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Quark condensate at finite baryon density
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We discuss a recently derived, model-independent relation that expresses the value of a medium-
modified quark condensate in terms of the vacuum value of the condensate and the value of the nucleon
sigma term, oy. Our goal is to calculate the value of the quark condensate in nuclear matter,
({NM|7(0)g (0)|]NM ), using some standard many-body techniques. Here, we comment on the mean-field
calculations of Cohen, Furnstahl, and Griegel and others. We then calculate the value of the nuclear
matter quark condensate using linear response theory. In a sigma-dominance model, the linear response
calculation relates the modification of the vacuum condensate to the matrix element of the operator gg
taken between a state of the sigma meson and the vacuum. (That matrix element may be used to define a
sigma decay constant, f,.) We also provide some additional insight into the relation between the dy-
namics of the quark condensate and the scalar fields of relativistic nuclear physics.

PACS number(s): 21.65.+f
I. INTRODUCTION

In recent years there has been a growing interest in the
behavior of vacuum condensates in the presence of
matter. While the most useful results are probably ob-
tained using QCD sum rules, simple models, such as the
Nambu-Jona-Lasinio (NJL) model [1] and the Gell-
Mann-Levy sigma model [2], have been used to study
the dynamics of the quark condensate [3]. (We will re-
turn to a discussion of the NJL model at a later point in
this work.)

We consider a model-independent relation that has
been discussed by a number of authors [3-5]. If we
denote the quark condensate in matter as { NM|gg|NM ),
the model-independent relation reads

(NM|gg|NM)—<(0|gglo) _ o~
(0lgglo) fim

> PB (1.1)

and is valid for sufficiently small density, pp. Here,
(0|gq|0) is the vacuum value of the condensate, f, is the
pion decay constant, oy is the nucleon sigma term, and
pp is the baryon density. To the extent that hadronic
masses are proportional to the strength of the conden-
sate, we also have [3]

m* ON
=1——"—ppt -,

Myac f%rm‘n'

where m * is the in-medium value of the quark mass.

A proof of Eq. (1.1) is given in Ref. [3]. A more ele-
mentary derivation, that is adequate for our purposes, is
obtained by writing

(1.2)

(NM|gg|NM)=(0|gq|0)+{(Nlgq|N)pp ,  (1.3)

where (N|gg|N) is the nucleon matrix element of the

quark scalar density. We now introduce the nucleon sig-
ma term
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7u +dd

> (1.4)

0N=——2m0<N

N).

where m is the average current quark mass of the up
and down quarks. Thus

o
<NM|§q|Nm>=<0|c7q|o>+—rf—pB+-~-. (1.5)
0

We make use of the Gell-Mann—QOakes-Renner rela-
tion,

fim2=—my(0lgql0) , (1.6)
to write Eq. (1.5) as
— _ ON
(NM|gg|NM)=(0|gq|0) 1—f2—ﬁm2p3 ,

which is equivalent to Eq. (1.1).

In this work we wish to understand how the result
given in Eq. (1.7) is obtained when we apply linear
response theory to this problem. Note that the matrix
element in Eq. (1.3) is the expectation value of gg taken
between physical (“‘dressed”) nucleons. In order to apply
linear response theory, we need to identify a perturba-
tion, so that the response to that perturbation may be cal-
culated in lowest order. To that end, it is useful to intro-
duce “valence quarks.” These quarks have a constituent
mass but are not dressed by their coupling to mesonic
modes. This distinction may be made in a precise fashion
by using the Nambu-Jona-Lasinio (NJL) model, for ex-
ample. The “dressing” of the quarks of the NJL model
has been extensively described by Weise and collabora-
tors [6]. In a recent work, we have extended their discus-
sion (that dealt mainly with the sigma meson) to include a
description of the dressing of the NJL quarks by pions,
the Goldstone bosons of the NJL model [7].

Now, consider the addition of nuclear matter to the
vacuum. If the vacuum is not polarized, the contribution
to the scalar density of the nucleons in nuclear matter is
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(N|g(0)q(0)|N ), 05, where the matrix element
{N|g(0)q(0)|N ), is calculated using the valence quarks
only. That matrix element is approximately equal to 3.
For example, we have calculated that matrix element us-
ing a (covariant) nontopological soliton model, with the
result {N|g(0)q(0)|N),,,;=3(1—2a) [8]. Here, a is the
fraction of the normalization integral for the (relativistic)
quark wave functions that is due to the presence of lower
components. Thus, if a is small, the matrix element is
approximately equal to 3.
We define

3= m o ( N3(0)q(0) [N )y » (1.8

where m,, is the average value of the up and down quark
masses (my~5 MeV). We now apply linear response
theory to write

val
N

’
my

(NM]|7(0)q(0)|NM)=(0|gq|0)+8{0|gqg|0)+

(1.9

where 8{0|gq|0) represents the response of the vacuum
state due to the presence of matter. If the model-
independent result is to be reproduced, we should have

a"Nal

o5 - (1.10)

g
8(0lggl0)= {—”—
my my

Since oy =451+8 MeV [9], we see that the polarization
correction in Eq. (1.10) is about fwice the last term in Eq.
(1.9). Combining the polarization response with the per-
turbation, we have

val
N

my

8(0|g7ql0) + (1.11)

Pp moPB .
The two terms on the left in Eq (1.11) are obtained simul-
taneously, if one uses a sigma-dominance model to calcu-
late the change in the value of the quark condensate in
the presence of matter. For example, we may consider
the calculation of o in the Nambu-Jona-Lasinio (NJL)

model [5-7]. There, one sees that o y =«o }', where the
enhancement factor K is
K= S S— (1.12)
1 - GSJSS(O) ’ ’

Here, Gy is the coupling constant of the NJL model and
Jgs(g?) is a quark loop integral [6]. The relation to the
sigma meson propagator may be seen by writing the ap-
proximate relation [7]

g%qu _ GS
qz_mg 1—Gs-]ss(qz)

(1.13)

Here, m,, is the sigma mass and g, is the coupling con-
stant for sigma-quark coupling. [Equation (1.13) may be
made exact by making g,, and m,, g? dependent.
Indeed, a momentum-space bosonization of the NJL
model will yield 2 momentum-dependent coupling con-
stant and sigma mass, ggqq(qz) and m,(q?) [10].] We
note that x has a value of about 3 [7].

We see that the enhancement factor is then
K=(—8,40y/Gs ) —8yge/m2%), where the factdr
(—8oqq/Gs) is what is required to obtain the condensate
value from the value of the sigma field generated by the
quark. That may be readily understood by noting that
the bosonization of the NJL model proceeds by writing
[10]

Gs

o(x)=— [7(x)u(x)+d(x)d(x)] (1.14)

o499

and then setting &=f,+o, where f, is the vacuum
value of .

From this discussion, we see that the appearance of o
in Eq. (1.11) tells us that the “quark sea” of the nucleon
is quite important in this problem, since k=~3. In the ab-
sence of the “sea,” we would have k=1. (We note that
lattice simulations of QCD indicate that the sea and
valence quarks make comparable contributions to oy
[11])

We may use Eq. (1.11) to make contact with relativistic
nuclear physics, where large (Lorentz) scalar fields ap-
pear. In that case, we may express the sum of the second
and the third term of the right-hand side of Eq. (1.9) in
terms of the scalar field of the Walecka model [12] or of
relativistic Brueckner-Hartree-Fock theory [13]. We
have

<N,M|¢7q|NM)=<olc7q|o)—5'(;ﬂ(l (1.15)

S

with o <0. Note that (0|7u|0)=(0|dd|0)=(—250
MeV)}, so that (0|gg|0)=2(—250 MeV)’=—0.031
GeV. If we put g,,,=2.58, Gy=7.91 GeV~? [7], and
note that o ~ —36 MeV in relativistic nuclear physics, we
have —g,,,0/Gs=0.012 GeV.? Thus the second term in
Eq. (1.3) reduces the value of the vacuum condensate by
about 38%. Note also that, with o, =45 MeV, my=35
MeV, and p=0.17 fm 3, the second term in Eq. (1.5) is
oxpp/my=0.012 GeV3, and also describes a 38% reduc-
tion in the value of the condensate. We see that the
(Lorentz) scalar field of relativistic nuclear physics may
be understood as providing a measure of the reduction of
the value of the condensate from its vacuum value [14].
[See Eq. (1.3).]

II. MEAN-FIELD CALCULATIONS

Here we consider some mean-field calculations, made
using the Nambu-Jona-Lasinio model, with the aim of
obtaining the dependence of the condensate on the
baryon density [3,5]. (The nature of these calculations
will be clarified somewhat by the discussion of Sec. III,
where we again consider linear response theory.)

A finite-density gap equation for the NJL model may
be written in several forms depending upon the type of
cutoff used [15]. For example, let

m*=—Gs(NM|gq|NM) 2.1

be the quark mass in the presence of nuclear matter.
Then one may write [3]
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. Adkg m* term depends upon the choice of a Fermi momentum for
m*=N_N,Gg f 0 (2m)* [KE+(m* 2]/ the quarks, kp, a quantity that is ultimately related to the
E density of nucleons. Equation (2.2) is clearly a mean-field

1 rkr dk m* result. The meaning of such an equation is probably

Y f F) + 3152 [ (220 more clearly seen if one uses the same cutoff procedure

o @m) [k*+(m*)] for both the integrals over the Dirac “sea” and the

where the first integral is evaluated in a Euclidean
momentum space with a momentum cutoff A. The last

positive-energy states [15,16]. For example, Eq. (5.18) of
Ref. [15] reads

J

m*=my+4(N.N +l)—Gi
¢V f 2 2

* k *
[rdpm®_ ot dp_ Mgk | —lp)|, 2.3)

o (27)® E, o (2m)® E,

where m, is the current quark mass, and where the J that accompanies N N, in Eq. (2.3) arises from a Fierz rearrange-
ment of exchange matrix elements. Further, Ep=[p2+(m*)2]'/ 2, If one considers a sum of discrete values of the
momentum, one sees a pairwise cancellation between the (negative) contribution of the negative-energy states and the
(positive) contributions of the positive-energy states to the value of the condensate.

It is also possible to assume that the positive-energy states are organized into “nucleons.” Then, the new value of the
condensate, or mass parameter, is obtained by solving a gap equation of the form

val

1 A dp m* oN
*— +)G. | = _4ap m_ |_ - 2.4)
m m0+4(NcNf 2) S ) fo (277_)3 EP sPB m,
GS m* e ——— val
=m0+T[NCNf+%]?{A\/(m*)2+A2—(m*)21n[A+\/(m*) +A%} —Ggpp e (2.5)

Alternatively, if the covariant cutoff is used, we have

2
1+ A
o |

*
. 3m

m*=my+ A —(m*)ln

Gs

‘IT2

a}'\?l

mg

GSPB . (2.6)

The approach adopted in Ref. [3] was to adjust the pa-
rameters of the NJL model so that the model-
independent result, Eq. (1.1), was reproduced at low den-
sity. The NJL model was then used to estimate correc-
tions to the model-independent result at larger values of
the density. (In general, this procedure has the unsatis-
factory feature of taking the parameters mg,, A, and Gy
away from the values that gave good fits to f, and m ,
when using the NJL model.) In the next section, we dis-
cuss the modification of the condensate value using linear
response theory. That calculation is somewhat less mod-
el dependent than the mean-field results [3,5] described
here. For example, the mean-field result is based upon
the description of the vacuum, or the vacuum plus quark
matter, as an uncorrelated Fermi gas. In the linear
response theory, one may, in principle, consider a vacu-
um state with a complex correlation structure.

III. LINEAR RESPONSE THEORY

In the last section we saw that it is possible to calculate
the density dependence of the quark condensate using
simple field-theoretic models. An alternate scheme is to
use linear response theory to calculate the modification of
the vacuum condensate in the presence of matter. The

f

perturbation in this case is the valence quark scalar densi-
ty of the quark matter added to the vacuum. Thus

O'VNal

H mg GSpB[ﬁ(x)q(x)] ’

(3.1

pert =

where Gy is the coupling constant that relates the value
of the condensate to the constituent quark mass. The
value of that parameter may be taken from the NJL mod-
el.

For example, consider the part of the Lagrangian of
the NJL model that contains the mass term generated by
the vacuum value of g(x)g(x). Supplemented by the per-
turbation given in Eq. (3.1), we have

0}'6’1

my

L(x)=g(x) |iy*d,—m,+ Gspp |g(x)+ - -+,

(3.2)

where m,=—Gs(0|gg|0). Note that the last term of
Eq. (3.2) represents about a 10% reduction of the mass
parameter, m,, at nuclear matter density. That is
equivalent to a 10% reduction in the magnitude of the
condensate. Since, in a theory of this type, we anticipate
a 30—-40 % reduction of the quark condensate at nuclear
matter densities, we need to consider the linear response
arising from the perturbation in Eq. (3.1) or (3.2). As we
will see, the linear-response analysis will relate the
modification of the condensate value to the decay con-
stant of the sigma meson to be defined below.

Now, we have for the response to the perturbation [17]
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5(0lgq|0)

ON

—0G
m, SPB

=—i

x [ ar [ dx'(o|[g(x")g(x"),g(0)g(0)]]0) .
(3.3)

Equation (3.3) may be evaluated by using the relation
g(x)g(x)=e H "P2g(0)g(0)e ~IH ~Px) (3.4)

after inserting a complete set of states between the opera-
tors g(x)g(x) and g(0)q(0). Since a calculation of oy
that uses the sigma-dominance model [6,7] appears to be
satisfactory, we will assume the intermediate state of a
zero-momentum ¢ meson iS most important.
Justification of this procedure may be found in our recent
work [18]. There we inserted physical two-pion states be-
tween the operators g(x)q(x) and g(0)q(0) and calculat-
ed the resulting matrix elements to one-loop order, mak-
ing use of a generalized NJL model. We calculated the
imaginary part of the correlator that arises from the cou-
pling to the two-pion continuum and then obtained the
real part by means of a dispersion relation. It was then
found that for spacelike g2 (¢?><0), an expression based
upon sigma dominance provided an excellent representa-
tion of the (scalar-isoscalar) correlator. In our model,
there is no physical, low-mass sigma to be found for time-
like g%, a result in accord with the absence of such a
meson in the data tables.

Once we are convinced that the sigma-dominance mod-
el is useful, we proceed by denoting a state of the sigma
meson as |o,p=0), and use the normalization condition

(o,p'|lo,p)=27)20(p)8¥(p—p’) . (3.5)
We then define
(0,p=0|7(0)g(0)|0)=F2 . (3.6
We have
F i
8<O|‘7(0)q(0)|0)=(2)2m3 m—OGSPB , 3.7

where the factor of 2 on the right-hand side of Eq. (3.7)
arises because each term of the commutator in Eq. (3.2)
contributes equally.

Now, upon using Eq. (3.7), we have

val

o F*
(NM|gq|NM)=(0lgg|0) +Gs | ——ps |
0 m,
val
oy
+ s 3.8
mg PB (3.8)

where, as before, the last term in Eq. (3.8) is the contribu-
tion of the valence quarks to the scalar density. Equation

(3.8) may be written as
o.val
~ P
B
mg

GsF*

2
4

(NM|gg|NM)=(0|gql0) + 1+

m
(3.9)

TABLE 1. Results of the calculation of the factor
(1+GsF*/m?2) are shown. Parameters of the NJL model
determined in Ref. [7] are given, with A being the cutoff in Eu-
clidean momentum space. Models A and B refer to Table I of
Ref. [7], while parameters for model C are in Table II of that
reference. For model D we put m,~my/3 and have used
m, =550 MeV, which is a value often used in the one-boson-
exchange model of the nucleon-nucleon interaction. (Note that
Fl=m_f,.)

Model A B C D
A (GeV) 1.00 1.05 1.00 1.00
Gs (GeV™?) 7.91 6.97 7.91 7.91
m, (GeV) 0.260 0.245 0.302 0.310
m, (GeV) 0.519 0.489 0.603 0.550
F? (GeV?) 0.240 0.265 0.237 0.263
f, (GeV) 0.462 0.542 0.393 0.478
(1+GsF*/m?) 2.69 3.04 2.64 2.81
K 3.12 3.57 2.50

To obtain the model-independent result, we should
have

GsF*

2
o

1+

oy=0o% , (3.10)

so that, upon using the Gell-Mann-Oakes-Renner rela-
tion, we regain Eq. (1.7). We see that, for consistency, we
should have (1+GgF*/m?%)=k. If that were the case,
the last term in Eq. (3.9) would equal o ypp /m,. (We re-
call that k was approximately equal to 3.)

In Table I we present the results of a calculation of
(1+GgF*/m?) made using the NJL model. We make
use of the parameter sets determined in Ref. [7]. (Some
details of the calculation are given in the Appendix.)
From Table I, we see that (1+GgF*/m?) is reasonably
close to k for the various parameter sets considered.
Rather than working with F2, it may be useful to define a
sigma decay constant, f,, such that F2=m_f_. In that
case, Eq. (3.10) reads o y =0 ?(1+Gf2), etc. Values of
f, are also given in Table I.

Finally, we once again note that the (Lorentz) scalar
fields of relativistic nuclear physics [12,13] may be related
to the change in the value of the quark condensate in the
presence of matter, o ypp /m,. We have

Gs

ON

mOPB

o=—

(3.11)

quq

as may be inferred from the use of Egs. (1.14) and (1.15).
With Gg=7.91 GeV 2, 0y /my=~9, and 8oqq —2-58, we
have o0~—36 MeV at nuclear matter density, where
pam=0.17 fm~3=(109 MeV)>.

IV. DISCUSSION AND CONCLUSIONS

In this work we have clarified the meaning of Eq. (1.1)
and provided an alternate derivation to that given in Ref.
[3], for example. We have seen that Eq. (1.3) organizes
the scalar density of the valence quarks and the induced
vacuum polarization effects into a single term. By
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separating these contributions as in Eq. (1.9), we can ap-
ply standard many-body techniques to the system as a
whole. This procedure clarifies the nature of the mean-
field calculations of the modification of the vacuum con-
densate value in the presence of matter.

For relatively small perturbations, the contribution of
vacuum polarization to the scalar density may be calcu-
lated using linear response theory. Here we assumed that
the excitation of the sigma meson of the NJL model sa-
turated the response and we saw a reasonably consistent
picture emerged for the various methods of calculation.
We also saw that the effects under consideration could be
evaluated by calculating the vacuum polarization induced
by a single nucleon using a sigma dominance model. (In
that case, oy described the sum of the valence quark con-
tribution and the vacuum polarization induced by a sin-
gle nucleon.) However, for the term linear in pg, we saw
we could calculate the vacuum polarization induced by
all the nucleons using linear response theory. The linear
response theory describes the response to a perturbation
based upon the fully correlated ground state of the Ham-
iltonian, while the mean-field analysis describes the vacu-
um, or the vacuum plus quark matter, as an uncorrelated
Fermi gas. Because of that, one may argue that the ap-
plication of linear response theory is somewhat less mod-

NVZ 1
= Py, fo dx

2__
q

A’+a?

a2

F? A%2—a%n —2a?

with a?=m

A’+a’?

el dependent than the mean-field analysis described in
Sec. II.
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APPENDIX

In this appendix we describe the calculation of the con-
stant, F2, defined in Eq. (3.6). We use the wave function
of the sigma meson obtained in the NJL model [7].

We define the vertex for sigma coupling to a quark
and antiquark to be T'=iN /1 n,, where n,=3 is the
number of colors, and N is to be found by normalizing
the wave function appropriately. We have

— r_d% 1 1
F*=(—1)i°N T
(—1)i*NV'n, f ) T K—m, §k—m,

(A1)

where p* is the momentum of the sigma meson. [In the
rest frame p*=(m,,0).] We evaluate the integral for
m, <2m, by passing to a Euclidean momentum space,
with a momentum cutoff A. The result is

AZ

In

x(1—x)p*=m}—x(1—x)m?2. Typical values for A, m

2

a - A%+a?

} ) (A2)

4> and m,, are found in Table 1.

We now have to provide a value for the factor N. That may be done by calculating a “form factor” at zero momen-

tum transfer, F*(0). We define
d*k
2a)*

where the factor of 2 arises from an isospin trace.

2co(p)F“(0)=2(iN)2(—1)i3f(

Tr[S(k)y"S(k)S(—p+k)],

(A3)

With reference to Eq. (A3), we can see that, if the Dirac matrix y* were inserted in both quark lines, when calculating
the form factor, we would have F#(0)=0. That is a statement that the sigma meson carries zero baryon number. How-
ever, one may still normalize the sigma meson state, even if there is no conserved quantum number, such as the charge,
to determine the normalization. The procedure to adopt in this case has been discussed by several authors [19], and it
may be seen that our normalization is equivalent to that defined by those authors in the case of a ¢g system.

We have

d*k [(K+m )y (K +m N —p+K+m,)]

2 FH0)=2N?2i Aad
RO =N e ¥ {(—p Tk P
41, 4pH(k2—m2)—akH[2(k -p)—(k2+3m?2)
=2N2ifdk4p( zmq)zz[(pz qu] (A3
(2m) (k*=m)*[(—p+k) —mg]
=N2I(p*)p*, (A6

where Eq. (A6) serves to define the quantity 7(p2). Recalling the normalization of our states, given in Eq. (3.5), we have
F°%0)=1, or

N= . (A7)

The integral of Eq. (A5) is again evaluated by transforming to a Euclidean momentum space, with cutoff A. We define

IpYH=J,(p>)+J,(p?),
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and find
J(p2)=—8i foldeZ(A), (A8)
with 4 =m—x(1—x)p* and
i AZ+ 4 A?
I,(A)= 1 — . (A9)
(D=5 0| T A2+ 4
Also,
J,(p>)=—16i fo‘x dx {(1—=3x)[I,(A)+ AI;( 4)]+(1—x)[3m>*—(1—x?)p?][;( A)} , (A10)
with
] 1 3A2+ A4
I(d)=——— | -0 T4 (A11)
3 27 |4 (A2+4)
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