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Band crossing in the odd-particle system
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The interaction between the yrast and yrare bands is discussed in the case of five particles in the
single-j shell model space with j=—'. Comparison between the case of four and five particles in the
same model space is made and it is shown that the interaction between the yrast and yrare bands in the
five-particle system is stronger than that in the four-particle system. The results of the Hartree-Fock-
Bogoliubov cranking (HFBC) method are compared with those obtained from the diagonalization of the
cranking model Hamiltonian and it is shown that the HFBC method is insufticient for describing the
band crossing in the five-particle system.

PACS number(s): 21.60.Jz

I. INTRODUCTION

The study of the backbending phenomena has been one
of the central subjects in the study of rotating nuclei.
Backbending phenomena are known to be caused by the
crossing of two bands. Hence, the study of the backbend-
ing phenomena is to investigate the mechanism of the
band crossings. In order to investigate the band cross-
ings, we have to take into account the effects of the nu-
clear deformation, the pairing correlations and the
Coriolis force which is caused by the nuclear rotation.
The cranking model has been used by many authors to
study the interweaving of these effects and the BCS ap-
proximation is commonly used to treat the pairing in-
teraction. The Hartree-Fock-Bogoliubov cranking
(HFBC) method is now extensively used in the study of
the nuclear high spin states. In spite of its success, as the
BCS -treatment of the pairing interaction is known to
have some drawbacks, some authors have tried to exam-
ine how good approximations the BCS treatment of the
pairing interaction gives for its diagonalization in the
cranking model Hamiltonian making use of the single-j
shell model space [1—3].

The interaction between the crossing bands has been
studied [4] and it has been shown, in terms of the HFBC
method, that the strength of the interaction between the
two bands is an oscillatory function of the position of the
chemical potential. Rowley, Pal, and Nagarajan [5] have
studied the strength of the interaction between the yrast
and yrare bands with their particle-number-conserving
method and have shown that the interaction is smaller in
the odd-particle systems than in the even-particle sys-
tems. However, they have cast doubts on the correctness
of the HFBC approach where both even and odd cases
are calculated from the same universal curve as a func-
tion of the Fermi energy A, .

The strength of the interaction between crossing bands
is discussed in terms of the energy difference between
them at the crossing point [4]. Wu et al. [6] have studied

the interaction between the yrast and yrare bands in the
cases of even particles in the single-j shell model space
with j= —", and they have shown that the interaction is
much larger than that obtained by the HFBC method in
all cases they have examined.

The interaction between the yrast and yrare bands can,
however, also be known from the behavior of the spin
alignments at the crossing region. Rowley and Pal [7]
have shown for the four-particle system in j= —", that the
HFBC method reproduces the behavior of the spin align-
ment of the yrast band obtained by the diagonalization;
this shows that the BCS treatment of the pairing interac-
tion gives good approximations to its diagonalization in
the four-particle system. The present authors also have
obtained the same results as those obtained by Rowley
and Pal [7] and corroborated their results.

In this paper, we want to discuss the different situa-
tions between the band crossings in the even-particle sys-
tem and that in the odd-particle system, and to compare
the results obtained with the diag onalization of the
cranking model Hamiltonian and those obtained with the
HFBC method.

II. MODEL AND TREATMENTS

We employ the single-j shell model space with j= —", in
the axially symmetric Nilsson potential. The single-
particle energies are given as

3k —j(j+1)
j(j+1)

Here k is the z component of the angular momentum of
the particle. As we are using the axially symmetric
Nilsson potential, the quantum numbers which specify
the single-particle states are the absolute value of k and
the signature. The parameter ~ is usually treated as the
energy unit [1—3,7]. As a matter of fact, we have two in-
dependent parameters in the Hamiltonian (2) below, i.e.,

0556-2813/93/48(4)/1643(5)/$06. 00 48 1643 1993 The American Physical Society



S. TAZAKI AND M. HASEGAWA

6/~ and cu/~. The parameter ~, however, stands for the
deformation of the mean field [8,9], and in the case of the
many- j shell model space, it is independent of the
strength of the pairing interaction and of the angular fre-
quency of the nuclear rotation. In the discussion in Sec.
III, we will see the results which were obtained with the
values of v different from unity.

The cranking Hamiltonian is

(2)

where

ck ck ck Sk

ko ko ko ko ko ko
1 1 2 2 3 3 3 3 4 4 5 5

and for the X =4 system,

S„'S„' ~0),

with

(7)

(9)

(10)

H, „~r g—skckocko G—gck+Ck Ck Ck +
k o. kk'

(3)
Sk =Ck+.Ck

J.=&«~J. k'&(ck+ck'+ Ck Ck' )—. —
kk'

(4)

ck~o S„2S„3 0) r (5)

The signs + and —correspond to the states of signature
—i and +i, respectively, and G is the strength of the
pairing interaction. The basis states with which we diag-
onalize the Hamiltonian (2) are as follows. For the X =5
system,

where 0 stands for the sign of the signature exponent
(o.=+ or —). We took the states with signature i fo—r
the N =5 system and took the states with signature 1 for
the X =4 system. We call the states (5), (6), and (7) the
states with seniority U =1, 3, and 5 states, respectively,
according to the number of unpaired nucleons. Likewise,
we call (8), (9), and (10) U =0, 2, and 4 states, respectively,
in the 2V =4 system.

The eigenstates of (2) for each value of co are written as

~%=5;~,a) =
k)o), k2, k3

g'='(k, o.„k2,k3;co)ckt Skt St 0)

g (k)O ),k202, k3 3O, k4,'CO)ck Ck Ck Sk ~0)
k) )k2o2, 3 3k4

k&o. &, k2o.2, 3o3 k4o4, k5o-5
go ( i ir 2 2r 3 3r 4 4r 5Oq'~)Ck (12)

for the N =5 system, where a is the label of the order in
energy. The eigenstates for the X =4 system are defined
in the same way as for the N =5 system.

In order to compare the results obtained by the diago-
nalization of the Hamiltonian (2) and those by the HFBC
method, we performed the HFBC calculations in the
same model space. The HFBC Hamiltonian is given by

HFBC
—g (Ek k)ckocko

k

+
2
6 g(ck+Ck +Ck —Ck+ ) MJX

k

(13)

III. DISCUSSION AND CONCLUSIONS

It is instructive to see the case in which single-particle
energies are degenerate, i.e., ~=0. In this case, we do not
have the deformed single-particle energy term. As the

where A, is the chemical potential and 5 is the pairing
gap.

When we diagonalized the Hamiltonian (2), we took
G =0.207 in our case for X =5 so as to correspond to our
previous work for the N =4 system [3]. The values for
the parameters A, and b, in (13) were obtained by the BCS
calculations for each value of ~, G, and X.

pairing Hamiltonian commutes with the cranking term,
we have no interaction between bands, and when the de-
formed single-particle energy term exists (sAO), as the
cranking term does not commute with the single-particle
energy term, the interaction between bands comes out.

The co dependence of the expectation value of the x
component of the angular momentum operator with
respect to the ground-state band (J„) in the X =5 sys-
tem is shown in Fig. 1 for each value of K. In the case of
K=O, spin alignments occur sharply at co=0. 125 and
D. 139. This shows the following situations. From co=0
to 0. 125, the value of (J, ) is —", , which represents the
alignment of the last odd particle added to the even sys-
tem of aligned spin 0, and one pair dissociates at
co=0. 125 and aligns its spins to give (J ) = —", , and at
co=0. 139, all pairs dissociate. As the value of ~ in-
creases, the increase of (J ) becomes more gradual as
seen in the case of a =0;2, and in the case of ~= 1.0, the
increase of the value (J, ) becomes almost monotonous.

In the case of the X =4, we had a rapid increase of the
value (J„) in the yrast band even in the case of @=1.0
(see the solid line in Fig. 3 of Ref. [3]). This suggests that
the interaction between the yrast and yrare bands is
stronger in the case of N = 5 than in the case of N =4.

In order to see the difference between the N=4 and 5
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FIG. 5. co dependence of the value ( J„) obtained by the
HFBC method is compared to that obtained by the diagonaliza-
tion. See also Fig. 1.

does not clearly indicate where the band crossing occurs.
In addition, the energy difference between them is quite
large around co=0. 13 in comparison with that in the
N =4. This figure suggests that the band crossing in the
N =5 system does not occur sharply as in the N =4 be-
cause the interaction between the yrast and yrare bands is
much stronger than in the X =4.

Next we discuss how the HFBC describes these situa-
tions. In Fig. 7 of Ref. [7], Rowley and Pal showed that
the HFBC method gives a fairly good approximation to
the diagonalization of the cranking model Hamiltonian in
the case of X =4. As seen from the dotted lines in Fig. 3,
the U =2 component dominates the yrast state after the
band crossing. However, the mixing of U =0 and 4 com-
ponents plays very important role to increase the spin
alignment of the yrast band in this region. The fact that
the HFBC method gives the fairly good approximation to
the diagonalization means that the mixing of these com-
ponents into the yrast state is properly taken into account
by the HFBC method in the N =4 system.

In Fig. 5, the same comparison is made for the N =5
system. The dashed line shows the cu dependence of the
value (J ) of the yrast band which was obtained by the
HFBC method, while the solid line shows that by the di-
agonalization of the Hamiltonian (2) (the same curve as
the solid line in Fig. 1 is reinserted for comparison). As
seen from this figure, the value (J„) obtained by the
HFBC method varies like a step function as co increases;
it does not behave smoothly as in the diagonalization.
Especially, the variation of (J ) between co=0. 10 and
0. 16 is considered to correspond to the first backbending
in the N =4 system where the spin alignment of the yrast
band varies rapidly. The results of the N =5 system ob-
tained by the diagonalization are quite different from
those of the X =4 system, while the results of X =4 and
5 systems obtained by the HFBC are similar. We have
checked the HFBC method in the following way. Setting
6 =0.207 and ~=1.0, we solved the BCS equations for
X =4 and 5. We got 6=0.42 and A, = —0.83 for N =4
and 6=0.41 and A, = —0.68 for 1V =5. Using these two
sets of parameters, we calculated the values (J ) in some
low-lying bands by the HFBC method, one of which is
the dashed line in Fig. 4, but we could not find any
significant difference in cu dependence between these two
sets of parameters.

Some improvements of the HFBC method can be con-
sidered. The self-consistent HFBC method is one of the
candidates. We tried to find the self-consistent solution
of our cranking Hamiltonian (2) for each value of n~ in
our model space. Although we could not confirm
mathematically that no self-consistent solution of it exists
in a certain region of co, we could not find the solution
from a value of co which was smaller than the crossing
frequency in our model space. The self-consistent solu-
tion may be found in a realistic model space even after
the first band crossing. However, it should be noted that,
after the first band crossing, pairs dissociate next to next
and the pairing gap decreases rapidly [3]. In this situa-
tion, where the pairing correlations are weak, BCS treat-
ment of the pairing correlations does not necessarily give
good approximations. This is more crucial in the odd-
particle system than in the even-particle system. The
number projection method is also one of the candidates.
As Rowley et al. showed in their article, the interaction
between the yrast and yrare bands became smaller in the
odd-particle system than that in the even-particle system
in their number projection method. Hence, it is not clear
at the present if the number projection method brings
about the suitable difference between the four- and five-
particle systems. The difference between the band cross-
ings in these systems, which we have discussed above in
terms of the diagonalization method, comes mainly from
the dynamical interweaving of the states with different
seniorities. Hence, it seems to be difficult to describe it
by the HFBC method even if the blocking effect is taken
into account.

From the above discussion, we can say that the interac-
tion between the yrast and yrare bands is stronger in the
system of X =5 than in X =4. In the odd-particle sys-
tem, the backbending in the yrast band is not as simple as
that in the even-particle system. The first backbending in
the yrast band of the odd-particle system corresponds to
the second or higher backbending in the even-particle
system because the band which crosses the yrast band is a
highly mixed state due to some crossings which have oc-
curred in advance of its crossing with the yrast band.
This brings about the stronger interaction between these
bands and, consequently, result in the smooth behavior in
the co dependence of the spin alignment of the yrast band.

The HFBC method seems insufficient for describing
this situation, i.e., the different situations of the crossing
bands in the odd- and even-particle systems. As it is im-
possible to diagonalize the cranking Hamiltonian in the
realistic model space, proper approximation method is
desirable for the analysis of the band crossing in odd-
particle systems.
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