determined by a procedure which is analogous to that of Strutinsky. The method
permits also to define an average pairing gap which depends both on the nucleon type (neutron or pro-
ton) and on the nuclear shape. When applied to the ground state energy calculations for the even-even

actinide nuclei, with a deformed Woods-Saxon mean field, this method leads to a very good agreement
between the calculated and the experimental values.

PACS number(s): 21.10.—k, 21.10.Ma, 21.60.—n, 27.90.+b

I. INTRODUCTION

Within the framework of the macroscopic-microscopic
model, the nuclear deformation energies are calculated in
two steps. First, the macroscopic part of the potential
energy is determined from the liquid drop model (LDM)
or from its refined version, the droplet model [1]. The
basic idea behind the macroscopic-microscopic model is
that the LDM is able to reproduce the smooth trends of
the potential energy, but not the local Auctuations which
are taken into account, in a second step, by means of the
microscopic corrections. The most important of these
Auctuations are due to the shell effects. Myers and
Swiatecki were the first to introduce the idea of a shell
correction that modifies the energy calculated by the
LDM [2]. They proposed a very simple phenomenologi-
cal correction that is still in use in the droplet model
[3,4). Other semiempirical shell corrections have been
proposed since then [5,6] but the most widely used one
remains the Strutinsky shell correction [7] (cf. e.g., Refs.
[8—16]). The latter conceived a very practical and
elegant method. It consists of extracting the averaged
part of the nuclear potential energy by means of a
smoothed level density, this average energy is the basic
element to calculate the shell correction.

The second type of corrections to the LDM energy is
associated with the nuclear pairing. It is usually treated
via the BCS theory [17,18]. Here, again, the idea of a re-
normalization based on the extraction of a smoothed part
is applied. The pairing correction is then defined as the
difference between the pairing correlation energy E of
the considered nucleus and that of an average value Ez
for the same nucleus.

In fact, the shell and pairing effects are closely related
to the level density near the Fermi level. This fact has al-
ready been taken into account in the Strutinsky prescrip-
tion [7]: The average level density that appears in the ex-
pression of Ez, which is assumed constant, is replaced by

the one determined during the shell correction calcula-
tion, taken at the Fermi level. Jensen and Damgaard
[14], and then Diebel et al. [19], introduced directly the
Strutinsky smoothed level density in the integrals that
calculate the pairing correlation energy of the average
nucleus. Therefore, it is very tempting to try to take into
account both the phenomena (i.e., shell and pairing
eff'ects) at once. We propose in the present study a
method to calculate the microscopic corrections where
the level density itself depends on the pairing. It will per-
mit us to evaluate simultaneously the shell and pairing
effects by a procedure similar to that of Strutinsky. Fur-
thermore, the method permits one to define an averaged
pairing gap parameter 6 that is directly expressed as a
function of the smooth level density.

In most of the previous studies, the experimentally es-
tablished fact [20] that b depends on the type of the nu-
cleon (neutron or proton) and on the nuclear shape is
completely ignored [8—13,20—22]. Even if more recent
studies take this fact into account, they modelize the
pairing gap parameter itself [23], whereas the present
method includes implicitly the types of the nucleon as
well as the nuclear shape, starting from microscopic con-
siderations.

We recall in Sec. II the definition of the level density
that was already used in a previous paper [24]. We then
extract its smooth part, after an expansion based on the
Dirac 5-generalized function and its derivatives. Section
III deals with the energy correction calculation itself.
The method is then applied to the calculation of ground-
state energies of the even-even actinide nuclei by means
of a Woods-Saxon mean field. The numerical results are
presented and discussed in Sec. IV and summarized in
Sec. V.

II. I.EVKL DENSITY

A. De6nition

For a given discrete spectrum, the degree of degenera-
cy g(e) is defined as the number of quantic states that
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have the same energy. For a continuous spectrum, this
notion of degree of degeneracy is replaced by the level
density:

g(c)=, dn /ds,
where dn is the number of levels included in the interval
[s,a+dc.]. The Fermi energy A, for a system of N parti-
cles is determined from the condition

its derivatives in terms of Hermite polynomials is known,
the expansion of g& will be naturally deduced. Let us
first introduce, by analogy with the Strutinsky method, a
parameter y to make the arguments dimensionless, such
that

1 Q2/y2
g&(e)= —g [( )2/ 2+F2/

N=F(A, ),
where F(A, ) is given by

F(A.)=f g(s)de= f dn .

(2)
1 Q=—X
y [x +a]

For a doubly degenerated independent particle spectrum,
Eq. (2) becomes

N =2 +'1 =2+8(A, —s ) =F(/1, ), where

= gg (x, )

g(e) = =2 g 5(c,—e,),dF(s)
GC

(4)

where 6 is the Dirac generalized function.
The next step is to find a generalized level density with

an explicit inclusion of pairing correlations: gz(e). Such
a density can be defined from the average particle number
conservation condition of the BCS theory. For this pur-
pose, let us consider

where g' is over the occupied energy levels, 8 is the
Heaviside scale function, and c, are the single-particle en-
ergies. g(s) is then defined as

a= —and x
y

The y parameter will later play the role of the averaging
parameter.

We now have to find the expansion of gz(s) in powers
of a. The action of gz(s), when considered as a general-
ized function, on a test function P, defined all over the
real axis, and that vanishes at +~ and is indefinitely
differentiable, gives

(ga, P) = g f P(x )dx,[x„+a ]
/

Fa(A, )=% 1—
[( —

A, )'+b, ']' ' (5) = g f [P(x )+P( —x )]dx, .
0 [x2+g2]3/2

with 6 as the half-width of the gap.
From Eqs. (1) and (5), the level density that includes

the pairing correlations can be written

dF&(s)

[(e e )2++2]3/2ga(e)= (6)

B. Expansion of the level density
in a series of Hermite polynomials

This result can be deduced by completely different means
such as the Hartree-Fock-Bogoliubov treatment [25].

One can easily show that the generalized level density
ga(s) reduces to that of the shell model when the pairing
effect vanishes, i.e., when 6 goes to zero.

After integrating by parts, one obtains

+ oo Xv
+fO 2+ 2 1/2x +a

X [P'(x ) —P'( —x„)]dx

and if a goes to zero, the first term of the expansion will
be

(g,y)=2/y(0)=2/(&, y) .
5~0

V V

In order to calculate the following terms, let us consider
the difference:

In order to make possible an analytical and a numeri-
cal comparison of the energy correction obtained from
the level density (6) and that calculated with the Strutin-
sky method [7], it is necessary to develop gz over the
same basis, i.e., the Hermite polynomial basis. For this
purpose, we shall express, as a first step, g& in terms of
the 6 function and its derivatives, rather than to develop
it directly into a series of Hermite polynomials, because
the calculation of the coefticients of the latter is some-
what complicated. Indeed, when the expansion of 6 and

X

2 + 2]1/2D=y(g„y) —2(5,y) = f 1—
0

X[/'(x ) —P'( —x„)]dx

which becomes, after integrating by parts,

f(x )D=a IXV
x +[x +a ]'

where

(10)
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f(x )=P' '(x )+P' '( —x ) .

Let us operate successively the following two changes of
variables: x =a sinht and then z=(a/2)e' that corre-
spond in fact to a single transformation called the
Joukowski's transformation:

a 1x =z — —with z) 0 .
4 z

When integrated by parts one more time, Eq. (10) may be
written

a 1 a aD = ——ln —f(0)— lnz
2 2 2 2 a/2

2 2 2a 2 a
21

a 4f, a
8 4 32 4

By integrating several times by parts, one establishes

D= .f(0) ——ln —+ f' '(0) 31n—+— + f' '(0) —ln + .a 1 a a (2) a 9 a (4) 19 a
2 2 2 24 2 4 384 3 4

This expression becomes, when f (x) is replaced by its

y(g, P) —2{5,$) = 1 —21n—P' '(0)+
2T 4T

definition (11):

6—+31n—P~ (0)+
4 2 6T. 8

15 a
in —y' '(0)+

4 2

and hence

2 2 a 3 a a'
g (x )=—25(x )+ 1 —ln 5' '(x )+ —+ln 5'4'(x )+ 19 a—in S"'(x.)+ . .

3 4

1 g(2k)(x )
~ k=o

(12)

Since the expansion of the 5 function and its derivatives
in a series of Hermite polynomials is well known: gz(E)= gg (x )= 1 P X—g g a2„H2„(x )e

Y ~ v n=0

1 X
g (x ) = — y a2„H2„(x )e

Y ~ n=O
(13)

with a2„= gk Ob2kc2„2k. The expressions of the azn
coefticients depend obviously upon the truncature order
of the expansion (12). These expressions according to the
truncature order are shown explicitly in Appendix A.

C. Smooth level density

Since the expansion (13) is formally identical to that of
the Strutinsky method, the smoothed level density gt, (e)
will be defined in a similar way. The first few Hermite
polynomials in Eq. (13) oscillate more slowly than those
of higher order, and consequently represent the smoothly
varying contribution to gt, (E). To define the smooth level
density, one has only to limit the series development over
n in Eq. (13) to a given order p, so that

oo — 25' '(x ) = g c2„~kH2„(x)e~ n=2k

with

c2„zk =( —1)" "/(2n —2k)!(n —k)!, k =0, 1, . . . .

The expansion (12) may be written as

III. ENERGY CORRECTION

A. Particle number conservation condition

N= gN, , (14)

with

N = f g„(E)dE

P —X= 1+erf(X ) — — g a2„H2„,(X )e
n=1

(15)

where we set X =(A, —e )/y.

B. Half-width of the gap

The average pairing gap 6 will be obtained by srnooth-
ing the BCS gap equation:

The particle number conservation condition remains
formally the same as the usual one in the Strutinsky
method. The value of the Fermi energy A, for the
smoothed level density is deduced from this condition as
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2= 1

[(A,—E )2+EL ]'

oo

b21, f x 5' "'(x )dx
~ k=r

(16)

since x 5(x ) =0 for any x.
The average pairing gap 6 will be defined by replacing

the successive derivatives of 5 by their expansion in a
series of Hermite polynomials, limited to an order p. The
expressions which permit us to calculate implicitly 6 ac-
cording to the truncature order over a of Eq. (12) are
given in Appendix B.

C. Smoothed energy and total microscopic energy correction

Since the BCS energy given by

C~
Bcs X v

[( g)2+g2]&/2 G

becomes, when the averaging parameter y and the
definition (8) of g, (x ) are introduced,

X
(X2 + 2)1/2 G

X=gf g (x )dx, —Q2

G

~v=sf 2
dE'

)2+ g2]3/2

Introducing the averaging parameter y, one obtains, after
using the variable substitution (9):

Xv X~dX2, where X =
y -- [x'+a']'/2 '

and using the expression (8) of the level density:
X

2 x g, (x, )dx, .
a

Replacing g (x ) by the series development (12), we have

2a 1 X
b2k f x 5' "'(x )dx

k=0 OO

exist for E. The term under the sign sum in Eq. (17)
indeed vanishes when x is large enough, generally of the
order of 10. The total microscopic energy correction is
then defined by

5E =EBcs E . (18)

IV. RESULTS AND DISCUSSION

The previously described method is applied to the total
microscopic correction 5E to the liquid drop energy of
some even-even actinide nuclei in their ground states.
The single particle energies c. which will be used are
those of the Woods-Saxon mean field explicitly dependent
on the nuclear shape. The deformation is described using
the dimensionless elongation and necking coordinates c
and b, respectively [9,13].

A. Choice of the pairing strength parameter G and pairing gap

We studied, in a first step, the variation of the average
pairing gap b, obtained from Eq. (16) as a function of the
pairing strength parameter G and according to the trun-
cature order of the series development over a, for fixed
values of y and p. The expansion (12) has not been car-
ried out beyond the term in 5' '. Indeed, taking into ac-
count the derivatives of higher order of 5 amounts to in-
clude the Hermite polynomials of higher order. Since the
latter oscillate more rapidly than those of lower order,
they will not take part in the smoothed values. As an ex-
ample, Table I shows the variation of 6 as a function of
G, according to the truncature order for the Th. The
columns (1), (2), and (3) refer to the values obtained from
Eqs. (Bl), (B2), and (B3), respectively, i.e., by limiting the
expansion (12) to the term in 5' ', in 5' ', and in O' '. It is
clear that the values obtained from Eqs. (B2) and (B3) are
as expected about the same. It is therefore of no use car-
rying this expansion beyond these values.

On the other hand, G is chosen such as to reproduce
the experimental pairing gap. When available, we used
the experimental values of b, given in Ref. [26]. Other-
wise, the experimental pairing gaps are supposed to be
given by the odd-mass differences as in Refs. [23,27].
Since in the present work only the even-even nuclei are
considered, we used for neutrons

then its smoothed expression will be, simply,

+2E= gE~— (17)

,' [M(Z, N+2)——4M(Z,N+1)+—6M(Z, N)

—4M(Z, N —1)+M(Z, N —2)],

where N is given by Eq. (15) and b, is deduced from Eq.
(16).

With this definition for E, it is no longer useful to in-
troduce the cutoffs. The latter were introduced, some-
what arbitrarily in the BCS calculations. Indeed, to
reproduce the phenomenological A ' dependence of
even-odd mass differences, the number of levels included
in the BCS calculations are taken as &15N levels for neu-
trons above and below the Fermi level and 3/15Z levels
for protons [8]. Because of the Gaussian weighting func-
tion in the expansion (13), this problem does no longer

where M is an experimental mass, and a similar expres-
sion for protons where N and Z are interchanged. The
experimental masses were taken from Ref. [4].

By using the experimental values of the gap we ensure
that the difference between the average pairing gaps of
neutrons and protons is taken into account. Although it
is experimentally established that for heavy nuclei 6„ is

slightly lower than b, (Ref. [20]), in most studies they are
supposed to be identical irrespective of the nuclear shape
[8—13,20,21] and given by

(19)
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TABLE I. Variation of the averaged pairing gap 6 (MeV) as a function of the pairing strength G (MeV) according to the trunca-
ture order of the expansion (12) for the ground state of the Th. The columns (1), (2), and (3) refer to Eqs. (B1), (82), and (B3), re-

spectively. Here p =4 and @=1.2Aco0 for both protons and neutrons. The experimental pairing gap is h~""=1.075 for protons and
the corresponding value of 6 is therefore G =0.124. For neutrons, 5'„""=0.74 and G =0.078.

Protons

(2)

Neutrons

(2) (3)

0.110
0.111
0.112
0.113
0.114
0.115
0.116
0.117
0.118
0.119
0.120
0.121
0.122
0.123
0.124
0.125
0.126
0.127
0.128
0.129
0.130

0.73377
0.75649
0.77949
0.80276
0.82630
0.85009
0.87414
0.89843
0.92297
0.94775
0.97275
0.99798
1.02343
1.04910
1.07498
1 ~ 10106
1.12735
1.15825
1.18089
1.20774
1.23477

0.73288
0.75553
0.77846
0.80165
0.82510
0.84881
0.87278
0.89698
0.92141
0.94609
0.97098
0.99610
1.02143
1.04698
1.07273
1.09868
1.12482
1.15115
1.17807
1.20477
1.23165

0.73287
0.75553
0.77845
0.80164
0.82509
0.84879
0.87276
0.89693
0.92139
0.94606
0.97096
0.99607
1.02140
1.04694
1.07269
1.09863
1.12477
1.15110
1.17801
1.20470
1.23157

0.070
0.071
0.072
0.073
0.074
0.075
0.076
0.077
0.078
0.079
0.080
0.081
0.082
0.083
0.084
0.085
0.086
0.087
0.088
0.089
0.090

0.50465
0.53209
0.56021
0.58897
0.61836
0.64836
0.67897
0.71016
0.74192
0.77424
0.80708
0.84045
0.87433
0.90869
0.94353
0.97883
1.01456
1.05073
1.08757
1.12454
1.16190

0.50454
0.53197
0.56007
0.58881
0.61818
0.64816
0.67874
0.70991
0.74164
0.77392
0.80675
0.84009
0.87393
0.90825
0.94305
0.97831
1.01399
1.05011
1.08690
1.12383
1.16113

0.50454
0.53197
0.56007
0.58881
0.61818
0.64816
0.67875
0.70991
0.74164
0.77392
0.80676
0.84010
0.87394
0.90825
0.94307
0.97832
1.01402
1.05013
1.08694
1.12386
1 ~ 16117

Z=(7.2 44I )/A —'/ (20)

This relation, although showing an improvement over
Eq. (19), presents the same limitation. Moreover, the

with generally c = 12 MeV.
Vogel, Jonson, and Hansen [22] have since then shown

the dependence of b, on the isospin [I=(N Z)/A] and-
introduced this dependence through the expression

dependence of the denominator was deduced empir-
ically rather than from physical considerations.

Madland and Nix [23] generalized Eq. (20) by taking
into account the nuclear shape in addition to the
difference between neutrons and protons. However, this
involves the determination of numerous constants. The
physical meaning of these constants is not always
straightforward:

TABLE II. Comparison of the G values determined in the present work for the neutrons and protons of some actinide nuclei to
those of Nilsson et al. [8]:G=(19.2+7.4I)/A, Pauli [13]: G=45/Aln —&A, Pearson et al. [29]: G=18.95{1+0.79I+3.4I )/A,
where I=(N —Z) lA.

Nucleus

226R

234U

236U

238U

236p

238p

240p

242p

244p

240C

'4'Cm
244Cm
246C

Present
work

0.107
0.120
0.124
0.115
0.117
0.112
0.106
0.107
0.100
0.107
0.108
0.104
0.103
0.104
0.107

Ref. [8]

0.089
0.090
0.089
0.088
0.088
0.087
0.087
0.087
0.086
0.086
0.085
0.086
0.085
0.085
0.084

Protons

Ref. [13]

0.066
0.065
0.064
0.063
0.063
0.062
0.063
0.062
0.062
0.061
0.060
0.062
0.061
0.060
0.060

Ref. [29]

0.112
0.110
0.109
0.107
0.107
0.107
0.104
0.104
0.105
0.105
0.105
0.102
0.102
0.102
0.103

present
work

0.076
0.081
0.078
0.076
0.075
0.072
0.076
0.074
0.067
0.070
0.069
0.073
0.070
0.070
0.068

Ref. [8]

0.077
0.076
0.075
0.075
0.074
0.073
0.074
0.074
0.073
0.072
0.071
0.073
0.073
0.072
0.071

Neutrons

Ref. [13]

0.066
0.065
0.064
0.063
0.063
0.062
0.063
0.062
0.062
0.061
0.060
0.062
0.061
0.060
0.060

Ref. [29]

0.083
0.081
0.081
0.079
0.079
0.079
0.078
0.078
0.078
0.077
0.077
0.077
0.076
0.076
0.076
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8, exp( —0. 118I—8. 12I ),
N

G =go(1+g, I+g2I )/A, (21)

where the upper sign refers to neutrons and the lower to
protons. This relation is preferred to an expression of the
type given in Refs. [30,31], where the parameters g are
different for neutrons and protons. A fit of the G values
obtained from the experimental data of the pairing gap
gives:

go=18 95 gi =0 79 ~ g2=4

B. The plateau condition

Table III shows the variation of the energy correction
5E as a function of the averaging parameter y for a given

',
&~ 8, exp(0. 118I—8. 12I ),

Z 1/3

where B, is the ratio of the surface area of the deformed
nucleus to the surface area of the spherical nucleus.

On the other hand, Starodubsky and Zverev [28] have
shown that the difference between neutrons and protons
can be satisfactorily described without an explicit in-
clusion of the dependence of 5 on isospin. Although not
crediting either of the two previous approaches, our
method has the merit to allow the deduction of 5 from
microscopic considerations. Moreover, only one parame-
ter having a physical meaning, the pairing strength G,
needs to be determined. Table II compares the G values
determined in the present work for neutrons and protons
of a few actinide nuclei to those reported by the various
authors.

In all the cases, the present G value is closest to that
given in Ref. [29]. Hence we choose a pairing strength of
the form [23,29]

2

0—

i3.5
I

0.7
I

0.9
I

1.3

f(ho)())

I

1.5
I

1.7
I

1.9

FIG. 1. Variation of 5E (MeV) as a function of y(Acoo) for
various truncature orders p for the protons of Th in its
ground state.

order p (p=4) in the case of U taken as an example,
and according to the truncature order of the expansion in
a. Again, it is clear that carrying the expansion (12)
beyond the term in a is unnecessary. It could even
prove suf5cient to limit the expansion to the term in a .
This has been carried out in what follows.

As in the Strutinsky method, neither the parameter y
nor the truncature order p represent physical quantities.
When suitably chosen, these quantities should therefore
have no inhuence on the energy correction 6E. The vari-
ation of 5E as a function of y is shown in Figs. 1 and 2
for various truncature orders p for the Th. In each
case a plateau is unambiguously observed as could be pre-
dicted by the form of the expansion (12) since the Dirac 6
function already leads to such a stability. The determina-
tion of y and p values is made possible by this plateau.
The corresponding optimum values are y=(1 —1.4)A'coo,

TABLE III. Variation of the total microscopic energy correction 5E (MeV) as a function of y(%coo) for a given order p for the
ground state of the 'U. The columns (1), (2), and (3) refer to 5E when the expansion (12) is limited to the term in 5' ', 5' ', and 5' ',
respectively.

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.54150
0.31799
0.02466

—0.25916
—0.29590
—0.07104

0.30811
0.70667
1.09290
1.43408
1.66956
1.72156
1.61804
1.23999
0.64160

—1.06706

Protons

(2)

0.53455
0.32056
0.02429

—0.26501
—0.30847
—0.09814

0.31030
0.71021
1.09570
1.43518
1.67151
1.72266
1.61780
1.24243
0.64673

—0.09521

(3)

0.53430
0.32019
0.02417

—0.26514
—0.30835
—0.09900

0.31158
0.71057
1.09497
1.43506
1.67078
1.72241
1.61780
1.24243
0.64673

—0.09656

1.24243
0.83813
2.24634
1.70874
0.53613

—0.44507
—0.81641
—0.90747
—1.15796
—1.73950
—2.55420
—3.23169
—3.51807
—3.24341
—2.51904
—1.41846

Neutrons

(2)

1.24194
0.83057
2.21509
1.68604
0.52100

—0.46411
—0.84741
—0.95068
—1.21753
—1.79761
—2.61597
—3.30688
—3.61548
—3.39282
—2.50879
—1.40210

(3)

1.24194
1.83057
2.21436
1.68628
0.52100

—0.46436
—0.84766
—0.94995
—1.21729
—1.79663
—2.61621
—3.30615
—3.61523
—3.39307
—2.50952
—1.40186



1662 N. H. ALLAL AND M.. FELLAH 48

p=4 —5 ffor neutrons and = . — . co

protons.
an y =(0.9—1.2)A'cocoo, p=5, 6 for
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TABLE IV. Comparison of the energies and positions for lo-
cal extrema of the total deformation energy evaluated by the
present method to those calculated by the Strutinsky prescrip-
tion by Pauli [13] and by Junker et al. [32] and to the experi-
mental data [16]. Et: Ground state (relative to spherical
LDM); and E». Isomer state, V&.. Inner saddle, and V&.. Outer
saddle (all relative to the ground state).

EI (MeV)
(c, h)

V„(MeV)
(c,h)

E» (MeV)
(c,h)

V, (MeV)
(c,h)

Present
work

—0.02
(1.19,—0.04)

6.82
(1.30,0.04)

2.55
(1.40, —0.07)

11~ 10
(1.54,0.02)

Ref. [13] Ref. [32] Expt.

—0.71—2.5
(1.12,—0.15)

(1.24,0.15)
2.5

(1.40,0.00)
9.5

(1.66, —0.07)

6.90 5.6+0.2
(1.31,—0.07)

2.4+0.3

10.17
(1.54,0.06)

5.1+0.2

The comparison of Figs. 3(a) and 3(b) demonstrates the
predominant role played by the neutrons in the deforma-
tion energy since the oscillations of 6E„around the ori-
gin can reach an amplitude of 3 MeV and are clearly
more important than the values of 5E& which range from
1.5 to 2 MeV. In addition, these figures show clearly, as
in similar calculations performed with the Strutinsky
method [9,13], a number of shell-correction minima
reflecting shell closures. As a result, one gets [see Fig.
3(c)] a topology of the deformation energy extremely
similar in structure to that evaluated by the usual Strutin-''

sky method (where the shell and pairing corrections are
calculated separately) [9,13]. The general behavior of the
contour map of the deformation energy is in qualitative
agreement with the latter method: there exists in fact
two minima that correspond to the ground and isomeric
states, respectively, separated by a saddle that refers to
the first barrier, and a second barrier that separates the
second minimum from the exit region.

We compare in Table IV the energies and positions for
local extrema of the deformation energy obtained by the
present method to those of Refs. [9] and [32] and to ex-
perimental data. The discrepancy between experimental
and theoretical values of the barrier heights, that may
seem important, can be explained by the well-established
fact that neither the left-right asymmetry e nor the axial
asymmetry y have been taken into account (cf. e.g., Refs.
[9,32]).

As the ground states are stable with respect to a and y,
what follows is limited to the calculation of the micro-
scopic correction for these states by minimizing the de-
formation energy in the (c, h) plane with 1.0( c ( 1.3 and
—0.300 h 0.300. In Fig. 4 the energy corrections
calculated by the different methods are compared to the
experimental data for several actinide nuclei in their
ground state. We used the experimental values obtained
by Myers [4] by subtracting the droplet mass from the ex-
perimental mass. In order to make comparison possible,
we calculated the total energy correction by adding the
shell correction determined using the Strutinsky method

2.0

Ra

I.O-

p- Ra
~5

vQ

Ra 1

14{)

i40"litt'()ll +i lllll beI

FIG. 4. Differences between theoretical and experimental
values of the total microscopic correction in MeV as a function
of the neutron number N for some actinide nuclei in their
ground state. Points (0—) refer to 6E of the present work,
(A- - -&) to 5Ep+6E,&,&] and (X—X) to the Myers correction
[4].

and the pairing correction evaluated with the BCS
theory.

A second level of comparison is the Myers correction
which is the difference between the shape-dependent part
of the droplet mass formula and the spherical droplet
model mass [4]. It is clearly shown that, in most cases,
the values obtained in this work are closest to the experi-
mental data. The average difference 5E —6E, p

of the
present method is about 120 keV for the considered nu-
clei whereas it is about 500 keV for the usual Strutinsky
method and 720 keV for the Myers method. The im-
provement is particularly clear for the Cm isotopes since
the differences between the experimental and the calcu-
lated values are 175 keV for the present method, 1.065
MeV for the Strutinsky method, and 972 keV for the
Myers method.

The total microscopic correction 6E has been then cal-
culated for about thirty actinide nuclei. It is plotted (see
Fig. 5) as a function of the neutron number X together
with the corresponding experimental values. Except in
the case of the lighter isotopes of Ra, the agreement be-
tween the calculated and the experimental values is very
good. The average discrepancy does not exceed 250 keV.
As a last step, we looked at the so-called "Pb anomaly"
for which the usual Strutinsky method gives a discrepan-
cy of 4—7 MeV between the experimental data and the
calculated results using a realistic shell model (cf. e.g. ,
Refs. [9,34]). The present method, using the form (21) for
6, leads to —10.43 MeV which is a clear improvement
relative to the usual shell correction (

—17.6 MeV),
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I

{g3

FICs. 5. Variation of the total microscopic correction 6E
{MeV) of the present work (a) as a function of the neutron num-
ber N compared to that of the experimental one (b). Isotopes of
an element are connected by a line.

whereas the experimental value is —12.8 MeV [9]. Such
a good agreement may seem surprising because the parti-
cle number conservation condition in the BCS theory (5)
on which the definition of gz(E) is based is valid only on
average. However, our method could only bring an im-
provement to the usual pairing correction [18,21,33] in
which the average part of the pairing energy:

E = —
—,'gh

was the same for any nucleus, or to more sophisticated
expressions given in Refs. [10,11] that has already been
discussed in the previous section.

This good agreement can therefore partly be explained
by the use of the experimental pairing gap. However, one
should bear in mind that the most important contribution
to the total microscopic energy correction is due to shell
effects. On the other hand, in the usual method, some au-
thors [9,14,19] evaluate the pairing correction by using
the averaged level density obtained separately by the
Strutinsky calculations. The results are less satisfactory
than those of the present work. This improvement stems
essentially from the definition of the level density that
takes into account the pairing effect in a self-consistent
way and the simultaneous smoothing for the shell and
pairing effects.

V. CONCLUSION

We have defined a level density gz(E) which explicitly
depends on the pairing correlations using the particle

number conservation condition, on average, of the BCS
theory. Taken as a generalized function, this density has
been developed as a power series of 5 and as a function of
the Dirac 5 function and its derivatives. The expansion
of the latter as a series of Hermite polynomials being well
known, we deduced easily that of gz(s). The smooth part
of gz(E) is then extracted by a procedure which is analo-
gous to that of Strutinsky. The method allows the
definition of the following: (i) A total microscopic correc-
tion to the macroscopic energy that includes simultane-
ously the shell and pairing efFects. (ii) An average pairing
gap which depends both on the nucleon type (neutron or
proton) and on the nuclear shape contrary to the usual
phenemenological expression.

The method has been applied to the calculations of the
ground state energies of the actinide nuclei. The single
particle energies are those of the realistic Woods-Saxon
potential. The results are very close to the experimental
data. This represents an improvement both to the Myers
correction as well as to the sum of the pairing and shell
corrections evaluated separately by the usual methods of
Strutinsky and BCS.

When applied to the particular case of Pb, the
present method gives a clear improvement compared to
the previous values.

The particle number conservation condition in the BCS
theory, used in this work to define gz(e), is valid only on
the average. Therefore the good agreement between the
calculated and experimental values may seem surprising.
It can, however, be explained by the fact that smoothing
is made simultaneously for the shell and pairing effects
and to a lesser degree by our definition of the average
pairing gap.

In order to confirm the eKciency of the present
method, it would be of interest to make a systematic
study of the fission barriers including the left-right and
axial asymmetry. Work along this line is in progress.
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Expression of the a2„coefficients of the expansion (12)
according to the truncature order.

(1) When the expansion is limited to the term in 5' '.

cxo =2co

Q Q
pn 2c2n + 1 —ln cqn —2 ~ n 1

2 4

(Al)

(2) When the expansion is limited to the term in 5~ "
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o=2co where

a a
cxp=2cp+ 1 ln cp (A2) —g g cz„H—z„+z(X )

v n=0

Q
+2n 2c2n +

2
Q—ln cq„

—X
+(2n+2)Hz„(X ) e (B1)

Q 3 Q

+16 2 4 & —4

(3) When the expansion is limited to the term in 5' '.

exp =2cp

(B2)

where

and therefore a =4 exp(1 —4/AG ).
(2) When the expansion is limited to the term in 5' ':

2 1
—2 -2 3 -2

1 —ln A+ —+ln B
G 2 4 16 2 4

Q Qa =2c + 1 —ln c2 2 2 4 P

r

Q Q Q 3 Q
cz =2c + 1 —ln c + ——ln c

2 4 16 2 4

(A3)
1 ~ 1B= g g c~„H~„+~(X—)

v n=0

+(2n+4)Hz„+z(X ) e

Q
+pn 2cpn +

2
Q

1 —ln
4 cpn— (3) When the expansion is limited to the term in 5' '.

Q 3 a
4 2n —4

2 1
—2 -2 3 -2

1 —ln 3 + —+ln B
G 2 4 16 2 4

a 19 a
n ~32 —6

APPENDIX B where

4 —2a 19
l

a
384 3 4

(B3)

The gap equation (16) according to the truncature or-
der of the expansion (12).

(1) When the expansion is limited to the term in 5' ':
r

4 —2

1 —ln
G 4

1 ~ ~ 1C= —g g cz„Hz„+&(X —)
v n=0

—X+ (2n +6)H~„+4(X, ) e
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