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Pion absorption on 3He. II. Antisymmetrization and angular decomposition
of the Faddeev-based amplitude
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In order to develop a procedure for calculation of pion absorption on He, we perform the de-

composition of the absorption amplitude in three-nucleon partial waves, with full inclusion of an-
tisymmetrization effects among the nucleons. Within this formalism, the matrix elements of the
A-rescattering term, believed to be the dominant elementary absorption mechanism, are evaluated
and embedded in the full (Faddeev-based) nuclear dynamics. This implies the treatment of the
3 ~ 3 and 2 ~ 3 processes in the final state. Since no attempt is made to include distortions due to
the four-body (7rNNN) dynamics, the trinucleon bound-state wave function is the only requirement
in the initial state.
PACS number(s): 25.80.—e, 25.80.Ls, 25.10.+s

I. INTRODUCTION

The advent of the meson factories at LAMPF,
TRIUMF, and PSI has given us an important probe for
high-precision studies in low- and intermediate-energy
nuclear physics. The fact that the pion can be absorbed
and emitted by nucleons and is the carrier of the longest-
range part of the nucleon force presents theoretical in-
vestigations of pion reactions with both challenges and
opportunities. A pion cannot be absorbed on a single,
isolated nucleon, due to energy and momentun mismatch.
Therefore in nuclei, single-pion absorption is strongly
suppressed, and the dominant absorption process is on
two nucleons. Thus, this mechanism has the potential
to provide detailed information on short-range nucleon-
nucleon (KK) correlations in nuclei.

The simplest system containing two nucleons is the
deuteron. For this reason, there has been an extensive in-
vestigation, both experimental [1] and theoretical [2], on
pion scattering and absorption by deuterons. Early work
on this system was plagued by inconsistencies between
diferent theories and the inability of most theoretical
calculations to explain the data, especially data involv-
ing polarization observables. More recently, much of the
theoretical controversy has subsided and a better under-
standing of the theory of these processes has emerged [3].
However, the original aim of learning more about short-
range correlations has not been met [4]. This, in part,
is due to the fact that, at least at energies available at
the meson factories, pion absorption on two nucleons pro-
ceeds via the intermediate excitation of a A-resonance,
followed by the NN ~ LN transition. This mechanism
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masks the NN correlations [5, 6]. Instead, much of the
focus now is on the reaction mechanism and the A reso-
nance in nuclei.

The three-nucleon system is, potentially, a richer test-
ing ground for studies of pion scattering and absorption.
The experimental situation has recently been reviewed by
Weyer [7]. This system is suKciently more complicated
than the deuteron, in that it has more than one bound
state (sH and He), allows absorption on both isoscalar
and isovector pairs, and supports absorption mechanisms
where all three nucleons are involved. In the kinematical
regions where the two-body absorption peaks are clearly
discernable, much attention has been devoted to observ-
ables depending sensitively on the weaker 8- and p-wave
rescattering terms without intermediate isobar propaga-
tion, since these terms are believed to be more sensitive
to the short-range NN correlations than the dominating
(deuteronlike) two-nucleon absorption mechanism with
4 excitation. Such observables are, for example, the pro-
ton polarization from 7r+ absorption on He [5] and the
isospin ratio R = a(7r+, pp) jo (vr, pn) [8—10].

Much of the interest in pion absorption, however, re-
cently resulted from experimental indications that up to
30% of the total absorption cross section may be as-
cribed to mechanisms involving all three nucleons, with
the available three-body phase space ulled completely
with a constant event density [11]. The existence of a
significant three-nucleon absorption component has been
established very recently also for sH in Ref. [12]. This
fraction has been measured in other light nuclei as well

( Li, Li, and Be) [13], with roughly the same result
(namely, a value between 4 and 2 of the cross section may
be ascribed to three-nucleon absorption mechanisms). At
the present stage, the nature and magnitude of such
a multinucleon absorption process, which exhibits a L
resonancelike dependence upon the pion energy, still re-
main unexplained [14]. Although it is generally believed
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II. ANTISYMMETRIZED ABSORPTION
AMPLITUDES

In order to describe the absorption process on He we
treat the nucleons as a system of identical fermions (with
use of the isospin formalism). We follow as closely as
possible the classic treatment [17] for the standard three-
identical-fermion problem. The absorption formalism for
distinct particles has been developed in paper I.

The generalized Pauli principle dictates the total wave
function to be antisymmetric under the simultaneous ex-
change of space (r), spin (a), and isospin (r) coordi-
nates of any pair of nucleons. By labeling the nucleons
as (1, 2, 3), the particle-exchange operator for the nucleon
pair (2, 3) is indicated as

P» = P23P23P23. (2.1)

that the body of data indicates a new elementary pion-
absorption mode on three nucleons, there is no unequiv-
ocal experimental signature for the absorption on three
nucleons that would be distinguishable from the multi-
step efFects involving initial- or final-state interactions.
This could only be settled by Faddeev-theory-based cal-
culations. Under this point of view, the vr- He system is
still su%ciently simple to be within reach of an "exact"
calculation using modern few-body Faddeev-type tech-
niques.

In the first paper of this series [15], hereafter denoted
by I, a model for a Faddeev-based calculation of the
m- He absorption process was introduced. Elementary
pion-absorption amplitudes were embedded in the full
three-nucleon dynamics, consisting of the initial-state
breakup of the trinucleon in the presence of the pion,
and the complete final-state interactions among the three
nucleons. An exact description of the pion-nucleon cor-
relations in the initial state, which would have required
a unitary treatment for the coupled vrNNN-NNN sys-
tems was not attempted, however. Such a treatment has
been formally derived within the isobar separable model
by Avishai and Mizutani [16]; the solution of the result-
ing equations, however, presents a formidable task, and
consequently, we excluded such initial-state AN correla-
tions in the Faddeev-based amplitudes of paper I.

The aim of this paper is still technical, in that we
carry the work of I further towards a practical calculation
scheme, by developing the detailed antisymmetrized and
angular-momentum decomposed version of the Faddeev-
based absorption amplitude (which was the final result
of paper I). In particular, in Sec. II we treat the three nu-
cleons according to the Pauli principle, deriving antisym-
metrized Faddeev-based absorption amplitudes. The re-
sulting amplitudes are then decomposed in three-nucleon
partial waves (Sec. III), with the major emphasis given to
the evaluation of the matrix elements of the (dominant)
L-rescattering mechanism. Section IV summarizes the
main results contained herein. Future work will analyze
the intricacies of the numerical solution of the Faddeev
equations for the 3 ~ 3 and 2 ~ 3 processes, and present
results of calculations, both in a simplified model and for
realistic He wave functions and NN interactions.

Pg+ P2+ P3
3

An alternative form frequently employed for 8 is

1+P
3

(2.3)

(2.4)

with

P = P2 + P3. (2.5)

The three-body state lP)g, fully antisymmetrized with
respect to the permutations of any pair of particles, can
be obtained by Ineans of the operator 8,

l&)~ = ~l&)i (2.6)

where the three-body state lP)i is assumed to be anti-
symmetrized with respect to one nucleon pair (23) only
(however, any pair may be chosen).

We may now consider the pion-3N absorption ampli-
tude

(2.7)

where the initial three-nucleon bound-state wave function
lgns) and the final scattering state ~(@~ ll have been
antisymmetrized. Also, due to the idempotent character
of the symmetrizer one may consider antisymmetrization
only in one of the two nucleonic wave functions.

The last state has (ingoing) boundary conditions de-
scribing final channels with either three free nucleons or
the deuteron-nucleon clusterization, when it occurs.

We will discuss the formalism assuming that the el-
ementary absorption operator A is specified by the A-
rescattering mechanism (Fig. 1). It is clear that this
mechanism, although manifestly dominant, is not suf-
ficient for an acceptable description of pion absorption
around the A resonance [18—20]. However, the inclu-
sion of other two-body or one-body elementary absorp-
tion mechanisms (or even three-body mechanisms) may
be derived by similar procedures.

In the case of the two-body mechanism of Fig. 1, we
note that there are six difFerent contributions A(P E n)—
depending on which nucleon (n) undergoes the 4 ex-

FIG. 1. A-rescattering mechanism for He. The figure
represents our conventions for the Ai operator.

The two operators

P2 = P)2P23, P3 = P)3P23 (2.2)

perform the cyclic permutations (123) ~ (231) and
(123) —+ (312), respectively, and denoting with Pi the
identity operator 1 [i.e. , (123) + (123)], the idempotent
symmetrizer is finally obtained:
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citation and which remaining nucleon (P) absorbs the
reseat tered meson.

If we define as Ai the term A(3 ~ 2), we can write all
the remaining terms as

s{gi
~

= i{go~(1+ (1 + P)TGo + (1 + P)TGo7 Go)8,
(2.15)

A(1+- 3) = P2AiP„

A(2+- 1) = P3A, P2,

(2.8a)

(2.8b)

(2.16)

respectively. 7 is the solution of the Faddeev-like equa-
tion

7 = PT+ PTGo7. (2.17)
A(2 m 3) = P2sAiP23, (2.8c)

A(3 +- 1) = P2sPsAi P2P2s, (2.8d)

A(l +- 2) = P2sP2AiPsP2s. (2.8e)

By virtue of the antisymmetry property of the initial and
final nucleonic states, Eq. (2.7) can be expressed in terms
of one elementary contribution only:

&'™= 6 s{4' 'IAil@»)lpo). (2.9)

The antisymmetrized scattering wave function describ-
ing three interacting particles in the final state s(gi
is expressed by means of the asymptotic three-nucleon
plane-wave i{go[ [where 1 denotes antisymmetrization
with respect to the pair (23)]:

(—)~{&' 'l = 3(i{&ol(1+P) + i(&olUs' sGo). (2.10)

Here, U3~3 is the symmetrized Faddeev-Alt-
Grassberger-Sandhas (AGS) transition operator for the
3 f—3 process, which may be related to the symmetrized
2 +—2 transition operator U by the use of the expression

Us s = (1+P)[T+ TGoU GoT](l + P). (2.11)

The operators T and Gp represent the NN transition ma-
trix and the free propagator, respectively, with detailed
matrix elements given by Eqs. (3.35) and (3.36).

For the absorption process with two fragments (d+ X)
in the final state, the antisymmetrized final-state wave
function may be written in terms of the channel state
i{Pd~, describing the free motion of the spectator (nucleon
1) plus the antisymmetrized (deuteron) bound state of
the pair 23, by means of

The solution of this single three-body equation allows one
to take into account the final-state three-body dynamics
with both two and three particles in the asymptotic chan-
nel.

Inclusion of the result (2.15) into (2.9) allows one to
disentangle the various contributions to the absorption
process with difI'erent levels of connectivity. Indeed, we
can write

Atot AI + AII + AIII

with

A' = 2 i(go~(1+ P)A, ~vPBs)]Po),

(2.18)

(2.19)

= 2 i(ko~(1+ P)T(1+ P)GoAi~@Bs)~po), (2 20)

Ag ——Ag+ Ag, (2.22)

where the first term is again a plane-wave-type approxi-
mation

i{&~l(1+ )Ail@») Ipo) (2.23)

and the second term includes the interactions in the final
channel

&~' = 2 i{4~17(1+P)GoAilg») lpo). (2.24)

i{go~(1+ P)TGo7 (1 + P)GoAi ~QBs) ~po)

(2.21)

The first term is the usual plane-wave approximation,
while the terms A and A include, respectively, the
disconnected and connected contributions of the final-
state interaction. Much in a similar way, the absorption
amplitude with the deuteron in the final channel splits
into two contributions,

s{&~ I

= —i(&~IU2~sGo(—)

3
(2.12)

III. PARTIAL-WAVE DECOMPOSITION

U2~s = [Go'+U GoT](1+P) (2.13)

and the (2 +— 2) operator is the solution of the sym-
metrized AGS equation

U = G P+ PTGpU (2.14)

It is convenient [21] to introduce the operator 7
U GpT, since we can then write the two final-state wave
functions (2.10) and (2.12) as

where we have indicated with U2~3 the antisymmetrized
(2 +- 3) AGS transition operator. This (2 E—3) operator
is then related to the (2 E 2) one through—

n, = (o2os)s» (sio'i) SS'; {r2~s)t» (t,r, )TT'. (3.1)

In other words, si is the spin of the (23) subsystem, which

The symmetrized absorption amplitudes derived in the
previous section are now expressed in detail in momen-
tum space. In so doing, we follow standard three-body
procedures to represent the various contributions to the
absorption amplitude in terms of partial waves.

First, we specify the asymptotic three-body plane
wave, previously denoted by i{go~, as (pi, qi, 6i ~, where
the symbol 6» is used as an abbreviation for the spin-
isospin quantum numbers in the coupling scheme:
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couples to the spin O.
q of nucleon 1 to give the total spin

of the system S and its magnetic component S'. The
identical scheme applies also to the isospin space. For
the definition of the Jacobi momenta pq and q~ we refer
to Eqs. (Al) and (A2) of the Appendix. (From now on,
we will skip the subscript "1"in these Jacobi momenta. )

Second, we introduce a complete set of plane-wave
states in partial waves. In the jI-coupling scheme, we
represent these states as

lp, q, n)i —= lp, q, (ls)j, (Ao)I, (j.I)JJ', TT')„(3.2)

N
I)

N

N

N

3 i)

(b)

where the angular-spin quantum numbers (ls)j refer to
the subsystem 23, (Ao)I refer to the spectator 1, and JJ'
indicate the total angular momentum of the system and
its z component. Since we work with states which are
supposed to be antisymmetrized in the (23) subsystem
coordinates, this is achieved by imposing the condition
l+ 8+ t= "odd" in the quantum numbers of such a sub-
system.

The totally antisymmetrized bound-state wave func-
tion of the three-body system lgBs) is conveniently rep-
resented by means of only one Faddeev component (e.g,
lgns)i) via the relation

(c)

FIG. 2. Jacobi coordinates for the mNNN and ANN sys-
tems. (a) and (b) show the types of four-body Jacobi coor-
dinates used in this work. (c) shows the coordinates used for
the ANN system. The figure also displays the symbols used
to indicate the corresponding momenta.

I@») = (1+P)l&»)i (3.3)

I = ) p dpq dqlp, q, n)(p, q, nl, (3.4)

and each operator or state which is relevant to the ab-
sorption amplitude has to be represented in terms of ma-
trix elements between states of the type (3.2).

and l@Bs)i satisfies a single Faddeev homogeneous-type
equation (Ref. [17], pp. 153—157).

With the purpose of obtaining the desired decompo-
sition in partial waves of the various absorption ampli-
tudes (2.18)—(2.24), we have to introduce completeness
relations in the three-nucleon space, namely,

A. Matrix elements of the Ai operator

The most interesting factor to be discussed is of course
the matrix element of the operator Ai. As already men-
tioned, we focus our discussion on the case where Ai rep-
resents the (dominant) A-rescattering term, but other
elementary absorption mechanisms have eventually to
be considered too. With the help of Fig. 2, it may be
easier to visualize the kinematics involved when the L-
rescattering mechanism is embedded in a three-nucleon
space.

With a completely nonrelativistic treatment of the nu-
cleon dynamics, we may write the elements of Ai as

(p', q', n'lAilp, q, n) lPo) = ) 2 2
/ I p~ dp~ q~ lq~ + 7r

(p q nl&~~lp~ qr, n~) 2 2 (» qr nr, lI".~~lp q n)IPo).
p~
2@~ 2v~

(3.5)

E = K+m +M —M&, (3.6)

K being the kinetic energy of the incoming 7t. plus the
binding energy of the target, and the last three terms
are, respectively, the masses of the a, N, and L. In
particular,

In Eq. (3.5), the plane-wave states with the sub-
script "4" indicate the intermediate state with the iso-
bar propagation. In particular, p& and q& are, respec-
tively, the Jacobi momenta for the two-cluster partition
(2~3N) —(1N) [Fig. 2(c)]. With V~~ we have denoted
the NN ~ NL transition potential, and with E+~& the
m'Nb, vertex. The denominator in Eq; (3.5) refers to the
intermediate propagation of the isobar, with

i 2f*h M= M~ —-r~ = 1232 Mev ——
22 2 34vrmz ~s'

(3.7)

where f* is the vrNA coupling constant, Ii is the relative
mN momentum, and ~s is the total nN center-of-mass
energy. Here, we have employed the expression for the L
width given by the relativistically improved isobar model
[22, 23]. This model provides a significant quantitative
improvement with respect to the static ¹isobar model,
to which most of the earlier works referred [18—20]. The
quantities p~ and v~ are the reduced masses for the sys-
tems b;N and N (b,N), respectively. -As evidenced in

Eq. (3.5), the matrix elements of Ai involve momentum



1566 LUCIANO CANTON, J. P. SVENNE, AND GIORGIO CATTAPAN 48

integrations over three distinct factors.
It must be observed that, from previous analyses of

the 7rd system (see Ref. [3], Chap. 6), the use of the 6-
rescattering mechanism in the form presently discussed
[Eq. (3.5)] is not completely satisfactory. The limi-
tation of applicability arises for two reasons: (i) The
NN +—AN transition is described in first-order pertur-
bation theory. To overcome this, the transition potential
V~~ should be replaced by a true NN ~ LN transition
matrix T~~, taking into account the AN rescatterings
to all orders. In this case, however, the NN +—NN and
NN +—AN transitions have to be handled consistently
through isobar-coupled equations. Clearly, this has im-
plications also for the Faddeev-based treatment of the
final-state dynamics. (ii) The model is not unitary: it
does not couple the absorption channel to all the avail-
able vrNNN-NNN channels. Moreover, the use of first-
order perturbation in the NN m LN transition, and of
a complex 4 mass in Eq. (3.7), breaks unitarity.

The above limitations could be completely overcome
only through a consistent four-body treatment of the
vrNNN-NNN dynamics. As already observed in the In-
troduction, the computational problems brought about
by a fully consistent theory are presently unsurmount-
able. With reference to this point, an approach recently
proposed by Ueda [24] is worthy of mention in that it pre-
serves unitarity up to the three-body level, and allows for
a nonperturbative treatment of the LN-NN dynamics.
The relativistic four-body problem is described within

I

the multibody, three-, and two-body cluster coupling ap-
proximation, through an explicit treatment of the cou-
plings among the vrdN, NNL, NNN, and dN channels.
Each subsystem interacts via two-body separable inter-
actions; the three-body channels vrdN, NNA, and NNN
are coupled by separable der-NL-NN transition matri-
ces, while the channels vrdN, NNN, and dN are con-
nected through the rearrangement processes N ~ vrN
and d ~ NN. This model, which requires the fi.tting of
various adjustable parameters, represents a computation-
ally workable approach to the non-perturbative aspects
of the vrNNN-NNN dynamics. Numerical results for
the vr He +—pd reaction give indications that in certain
partial waves the inclusion of higher-order processes is
important.

f. Matrix elements of the m1VA vertex

We proceed by calculating first its matrix elements be-
tween three-dimensional plane waves. In so doing, the
interpretation discussed in Ref. [25] is here assumed.
Namely, the vertex depends intrinsically upon the mo-
mentum of relative pion-nucleon motion, h, . This is
somehow diferent from the field-theoretic description,
where the absorbing nucleon is static, and the pion mo-
mentum intervenes in the coupling vertex. The two de-
scriptions are coincident only in the pion-nucleon c.m.
system. The coupling vertex between full plane waves is

(p&, q~, n&)I+&&~p, q, n))Po) = ) (p&, q&, n&)F+~&~hs, hi, h, P)(hs, hi, h, Pip, q, n)(Po)dhsdhidh

(3.8)

where we have inserted a completeness relation for the 7rNNN space with the Jacobi scheme shown in Fig. 2(a).
The last matrix element requests the transformation between two sets of four-body variables. In the Appendix, we
introduce and discuss an approximated kinematical transformation which yields

(3 9)

In Eq. (3.8) the matrix element of the coupling vertex is

(p»q& n&I++a&lhs hi h p) = ~(p&+hs)~(q& hi)T- p(h ). (3.10)

With the detailed expression of X &(h ) given in the Appendix, the embedding of the coupling vertex in the 3N
space yields

r 3M+ m.
(p~ q~ n~l+.'~~lp q n)IPo) = &=.=(h-)~

I p~ —p-
6M+3m ) ( 3Po I~I q~-q+-Po /. (3.11)

We now derive the coupling vertex between angular-decomposed three-body plane waves. For simplicity, instead of
working with states in the jI-coupling scheme, we consider here angular-spin uncoupled partial waves, and. the details
of the transformation to the jI scheme are found in the Appendix.

For angular-spin uncoupled states, the vrNL coupling vertex is written as follows:

(p~ ~~ (I~ &r )L~ L~ n~lI".+m~lp ~ (~ &)L L' n)IPo)

- (h )I(Po, (l~, A~) L~, L~; (I, A)L, L')

r 3M+ m
xbi p~ —p- Po /8

/ q~ —q+ —Po
il 6M+ 3m ) 3 )

(3.12)
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In Eq. (3.12) we have denoted by I the integral over the 4(x2) angular variables, with the symbol P representing the
bipolar spherical harmonics [17,26]. Once g is represented in terms of the regular spherical harmonics, the eightfold
integral factorizes into two angular integrals involving only p-type or q-type momenta, respectively,

I(P, (l, A )L,L;(l, A)L, L ) = ) ) C(lAL, mnL )C(l A L, m n L')
mA mgfl+

x dP dPS
~

pg —p —
o ~

Yj* (Pg) Yj (P)6M+ 3m

x dQ~dQb
~

q~ —q+ —Po
~

Y„* „(Q~)Yg„(Q). (3.13)

We stress the importance of the approximated kinematical transformations, Eqs. (A8) —(Alo). It is because of such
an approximation, indeed, that (a) the factorization shown in Eq. (3.12) occurs, where the first factor X depends only
upon the initial momentum of the pion, and (b), the remaining eightfold integral I can be calculated through Eq.
(3.13), where it is expressed as a product of two separate and similar fourfold angular integrals which can be performed
analytically. To this end, we choose the azimuthal axis parallel to Po, and we separate the spherical harmonics in

~imP
Yi (~ 0) = 8t (cos8) 2~'

where the function 8~ (coso) is proportional to the associated Legendre function.
The result is

(3.14)

I(Po, (l&, A&)L&, L&', (l, A)L, L') = ) ) C(lAL, mnL )C(l&A&L&, m&n&L&)
mA mQ AQ

( 3M+mxTi p~, p,' 6M + 3m
PG

i
8L (cosPE)8L (cosP)b

1
x T

~ q~, q, Po
~
8g „— (cosQ~) 8p„(cosQ) b„ (3.i5)

where the angular variables can be expressed through Pythagora's generalized theorem ("laud of cosines")

t' 3M+m.
cosP~ =

i
Ps

i +p~ pg6M+ 3m )
6M+ 3m„

2(3M+ m )Po p~
(3.i6)

2( 3M+m
6M+3m

6M+ 3m
2(3M+ m )Po p

(3.17)

t'1
cosQ~ = q —q~ —

i

—Po ) 2Po q~
(3.18)

2Po q

fi
cosQ = q —q& +

~

Po—
)

(3.19)

In Eq. (3.15), the triangular function T has been introduced. It may be defined as

T(a, b, c) —=
H(a —

~b
—c~)H(b+ c —a)

abc
(3.20)

with H(x) being the Heaviside function.
A very important case to be discussed separately is the evaluation of the integrals displayed in Eq. (3.13) in the limit

p « Po (q « Po ). This corresponds to neglecting the pair (spectator) momentum with respect to the incoming pion
momentum when dealing with the intermediate isobar propagation. Then, the first integral in Eq. (3.13) becomes

dP&dPb
~
pa —p — Po

~
Yj (P~)Yi~(P)6M+ 3m ')

6M+ 3m,= v28( o(cosP~ = 1) 2 b)ob~ob~~o, (3.21)
I ~
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and the second integral is

~(~~ —-Po )
dQ~dQb(q~ —q+ sPo)Y&* (Qz )Yq, (Q) = ~2Oq o(cosQ~ ——1) $qoh

g~
(3.22)

This, together with the discussion in the Appendix
for the transformation to the jI-coupling scheme, com-
pletes the evaluation of the matrix elements of the vrNL-
coupling vertex.

2. Weatment of the intermediate A propagation

In particular, we focus here on the inclusion of rela-
tivistic kinematical corrections for the pion. Returning to
expression (3.5), by virtue of the two triangular functions

I

in Eq. (3.15), the integration intervals in the p and q vari-
ables are, respectively [lp —sM+~s Po l, p+ s~+s Po ]
and [lq —

s Po l, q+ sPo ]. By means of a suitable change
of variables, in the exact expression (3.5) the singularities
due to the triangular functions can be integrated over, so
as to make numerical evaluation feasible. However, the
integration is totally eliminated in the limits p (( P0 and
q « Po, because of the presence of the b's in Eqs. (3.21)
and (3.22). For simplicity, we discuss this situation only.
In such a case, instead of Eq. (3.5), we have

(p' ~' ~'l&~lp ~ ~)IPo) = ):(»' v' ~'l&~~lp~ ~~ ~~) P~Q~

I~
2p~

, (p~ ~~ ~~II".+w&lp g ~) l&o)
g~

2v~

(3.23)

with

M+
6M+ 3m

(3.24) —B —M~, (3.29)

the denominator in Eq. (3.23) as follows:

h2
E —~~ — ~ =m +M+

2@~ 2v~

1
q~ ———P0 .

3
(3.25)

We note that, because of the one-body character of the
coupling vertex, it follows that

-2= 2 2= 2
P~ ——h3, q~ ——61. (3.26)

We may investigate to which extent the denominator
in Eq. (3.23) can be approximated in the following way:

where we have indicated with —B the trinucleon binding
energy.

On the right-hand side of Eq. (3.29), the first three
terms correspond to the fully nonrelativistic reduction of
the invariant mass ~s of the 7rN pair, evaluated in its
c.m. system. Therefore, the relativistic denominator for
the intermediate A propagation is (neglecting the binding
energy)

62I + 'V+ @ 3

2@~ 2v~ 2@3

621

2V1
(3.27)

with

(3.30)

P 62 h2 h,0 vr + 3 + 1

2p~ 2v~ 2p3 2v1
' (3.28)

p and v being, respectively, the reduced masses of the
systems vr (NNN) and vr N. T-his identity is -exactly ver-
ified also with the approximate transformation discussed
in the Appendix [Eqs. (A8) and (A9)].

By virtue of Eqs. (3.6), (3.27), and (3.28), we can vrrite

the only difference being in the expression of the reduced
masses. Here, p~ (v&) is the reduced mass of the system

N[(AN)-N], -while ps (vq) is the reduced mass of the
system (7rN) N[(nNN) N-]. -

If we take the bare pion's rest mass value in the ex-
pressions for the reduced masses, p3 underestimates p~
by 5%, and vq underestimates v~ by 2% . How-

ever, a remarkably better agreement is obtained around
the isobar resonance when minimal relativistic correc-
tions are introduced for the reduced masses p3, v1, such
as the replacement of the pion rest mass m with u
/hz + m2. This correction is obtained when performing
a nonrelativistic reduction of the three-body relativistic
kinematics [27].

When p, g 0, the following identity holds:

v s = gm' + h' + gM' + h2. (3.31)

In the context of pionic disintegration of deuterons, this
relativistic form (3.30) has been already used by several
authors [18—20].

8. Treatment of the NN ~ BN transition potential

The treatment of the NN ~ LN transition is the
highly nontrivial problem in the Aq mechanism. Within
the pionic disintegration of deuterons, this question has
been carefully analyzed by Tanabe and Ohta [28]. In-
deed, various approaches with different levels of so-
phistication have been developed for the description of
the NN f AN inelasticities (per—turbative methods,
coupled-channel methods, unitary three-body methods;
for their references see [3]).

Of course, the embedding of the NN ~ AN tran-
sition in a three-nucleon framework makes these treat-
ments a much more difBcult task and, therefore, we con-
sider here only the perturbative-type approach because
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of its greater simplicity. Following this approach, the
NN E—LN process is described by a transition potential
VN~ originated by the exchange of one or two pions. Be-
cause of isospin conservation, the exchanged boson has to
be of isovector nature; thus, the two-pion exchange must
have the spin-isospin structure of a p meson. Therefore,
we have

VNA +NB + VN& (3.32)

We recall that, following our definition of Ai, the iso-
bar excitation may occur only in particle 2, with deex-
citation through the exchange of a meson with particle
3. The matrix elements of the NN c—AN transition
potential, when embedded in a three-baryon space, are

I

(p g o' l+ivA lp~ g~ ~~) 2 'O'A ~I'I 4' j ~I'*I* ~T'T ~T *T (p', ~'s'j ', t'l Viv& lp&, lzs&j &, t&) . (3.33)I

In the meson-exchange &amework, the detailed ma-
trix elements for the static transition potential have been
given in the literature a long time ago [29,30]. In connec-
tion with the "perturbative" A-rescattering mechanisms,
this transition potential has been discussed also by other
authors [18—20, 22, 31].

In the spirit of the perturbative approach, the distor-
tions in the Anal state are calculated using conventional
nucleon-nucleon interactions (extrapolated up to the E
resonance region) and nucleonic degrees of freedom only.
These distortions are fully described by Eqs. (2.15) and
(2.16). With respect to this point, we note that a pos-
sible double counting problem may arise if we consider
the higher-order process consisting of the NN ~ LN
transition via the pion term, plus a further one-pion ex-
change between the same two nucleons in the Anal state.
In such a case, the whole process actually involves the ex-
change of two pions, and has therefore to be subtracted
&om V&N. In the context of the reaction pp ~ m+d, this
problem has been discussed by Maxwell et al. [19],where
it has been shown that the cross section may change by
20%%uo at the resonance peak, depending on the possible

I

di8'erent ways of subtraction.
From another point of view, the NN ~ LN transition

is not well determined because it requires the highly oK-
shell extrapolation of the DNA vertex [2]. This implies
the introduction of cutoK form factors which in the per-
turbative approach are generally adjusted to reproduce
the (pion-deuteron) absorption cross sections. Of course,
when the same approach is applied to pion- He, the cut-
ofFs must be consistent with the ones obtained from the
deuteron problem.

B. Other matrix elements

The other matrix elements one needs to evaluate for
the calculation of the amplitudes (2.18)—(2.24) are in
principle conventional three-body constituents. These in-
volve matrix elements of the following operators: 1, Go,
T, P, and [through Eq. (2.17)] 7 .

The detailed expressions for these quantities can be
found in many references (e.g, Refs. [17,32]). In partic-
ular,

~(v- v') ~(» -»')
(p, v, ~ lp', v', ~') = ~-

P
) (3.34)

and

(p ~ AMIGO(@)lp' ~' ~') = ~- ~(~ —~') ~(p - p') 1
p2 g2E ————
2p 2P

(3.35)

(p, q, o'IT(E)lp q o ) = 4I, 'hI 4I &I.z'. &TT &T.T * p, tsj, t T
l

& ——
l p, l s j, t~(Q —0')

») (3.36)

The matrix elements of the permutation operator P are, by far, more complicated compared to the previous ones,
since they contain all the intricacies inherent to the recouplings of linear momenta corresponding to three particles.
For brevity, their expressions will not be given here but we refer instead to the specialized literature [32].

In the final state, the matrix element between three-dimensional and angular decomposed 3N plane waves is also
required. For the jI-coupling scheme, we have

~(Pf —P) ~(e —&)
(Pf 'qf o'-flp, e, o') = ~t,, t,~T T~T *T'~

P
sf j'

x ) &ILSf &
& 2 & ) C(LSfJ, I,=SfJ ) p&& (pf, qf) (3.37)

L L Sf J

with j = /2j + l.
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IV. SUMMARY

This work has carried the theory of paper I forward to
include full antisymmetrization and angular-momentum
decomposition. The absorption amplitude, Eqs. (2.1)
and (2.2) of I [Eq. (2.7) here], is fully antisymmetrized
in the nucleon variables in Sec. II, leading to the results
given in Eqs. (2.18)—(2.24). Angular-momentum decom-
position of the various components of this amplitude is
carried out in Sec. III, with the essential results given by
Eqs. (3.5), (3.12), (3.15), (All), and (A13). The angular-
momentum reduction is a rather hybrid procedure, in
that it is possible, and indeed convenient, to treat the
momentum vector of the incoming pion as a vector vari-
able. That is, the angular-momentum reduction is only
done on the nucleon variables. However, the full com-
plexity of the three-body system, antisymmetrized in the
nucleonic degrees of freedom, is completely taken into ac-
count. The resulting system of equations are in a form
suitable for numerical computations. What is needed is
selection of suitable three-body wave functions and the
parameters in the pion absorption vertex [Eq. (A12)], and
the transition potential V~~ [Eq. (3.33)]. Then the prob-
lem can be solved with a choice of efficient algorithms for
computation.

Since it is anticipated that the dominant pion-
absorption mechanism in the energy region around the
delta resonance is the two-body delta-rescattering term
(Fig. 1), this work has taken only that term into ac-
count. However, it is straightfoward to include other ab-
sorption mechanisms such as those represented by Figs.
1(b) (the Koltun-Reitan term, Ref. [33]) and 1(c) (one-
body absorption without intermediate delta propagation)
of I. Because of the antisymmetrization, any of the three
nucleons can be involved in the absorption mechanism.
True three-body absorption which cannot be described
by a two-body mechanism preceded (followed) by (purely
nucleonic) ISI (FSI) is not discussed in the present pa-
per, although it can be accomodated within this for-
malism via the proper redefinition of the operator Ai.
With respect to this point, an accurate calculation of
FSI (ISI) preceded (followed) by two- or one-body ab-
sorption mechanisms would be extremely important be-
cause it could shed some light on the extent to which true
three-body absorption is indeed needed to explain multi-
nucleon absorption processes. As mentioned in the Intro-
duction, there is experimental evidence that as much as
30% of the total absorption cross section is attributable
to mechanisms involving all three nucleons, and it is of
fundamental importance to assess which fraction has to
be ascribed to true three-body absorption.

Much of the previous theoretical work in pion absorp-
tion on light nuclei does not go beyond the spectator
model. In this approximation the pioneering work by
Maxwell and Cheung [31] has been carried further on
with more sophisticated and modern treatments of the
NN ~ LN inelasticities, which nowadays can be de-
scribed more precisely, e.g. , with the coupled-channel
model by Niskanen [34]. It is worth mentioning, here, a
particularly sophisticated version of the spectator model,
which resorts to the unitary treatment of the vrNN-NL
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APPENDIX

1. Kinemat ical transformations

The calculation of the matrix elements of Ai requires
the transformation between two sets of four-body kine-
matical variables. Denoting by K» K» K, and K the
momenta of the four particles in the Laboratory system,
the two sets of (nonrelativistic) Jacobi momenta are

= 2(K2 —Ks), (A1)

q = —,
' (2K, —(K,'+ K,')), (A2)

3MK~ —m (K~i + K2~ + Ks~)

3M+ m

and

h = (MK —m K2),M+m (A4)

hs —— ((M + m„)Ks —M(K + K2))

(A5)

(2M+ m )Ki —M(K + K2 + Ks)
3M+ m.

Since in the laboratory system it is K& + K2 + K& ——0,
the pion momentum in the c.m system is simply

3MK+
3M+ m

If in Eqs. (A4) and (A6) we neglect terms of the type
(m, /M)K and higher orders in (m /M), where the

system in the framework of the three-body Argonne-
Hannover model [9]. The spectator model, however, re-
stricts the dynamical description of the absorption pro-
cess to two nucleons only, and consequently limits dras-
tically the kinematical regions for the ejected nucleons.
On the contrary, there is a wealth of experimental data
entirely covering the available phase space, which has not
yet been tackled theoretically. This requires theoretical
work with Faddeev-based treatments of the three-nucleon
dynamics [35], along the lines described in the present
paper.
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momenta K refer to the nucleon coordinates only, we
obtain the following transformation:

tA'e stress the fact that this transformation does not in-
volve approximations on the pion momentum K

3M+ m,
b Po,

3M+ m,
h3 —p — Po,

1
hg q ——Po.

3

(AS)

(A9)

(A10)

2. Expression for X i- (-h )

The detailed expression for j- -I (h ), where a, n' de-
note, respectively, the spin-isospin quantum number for
the (1~2&3~) and (1~2~3~) systems, are given as fol-
lows:

-- ( ) = ) ) ) ) ) ) C(s2Ss'+AS')C(2 2s~2~ss')C(s'2S', s"ofS")
&r &I z 7-z &r 7-z &I r gz gg z

1 3 2 2 1 3

x C(2 —s', o''zoss' )C(t T, t'r—j'T')C(z t, mrs—t')C(t' T', t' —AT' )C( — t', r'z—rat")

x C(lz 2, t 7'272) )'C(12 2, mo. '2cr2)[Yj~(h~)]* f(h~)

( )3++ +S+f+t+T4 sftr (
+ +

) (
2 2

) ( ) (
2 2)

x ) C(1S'S,mS' S ) [Yj (h )]* C(1T'T, t T' T )f (h )
m

(A11)

The functional dependence of f (h ) is

f(h )=
(2vr) 3 m Q2cu (h )

(A12)

where the standard choice for the vrNA coupling constant f* is derived from the Chew-Low model, f = 2f (f is the
vrNN empirical coupling constant). Alternative choices including relativistic descriptions have been discussed in the
literature [19].

3. Matrix elements of the coupling vertex in the jI-coupling scheme

The vrXL vertex in the jI-coupling scheme is derived from the matrix elements for the uncoup/ed scheme, Eq.
(3.12). The result is

' l~ s~
jIIgj&i&I &g& P

&
I ~ ~ 1

L S J I~ s

j~

J~,
x ) ) C(LSJ, L'S' J') C(L~Sr, Jr„L~S~J~)

L S L S~

xI(Po, (lz, Az)Lz, Lz, (l, A)L, L')P- - (h ) (A13)

[1] G. Cantale, P. Bach, S. Degli-Agosti, Ph. Demierre, R.
Hess, C. Lechanoine-Leluc, W.R. Leo, Y. Onel, Ph. Sor-
mani, D. Rapin, P.Y. Rascher, and S. Jaccard, Helv.
Phys. Acta 60, 390 (1987); W. Grein, A. Konig, P. Kroll,
M.P. Lochner, and A. Svarc, Ann. Phys. (N.Y.) 153, 301
(1984); A. Feltnam, R.P. Trelle, G. Jones, D. Gill, D.
Healey, G.3. Lolos, E.L. Mathie, R. Olszewski, D. Ot-
tewell, Z. Papandreou, M. Pavan, R. Rui, M. Sevior,
G.R. Smith, V. Sossi, G. Wait, P. Walden, and P. We-
ber, Phys. Rev. Lett. 66, 2573 (1991);see also references
cited in Chap. 6 of Ref. [3].

[2] B. Blankleider, Proceedings of the XIII International
IUPAP Conference on Few Body Problems -in Physics,
Adelaide, South Australia (North-Holland, Amsterdam,
1992); Nucl. Phys. A543, 163c (1992), and references
contained therein.

[3] H. Garcilazo and T. Mizutani, mNN Systems (World Sci-
entific, Singapore, 1990).

[4] Information on the short-range nuclear correlations have
been recently extracted from the (inverse) reaction
ppvr ~ pp near threshold: T.-S.H. Lee and D.O. Riska,
Phys. Rev. Lett. 70, 2237 (1993); C.J. Horowitz, H.O.



1572 LUCIANO CANTON, J. P. SVENNE, AND GIORGIO CATTAPAN

[5]

[6]

[71

[8]

[9]

[io]

[11]

[i2]

[13]

[14]

Meyer, and D.K. Griegel, "Role of heavy-meson exchange
in pion production near threshold, " IUNCT Report No.
93-07, 1993.
S. MayTal-Beck, J. Aleander, A. Altman, D. Ashery, H.
Hahn, M.A. Moinester, A. Rahav, A. Feltman, G. Jones,
M. Pavan, M. Sevior, D. Hutcheon, D. Ottewell, G.R.
Smith, and J.A. Niskanen, Phys. Rev. Lett. 68, 3012
(1992).
A similar observation was made in 1984 for the reaction
Li(rr+, pp) He. See L.Ya. Glozman, V.I. Kukulin, and

V.G. Neudatchin, Nucl. Phys. A430, 589 (1984).
H.J. Weyer, Phys. Rep. 195, 295 (1990).
R.R. Silbar and E. Piasetzky, Phys. Rev. C 29, 1116
(1984).
K. Ohta, M. Thies, and T.-S.H. Lee, Ann. Phys. 163,
420 (1985).
G. Backenstoss, M. Izycki, M. Steinacher, P. Weber, H.J.
Weyer, K. Von Weymarn, S. Cierjacks, S. Ljungfelt, U.
Mankin, T. Petkovic, G. Schmidt, H. Ullrich, and M.
Furic, Phys. Lett. 137K, 329 (1984).
P. Weber, G. Backenstoss, M. Izycki, R.J. Powers, P.
Salvisberg, M. Steinacher, H.J. Weyer, S. Cierjacks, A.
Hoffart, B. Rzehorz, H. Ullrich, D. Bosnar, M. Furic,
T. Petkovic, and N. Simicevic, Nucl. Phys. A534, 541
(1991).
P. Salvisberg, G. Backenstoss, H. Krause, R.J. Powers,
M. Steinacher, H.J. Weyer, M. Wildi, A. Hoffart, B.Rze-
horz, H. Ullrich, D. Bosnar, M. Furic, T. Petkovic, N.
Simicevic, H. Zemskal, A. Janett, and R.H. Sherman,
Paul Scherrer Institut Report No. PSI-PR-92-10, 1992.
R.D. Ransome, V.R. Cupps, S. Dawson, R.W. Ferger-
son, A. Green, C.L. Morris, J.A. McGill, J.R. Comfort,
B.G. Ritchie, J.R. Tinsley, J.D. Zurnbro, R.A. Loveman,
P.C. Gugelot, D.L. Watson, and C. Fred Moore, Phys.
Rev. C 42, 1500 (1990); C.L. Morris and R.D. Ransome,
"Progress at LAMPF, " Report No. LA-12256-PR, UC-
410, 1992, p. 17.
For a recent discussion on the isospin structure of multi-
nucleon pion absorption in light nuclei we refer to A.
Mateos and N. Simicevic, Phys. Rev. C 47, R1842 (1993).

[15]

[16]

[is]

[19]

[2o]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
[2s]
[29]

[3o]

[31]

[32]

[33]

[34]

[35]

G. Cattapan and L. Canton, Phys. Rev. C 44, 1784
(1991).
Y. Avishai and T. Mizutani, Nucl. Phys. A393, 429
(1983).
W. Glockle, The Quantum Mechanical Feur Bod-y Prob
lem (Springer, Berlin, 1983).
M. Brack, D.O. Riska, and W. Weise, Nucl. Phys. A287,
425 (1977).
O.V. Maxwell, W. Weise, and M. Brack, Nucl. Phys.
A348, 388 (1980).
K. Shimiuzu, A. Faessler, and H. Muther, Nucl. Phys.
A343, 468 (1980).
E. van Meijgaard and J.A. Tjon, Phys. Rev. C 45, 1463
(1992).
T. Ericson and W. Weise, Pions and 1Vuclei (Clarendon,
Oxford, 1988).
E. Oset, H. Toki, and W. Weise, Phys. Rep. 83, 282
(1982).
T. Ueda, Nucl. Phys. A505, 610 (1989).
K. Dreissigacker, S. Furui, Ch. Hajduck, P.U. Sauer, and
R. Machleidt, Nucl. Phys. A375, 334 (1982).
D.M. Brink and G.R. Satchler, Angular Momentum
(Clarendon, Oxford, 1962).
D.R. Giebink, Phys. Rev. C 32, 502 (1985).
H. Tanabe and K. Ohta, Phys. Rev. C 3B, 2495 (1987).
H. Sugawara and F. von Hippel, Phys. Rev. 172, 1764
(1968).
M. Gari, G. Niephaus, and B. Sommer, Phys. Rev. C 23,
504 (1981).
O.V. Maxwell and C.Y. Cheung, Nucl. Phys. A454, 606
(1986).
A. Stadler, W. Glockle, and P.U. Sauer, Phys. Rev. C
44, 2319 (1991).
D.S. Koltun and A.S. Reitan, Phys. Rev. 141, 1413
(1966).
J.A. Niskanen, Phys. Rev. C 43, 36 (1991); J.A. Niska-
nen, L. Swift, and A.W. Thomas, ibid. 40, 2420 (1989).
This point has been recently recognized in the literature.
See, e.g. , Refs. [5, 11].


