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We investigate the behavior of the operator responsible for sequential pion double charge exchange
in nuclei in the plane wave limit with a view to studying its extension in space, especially the short-
range part.
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I. INTRODUCTION

Pion double charge exchange (DCX) offers one of
the most promising possibilities for studying correlations
among nucleons in nuclei because it requires at least two
interactions for the process to take place. A number of
studies [1—3] have demonstrated that the reaction is in-
deed sensitive to nucleon-nucleon correlations. This sen-
sitivity is a direct reflection of the structure of the DCX
operator itself. Over the years several mechanisms which
contribute to pion DCX have been investigated. These
include pion charge exchange with virtual nuclear mesons
[5], the delta rescattering mechanism [4], and the pion ab-
sorption mechanism [6]. In this paper we consider only
the sequential operator, which is always present, and do
not treat these other mechanisms which may also be im-
portant in certain cases. By the sequential mechanism
we mean that the reaction proceeds through two succes-
sive single mN charge-exchange interactions. The DCX
operator is (at least) a two-body operator in the nucleon
coordinates and hence is moderately complicated. It is
the aim of this paper to seek a qualitative understanding
of the sequential DCX operator It is not .our purpose
to provide state-of-the-art calculations of specific DCX
cross sections suitable to be compared with experimen-
tal data. Such calculations have already been performed
(and continue to be done), with varying degrees of suc-
cess; see the references already cited. It is our hope that
some of the results of this paper will influence future cal-
culations in this area.

There are several reasons for studying the DCX (or
more generally the double scattering) operator. These
topics are explored in more depth in this paper.

(1) The range of the operator is not well known.
(2) DCX is very sensitive to the correlation stucture of

the nuclear wave functions. Although implicit in many
specific calculations, the explicit form of the DCX opera-
tor, including processes in which both nucleons flip their
spins, has not, to our knowledge, been given. The cal-
culation is normally done by performing the integrations
over the nuclear wave functions first (it is indeed a good
deal more efficient) and then doing the integration over
the intermediate momentum of the neutral pion. The

operators are particularly simple for forward DCX. They
are given by Eqs. (22) and (23) for nonflip DCX and by
Eqs. (27) and (28) for the double-Aip DCX. We believe
that these forms will be useful for those who want to see
how sensitive DCX is to particular nuclear models.

(3) It has been observed in both distorted wave and
plane wave calculations that for incident pion energies
below 200 MeV the introduction of the double-spin-flip
amplitude decreases the cross section. This reduction
seems to be present independent of the distortion (and
some other factors, such as nuclear size). Because of
the resilience of the destructive-interference eB'ect, it is
natural to suspect that the cancellation is inherent in
the DCX operator itself. Thus, in order to obtain some
understanding of this cancellation a simple model can be
examined. We will see in Sec. III that this cancellation
should indeed be expected.

(4) The plane-wave DCX operator resembles the one-
pion-exchange potential since the dominant (or only)
coupling to the nucleon is p wave in nature. In both op-
erators there is a b function present in the relative spatial
coordinate in the limit of zero-range form factors. The
question regarding the removal from the DCX operator
is no doubt similar to that of the case of the nucleon-
nucleon potential. However, for pion double charge ex-
change the possibility of a test by the direct measurement
of cross sections exists, giving an alternative to inferences
from nucleon-nucleon scattering.

(5) By looking at the double-scattering operator in
general we will see that, because of the low-lying A33
resonance, classical pion propagation in the nucleus is
subject to possible very large corrections. This obser-
vation brings into question intranuclear cascade calcula-
tions frequently used to calculate inclusive reactions, but
also suggests a possible technique for correcting them.

We concentrate here primarily on the reaction which
takes place on two active neutrons external to an inert
core. If their angular momentum is nonzero, they may
be coupled to other external neutrons (as in the case of
the calcium isotopes) to form a spin-zero ground state.

From somewhat indirect arguments it has been inferred
[7, 8] that the principal internucleon spacing being sam-
pled is the order of 1 fm. This range is determined by
the following three elements.
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(1) The intrinsic coordinate dependence of the DCX
operator, F, itself: This operator, which is the focus of
this paper, is an intricate function of the coordinates of
the active nucleons.

(2) The nuclear wave function or two-body density
matrix: The correlations, even in a simple shell model,
strongly acct the number of close neutron pairs, and so
greatly influence the DCX cross section. The DCX cross
section is obtained, in the impulse approximation, by in-
tegrating F over the nuclear wave function. Our aim is
to provide a convenient form for F which the reader may
then evaluate their own nuclear wave functions.

(3) The pion-nuclear optical potential: The pion wave
function is distorted by the nuclear medium. For ex-
ample, the absorptive nature of the potential tends to
suppress DCX for configurations in which the nucleons
are widely spaced; conversely, a pion-nucleus resonance
in the optical potential might enhance DCX from widely
spaced pairs.

A completely clean description of F independent of the
nuclear wave function and the optical distortions is not
possible. In order to make some progress in this direc-
tion we invoke two approximations. First, we adopt the
closure approximation on the nuclear intermediate wave
function so that F becomes a local function of the nucleon
coord. inates. This approximation could be improved by
applying binding corrections to the active nucleons. Sec-
ond, within the sequential mechanism, we will ignore the
optical distortion of the intermediate vr meson. This is,
unfortunately, only a rough approximation, although it
may be partially softened by a choice of the effective en-
ergy of a . Although our results are strictly valid only
within the plane-wave impulse approximation (PWIA),
optical distortions of the incident a+ and outgoing vr

may in principle be included by (a) replacing the expo-
nential factor in front of Eq. (3) by the overlap of the

incident and outgoing pionic (distorted) wave functions
and (b) treating the initial and anal pion momenta, k
and k', as derivative operators on the incoming and out-
going pion distorted waves, respectively. Consequently,
certain aspects of our results hold in the distorted-wave
case. The advantage of our approach is that the opera-
tor F (which is F with the external pion waves removed)
is then a function of the relative coordinates of the two
neutrons rather than of the coordinates of both neutrons.
Consequently, we will be able to express the results in
terms of a single central function and its derivatives.

In this way one can explictly examine certain features
of the problem, such as the vanishing of the "long-range
term" for the two nucleons aligned. along the z axis at
the same energy that the 0 single charge exchange cross
section has a deep minimum or that the "double-spin-
flip" part of the amplitude is of "near-zone" character,
i.e. , gives no contribution to the amplitude at long range.
Because the farther the intermediate m travels, the more
its propagation is affected by the nuclear medium, we
expect that the model is more reliable for DCX from close
neutron pairs. The longer-range results might be also
expected to be relevant, at least qualitatively, at low pion
energies, for which the nucleus is relatively transparent.

Although the emphasis in this paper is on the DCX
process, the same general formulas will also apply to any
double-scattering process of a spin-0 particle on a pair of
nucleons for which the 8- and p-wave elementary ampli-
tudes dominate.

II. GENERAL FORMULATION

The sequential (double-scattering) operator for the
pion double-charge-exchange amplitude in the plane wave
limit and assuming closure over the intermediate nuclear
states is

I 1
F(k, k'; rq, rq) =

2772

e ik'.
ref

—
(q kI)eig (r2 —rq) f (k q)eik. r~

dq —K —Ze

e —'(k'-~2 —k.r, ) f (q, k') e*&'f (k, q)
27r 2 dg —K —zE'

e *~" '* "'"lF(k k' r)

The DCX operator is a function of the coordinates
rq, r2 and spin variables o'q, o'2 (implicit in the two sin-
gle charge exchange operators f) of the two nucleons.
F is the lowest-order two-nucleon DCX operator, and
since it changes two neutrons (protons) into two protons
(neutrons), it represents the isotensor part of the general
two-nucleon operator. Here r (—:rq —rq) is the radial
vector between the two nucleons. It is precisely the de-
pendence of F on this variable which is of interest. The
quantity f, the pion-nucleon charge-exchange (off-shell)
amplitude, is an operator in the nucleon spin space. We
shall use the form

f(q, q', E) = Ap(E)v(q)v(q') + Aq(E)v(q)v(q')q q

+2 Ay (E)v(q) v (q') cr . q x q', (4)

where the Ao, A q, and A f are taken from the phase shifts
[9] (see Table I) and v(q) is the off-shell form factor for
the pion-nucleon interaction. While many of the results
which follow are independent of the particular choice of
v(q), a form must be chosen when calculations are made.
In these cases we will use
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TABLE I. Table of A's calculated from the phase shifts of Ref. [9].

Tj b (MeV)

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

P, (MeV/c)

66.3
95.3

118.6
138.9
157.3
174.4
190.5
205.7
220.3
234.3
247.8
260.9
273.6
285.9
297.9

A()

Real
-0.187
-0.185
-0.184
-0.183
-0.181
-0.180
-0.179
-0.177
-0.176
-0.175
-0.173
-0.172
-0.170
-0.169
-0.167

(fm)
Imag.
-0.006
-0.007
-0.007
-0.005
-0.003
0.000
0.003
0.006
0.010
0.014
0.018
0.021
0.025
0.028
0.031

Ag

Real
0.615
0.631
0.651
0.669
0.674
0.640
0.527
0.321
0.087

-0.083
-0.168
-0.195
-0.195
-0.184
-0.169

(fm')
Imag.
0.013
0.041
0.089
0.162
0.270
0.415
0.575
0.680
0.665
0.555
0.424
0.312
0.229
0.169
0.125

Ay (fm
Real

0.282
0.300
0.321
0.340
0.353
0.345
0.298
0.203
0.094
0.016

-0.020
-0.029
-0.024
-0.015
-0.005

3)
Imag.
0.007
0.021
0.045
0.081
0.134
0.206
0.285
0.337
0.329
0.275
0.210
0.155
0.116
0.088
0.070

02+ k2
v(q) =,+ .

which has a single parameter 0, to describe the range of
the pion-nucleon interaction. For the figures we use o. =
800 MeVic. k is the on-shell momentum corresponding
to the center-of-mass energy E. It is a simple matter
to use independent ranges for each pion-nucleon partial
wave, but for simplicity we have used a common range.

Since we have used the closure approximation to sum
over all intermediate nuclear states, we have introduced
the intermediate momentum K, usually taken to be the
on-shell momentum of the intermediate vr . It could also

include an e6'ective excitation of the nucleus, chosen to
improve the closure approximation. The reaction ampli-
tude is given by the matrix element of this operator taken
between the initial and Anal nuclear wave functions.

In general, all cross terms from the two occurrences of
the SCX operators and the three terms in Eq. (4) in-
terfere, but for a double-analog transition between shell-
model wave functions made up of orbitals all with the
same parity, the spin-dependent and spin-independent
terms do not interfere, i.e. , there are non-spin-Hip (NSF)
and double-spin-Bip (DSF) terms only. We shall examine
the structure of the operator for this case. Thus we have
two terms:

and

ENSF (k, k', r) = [Ao + Axq k'][Ao + Ask q]v (q)e'~'
—K

[cri k x q] [oq q x k'] v (q)e'~'
DSF r

2 q 2 22 g —K —Z6

Replacing the vector q in the amplitudes by —iV we
can write the operators in terms of the function g(r) (con-
sidered by Glauber [10]) and its derivatives:

+NsF(k, k', r) = (Ao —iAzk . V)(Ao —&Alk +)g(r)
(8)

For large r, —tV'g(r) = rrg(r) so that, for r~ik or
riik' and ski = ik'i = Ic the amplitude contains a fac-
tor Ao + Aik and hence is small at 50 MeV where the
single charge exchange is nearly zero. For short ranges
the reaction still proceeds even for r aligned along the
momenta.

For the model case [Eq. (5)]

EDsF(k, k', r) = A&(vari k x V') (crq . V' x k') g(r),

(9)

C —6
g(r) = (k2 + n~) (k'2 + n2)

2n(Ic~ + n2)

where

g(r) = dq= 1 v 2
(q) e'~'

271 g —K
(10)

In the case ski = ik'i = K we have, for small r,

g(r) ~ C, + ', C,r + ,'C,r'+-—
where

(12)
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Co — C2: —(2ik + n + 3k n)/6
(n+ ik)z

20!

Cs=(n +k) /8.
(i3)

1 I
g (r) =—g"(r) —-„g'(r).

Note that g+(r) contains a function which limits to a
3

b function, 8 e ", so that

Note that for a function v(q) with a stronger suppres-
sion for large q (such as a Gaussian) all odd coefficients
would be zero.

For ~k~ = ~k'~ = r the needed derivatives are given by

ice'k" +oe- " e'" —e- " ].
g'(r) = — ~ —(n + k )e

(i4)

or

~ikr
lim g+(r) = —k'

a —+oo r

br
lim (q' —k')g(r) =

v(q) —+1 r

(18)

2~ikr + O, 2~ —nr iA:e'r + O.e-~r—2
p2

g"(r) =—
r

~ikr
+2 r

1

2
——n(n +k)e

g+(r) —= g"(r) + -„g'(r) = &'g(r)
(eircr e —nv

) n(n2 + k2)= —k e
r 2

(16)

We note the appearance of three types of terms: (1) those
of short range (e "), (2) those of intermediate range
("near zone") (e'""/r2 and e'""/r ), and (3) those of long
range ("radiation zone") (e'"'/r). Only the short-range
terms are model dependent, the others are independent
of the explicit form of v(q). This last class of terms is
due entirely to the p-wave nature of the pion-nucleon
interaction.

Two useful combinations of these functions are

This last expression can also be obtained directly from
Eq. (10). It is often argued that the h function should not
appear in the analogous case of the one-pion-exchange
contribution to the nucleon-nucleon potential. The ex-
traction of this term in the same manner as is done in
the nucleon-nucleon problem [11]leads to the result that
g+(r) becomes simply —k g(r). While it can be argued
that the b function is as inappropriate here as in the
nucleon-nucleon case (all DCX calculations to date have
included it to our knowledge), we will restrict ourselves
to simply considering the two possibilities, i.e., with and
without its inclusion.

While each of g"(r) and g'(r)/r contain a b function,
g (r) is exactly the combination for which the h functions
cancel, in fact, g (r ) satisffes the condition

g-(o) = o.

Thus for large n, we expect that g+(r) is large and g (r)
is small for small r.

A. Spin-independent contribution

and Evaluating Eq. (8)

FNsF(k, k', r) = Aog(r) —iAOAz(k r" + k'. r)g'(r) —Az sk k' g+(r) + (k r k'. r" —sk k')g (r) (20)

'4Kr

(Ap+ Agk. ~)(Ap+ Aj~ k') (2i)

where we have set m = rr.
The classical expression for the cross section for dou-

ble charge exchange &om two nucleons is simply the
cross section for a single charge exchange on the erst
particle [o (k, m)] multiplied by the probability that an-
other charge exchange occurs on the second nucleon
a(tc, k')/r ]. This product is equal to the absolute

The last term has the same form as the "tensor opera-
tor" Sq2(r)—:oq" r" oq r" —soq . o2, so familiar in the
nucleon-nucleon problem. In fact this last term has the
same form as the one-pion-exchange potential [with re-
placement by the corresponding g+(r) and g (r)] except
the spin operators have been replaced by momenta. The
radiation (large r) limit of this expression is

square of FNsF in the radiation limit, given in Eq. (21).
Since it is the classical expression which is used in mod-
eling nuclear reactions with intranuclear cascades, it is of
interest to compare the two expressions over the range of
r of importance in the nucleus. Figure 1 shows the quan-
tum and classical cross sections for k = k', i.e., 0 and
~k~ = v as a function of the angle between the two nucle-
ons (equal to the two single-charge-exchange scattering
angles). It is seen that the agreement between the two is
very poor in the near-zone region. This potentially signif-
icant quantum correction is due largely to the properties
of the pion in the following sense: the near-zone correc-
tions arise from the p-wave nature of the interaction; if A~

were zero the expression would contain only the function
g(r), which has no near-zone components. For small r,
the near-zone corrections are particularly important, so
it is precisely the pion-nucleon interaction, with its pre-
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FIG. 1. Comparison of the classical and quantum-
mechanical double-scattering cross sections at 100 MeV. The
solid line represents the quantum-mechanical cross section
with the b function included and the dash-dotted curve the
same quantity without it. The dashed line gives the classical
expression.

—1.0
100 200

T (MeV)
300 400

FIG. 2. Non-spin-Hip and double-spin-Hip DCX operators
at T = 0 (90') as a function of energy at an internucleon
spacing of 1 fm. The solid line corresponds to the total, the
dashed line to the DSF operator, and the dash-dotted line to
the NSF operator.

cocious p-wave strength due to the 3-3 resonance, which
gives the strongest violation of the classical limit.

For O' DCX to the double analog state (k' = k) and
~= k we find B. Double-spin-flip term

PNsF(k, k, r) = ) gl. (r)PI. (x),
L=0,1,2

(22)

where z = k r" and

A2k2
go(r) = Aog(r) — ' g+(r), g, (r) = —2iAoA, kg'(r),

3

g2(r) = —2A, k g (r).

The dash-dotted line in Fig. 2 shows the non-spin-Hip
DCX operator at 2: = 0 (90 ) as a function of energy
at r = 1 fm. We have extended the plots into the res-
onance region even though the plane-wave impulse ap-
proximation is a very poor approximation in an absolute
sense, to illustrate the comparison between spin-Hip and
non8ip components. This configuration, in which the nu-
cleons are oriented perpendicular to the beam axis, pro-
vides the most important contribution to DCX for pions
of energy of approximately 50 MeV; at this energy the
single-charge-exchange cross section is nearly zero in the
forward direction.

For the NSF part of the operator the spin structure
was irrelevant but for the DSF it is necessary to assume
something about the singlet-triplet decomposition of the
two-nucleon wave function. The Appendix develops the
equations necessary to treat the general case, but here
we assume the pure singlet case for which the operator
is [see Eq. (48)]

EDsF (k k r) = ) sL, (r)PL, (x)
L=0,2

(27)

eq e2 = —(k x q) (k' x q) = —k . k'q +. (k . q)(k' q),

(24)

which in coordinate space is

k. k'V' —(k V)(k'. V).
The singlet projection of the DSF operator becomes

PDs&(k, k', r) = Af [&k k' g+(r) + ( k r" k' r"

—-'k k') g (r)].
(26)

Atk=k',
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where

so(r) = -Afk g+(r), sz(r) = sA—~k g (r). (28)

x = 1 EDsF is proportional to g+(r) —g (r) = 3g'(r)/r
which falls as 1/r .

III. PROJECTED OPERATOR

The dashed line in Fig. 2 shows the DSF operator at
x = 0 and r = 1 fm as a function of energy.

It is curious that even if x = 1 (both nucleons lined up
in the beam direction) the double-Rip term is not zero. At
first sight this seems paradoxical since each scatter would
then be in the forward direction where each single-spin-
flip amplitude vanishes. The contribution comes com-
pletely from the oK-shell and near-zone regions of PDSF.
Its contribution to the projected amplitude from x near 1
(i.e., the nucleons lined up in the beam direction) is com-
parable to the nonflip amplitude at 50 MeV. The cancel-
lation is exact (as it must be) in the far zone, since for

As pointed out in the Introduction, the DCX ampli-
tude is obtained by integrating F(k, k', rq, rz) over the
wave function of the two active neutrons. Although E is
a function of both vectors rq and r2, for forward scatter-
ing (k = k') it depends only on the relative coordinate,
r = rq —rz as can be seen from Eq. (3). The most
important component of the wave function [12] is that
in which the neutron pair is in a relative s state (and
hence in a spin-singlet state). For this case, the angular
integration over r is easily performed and leads to Q(r),
a function only of the distance between the neutrons. In
this section we will examine this function in detail:

1
&(r) = — d~e * '

([&p(r) + 'o(")]&p(~) + &~ (")&~ (~) + [»(r) + sz(r)] &z(*))—1

= jo(kr) [gp(r) + sp(r)l —'j~(kr)»(r) jz(kr) [»—(r) +»(r)]
k2 2k2= jo(k )Apg( ) ——jo(k )(Aq —2Af)g+( ) —2AoAikg'( )ji(k ) + jz(k )(Aq+ Af)g ( ). (31)

The short-range part of this operator contains a b func-
tion in the limit of large n:

2

lim Q(r) = ——(A~ — 2A)f8(r)/r
k 2

CX~ OO 3 (32)

lim Q(r) = (Ao —Aqk ) e '"" —(Ap+ A~k )

Here the explicit cancellation between the NSF and DSF
terms is evident. For L33 dominance Af ——2Aq so that
the short-range part of the operator is decreased by a
factor of 2 by the inclusion of double spin flip. Figure 3
shows the absolute value of the projected operator with
and without the inclusion of the double spin flip. It is
seen that when the DSF operator is important below 300
MeV it diminishes the sensitivity of DCX to the short-
range part of the nucleon-nucleon wave function.

It is interesting to consider the large r limit of Eq.
(31),

of the nonoscillating part of the expression is proportional
to the square of the forward single-charge-exchange oper-
ator, which is very small near 50 MeV. What remains is

2ikr
an operator proportional to, . The expectation value
of this residual operator will tend toward zero as k be-
comes large. Thus we see again that the long-range part
of the DCX amplitude is small near 50 MeV to the ex-
tent that the form factor constrains each individual single
charge exchange to take place in the forward direction.
Figure 4 shows the behavior as a function of energy of
the two coefBcients in Eq. (33) as well as that of the b

function.
Of course Eq. (33) represents only the large r limit,

and we must look at the complete expression to observe
the rest of the dependence. To this end we write the
operator as the sum of two terms, one representing the
part that oscillates at long range and another which goes
as 1/r for large r:

This limit is most useful at low energies, for which the
pion mean &ee path within the nucleus is large. The
double-spin-flip contributions do not appear, they have
canceled exactly. Also noteworthy is that the coeKcient

(34)

This can be done in a simple (nonunique) fashion by writ-
ing the Bessel functions in Eq. (31) in terms of spherical
Hankel functions:

h+ (kr) [&p(r) + so(r)] —zh~ (kr)»(r) —hz (kr) [»(r) + sz(r)]
2
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g(R, r) = Ne 4s', ~2
B3 (36)

and R' = (r'):

Q+(R) —= r'dr/'(R, r)Q+(r).
&min

Figure 5 shows the behavior of r Q+( ) th d~~r
~je projected

operator as a function of r at 200 MeV. Th lle . e oscl atory
e avior of Q and the total operator is apparent while

Q is nearly constant.
To reveal the difFerence in the "range" of the oscillatin

,~r par, the total operator has been
integrated over a Gaussian sample function with a radial
extent R by multiplying by Q (R, r), where

10

C+

10

/
i /

10 /

t,
/

, /

10
l

I i l

'I 'I l

103 l: l l

0 i00 200 300
T „,(MeV)
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Figure 6 shows the absolute integrated operator for FIG. 4. ehavior as a function of energy of the two
coefficients in Eq. (33) as well as that of the b fu
C+=iAskA k

a o e unction.

.2

300 MeV
r~;„= 1 fm at 200 and 50 MeV as a function of R.
At 200 MeV the sum approaches Q(R) for large r so the
oscillating part dies out. At 50 MeV the same thing must

appen eventually but because of the smaller value of k
the cancellation between Q+ and dominates over the
nuclear volume.
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q (r) as a function of r at 200 MeV. The oscillatory be-

avior o Q+ and the total operator is apparent while q is
nearly constant.
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of the operator in this zone depends on the inclusion (or
not) of the 8 function.

After this initial short-range phase of the operator
there is a "near-zone" range which is of varying impor-
tance depending on the energy of the reaction. In a typ-
ical case this range lies within the nuclear volume.

The specification of the next two behavioral character-
istics is not as simple. Beyond the near-zone region the
function can be separated into one part which behaves
as e '""/r and another which goes as 1/r . In the mean
(i.e. , after integrating over a wave function) the oscillat-
ing function will decrease more rapidly than the other
with the increasing size of the system. In this sense it
has a "shorter range, " the characteristic size of which is
determined by &&.
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FIG. 6. Absolute value of the integrated operator Q(R)
from 1 fm at the energies (a) 200 MeV and (b) 50 MeV as
a function of R. The dotted curve gives Q+(R), the dash-
dotted curve is Q (R), and the solid curve is the sum of the
two.

IV. CONCLUSIONS

In this paper we have presented explicit forms for the
DCX operator [Eqs. (20) and (26) and Appendix for the
general spin state of the struck nucleon pair]. These ex-
pressions are suitable for integration over model nuclear
wave functions. The operators corresponding to forward
scattering are particularly simple [Eqs. (22), (23), (26),
and (27)]. We have also examined several qualitative fea-
tures of the operator and have tracked down the origin of
the strong cancellation between the nonflip and spin-flip
amplitudes which is so prominent in previous calcula-
tions. Further, the question was raised as to whether the
portion of the operator which is proportional to h(r) (in
the n ~ oo limit) should be removed as is sometimes an
issue in the one-pion-exchange contribution to NN scat-
tering. This may have dramatic effects on the flip-nonflip
cancellation just mentioned. Lastly, we have examined
the somewhat intricate r = ~rq —r2~ dependence of the
DCX operator.

The DCX operator has three basic behaviors corre-
sponding to three "ranges" in the internucleon spacing.

The first behavior corresponds to a classical range in
that it falls off with a rapid decrease after a characteristic
distance (with the monopole function used for illustration
it has an exponential fall off with range 1/n). The form

APPENDIX: SPIN REDUCTION FOR THE
DOUBLE-SPIN-FLIP TERM

I

L ) +~ps'M 1 2

PiP

In this notation the dot product is

t . t = ) t"t "(—1)"= y3T, —

(A2)

(A3)

and the inversion is given by

(A4)

To express the operator

0 = (oq k x q)(cr2. q x k') (As)
in tensor form we put eq ——k x q, el ——q x k', and write

n=) ~;"e",(—1)~x) ~, "e,"(—1)&
P P

= ) o "o "e"e"( 1)"+"— (A6)

) ( 1)L+My™EM
L,M

(A7)

where Z and E are defined as bilinear tensor operators in

We define the basic tensor operators by

t+ = (t +it—„)/v 2, t = (t —it„)/v 2, t = t„
(Al)

and a tensor operator made up of a bilinear combination
of two of these elementary quantities tq and t2 by
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terms of the Pauli matrices (o 1, cr2) and the pair (ei, e2).
The operators EL are

EP ei/V 3,

For k=k'=z, since ez ——e2 ——0 and eq ———e2,

pEp = — e~. e2,
3

(AS) EM =0,

Ei = 2[ei("*+ie2) —(ei+'ei)e2]

[(ei x e2)* + i(ei x e2)"],
2

Ei (ei e2 e1 e2) (ei x e2), Ei = E
2 2

(A9)

E2+E. ' =(ei)' —(ei)'

0

Ep

eq -eq.1
6

(A15)

E2 = -'(e, + ie", ) (e2 + ie2),

E2 [(el + iel)e2 + 1(e2 + 2)]

(A10)

(A11)

(A12)

We can evaluate the spin operator in the singlet-triplet
basis using the Wigner-Eckart theorem:

&~~
I
~i

I

~'~') = &M' g'g&~ II ~~ II
~').

The reduced matrix elements are

z z 1 —1 1+ —2 24e,e, — ei e2, E, = Ez, E—, =E, .
6

(A13)

Since for a double-analog transition the intitial and fi-
nal states are the same, only the symmetric combinations
will enter.

2+ 2 ( l. 2+ 1 2) 2+ 2 1 2 1 2'

(A14)

&0 II ~o II 0) = &3, &1 II ~o II 1) =—

&I II ~2 II » = 2 —
&o II ~1 II I) = v 6,

(A17)

(A18)
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