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We present in detail a formulation of the shell model as a path integral and Monte Carlo techniques
for its evaluation. The formulation, which linearizes the two-body interaction by an auxiliary field, is
quite general, both in the form of the effective "one-body" Hamiltonian and in the choice of ensemble.
In particular, we derive formulas for the use of general (beyond monopole) pairing operators, as well
as a novel extraction of the canonical (fixed-particle-number) ensemble via an activity expansion. We
discuss the advantages and disadvantages of the various formulations and ensembles and give several
illustrative examples. We also discuss and illustrate calculation of the imaginary-time response
function and the extraction, by maximum entropy methods, of the corresponding strength function.
Finally, we discuss the "sign problem" generic to fermion Monte Carlo calculations, and prove that
a wide class of interactions are free of this limitation.

PACS number(s): 21.60.cs, 21.60.Ka, 02.70.—c

I. MOTIVATION AND ORGANIZATION

Exact diagonalizations of shell model Hamiltonians in
the Os-1d shell demonstrated [1] that the shell model
can yield an accurate and consistent description for a
wide range of nuclear properties in different nuclei, if the
many-body basis is suKciently large. However, the com-
binatorial scaling of the many-body space with the size of
the single-particle basis or the number of valence nucle-
ons restricts such exact diagonalizations to small nuclei
or nuclei with few valence particles [2].

In facing the general challenge of developing non-
perturbative methods to describe strongly interacting
many-body systems, various quantum Monte Carlo
schemes have been proposed as an alternative to di-
rect diagonalization [3]. Among them, the auxiliary-field
Monte Carlo method is suitable for addressing interacting
fermions [4]. This method is a Monte Carlo evaluation of
the path integral obtained by the Hubbard-Stratonovich
transformation [5] of the imaginary-time evolution oper-
ator. The many-body wave function is represented by a
set of determinantal wave functions evolving in fluctuat-
ing auxiliary field. The method thus enforces the Pauli
principle exactly, and the storage and computation time
scale gently with the single-particle basis or the number
of particles. Auxiliary-field methods have been applied
to condensed matter systems such as the Hubbard model
[3,6], yielding important information about electron cor-
relations and magnetic properties.

In this paper, we discuss the application of auxiliary-
field Monte Carlo techniques to the nuclear shell model.
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This involves a two-body interaction more general than
the simple on-site repulsion of a Hubbard model. Our
goal is to develop new methods for extending the ap-
plicability of the shell model, as well as to investigate
the powers and limitations of auxiliary-field Monte Carlo
methods for general fermion systems.

We have previously published a Letter [7] with selected
results for static observables in sd- and fpshell -nuclei.
This paper serves to give the details of the implementa-
tion, introduce a method for calculating dynamical corre-
lations and strength functions, demonstrate the method
with simple (sd-shell) nuclei, and discuss several impor-
tant issues that arise in the implementation. We also
explore the limitations imposed by the negative contri-
butions in the path integral, referred to as the "sign prob-
lem" in the literature.

Our presentation is organized as follows. We begin in
Sec. II by using the Hubbard-Stratonovich (HS) trans-
formation to write the imaginary-time evolution opera-
tor exp( —PH) as a path integral. This requires that the
Hamiltonian II be cast as a quadratic form using an ap-
propriate set of operators. We discuss in Sec. III two ways
in which this can be accomplished, using either particle
density or pairing operators. The imaginary-time evolu-
tion operator can be used to extract information about
the system at finite temperature or in its ground state
(P -+ oo). The formulas for obtaining static observables
are presented in Sec. IV where methods for handling the
canonical ensemble are also introduced. We then dis-
cuss in Sec. V the extraction of the strength functions
for operators from the imaginary-time response function.
In Sec. VI, we briefly describe the computational algo-
rithms for implementing our methods and present se-
lected results of calculations for Sd-shell nuclei. In the
final section, we address the sign problem and also dis-
cuss a class of nontrivial interactions that give rise to a
positive definite path integral for some nuclei.
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II. IMAGINARY-TIME EVOLUTION OPERATOR

Given some many-body Hamiltonian H, we seek a
tractable expression for the imaginary-time evolution op-
erator:

orthogonal to the ground state. The expectation value
of 0 is then given by

(0) = lim
(go ~

exp( —~ H) 0 exp( —
~z H)

~
go)

(2.4)
(&o l

exp( —&H) l@o)

U = exp( —PH) . (2.1)

Z = Tr exp( —PH), (2.2)

and then construct the thermal observable of an operator
O.

(0) = —Tr 0 exp( —PH)Z (2.3)

Here, the trace Tr is over many-body states of fixed
(canonical) or all (grand-canonical) particle number. In
the zero-temperature formalism we begin with a trial
wave function @o and use the evolution operator to
project out the ground state, assuming that Qo is not

Here, P has units of inverse energy and P can be in-
terpreted as an imaginary time. (Here and throughout,
we take 5 = 1 and measure all energies in units of MeV. )
It is also clear that U can be interpreted as the par-
tition operator for temperature P i. We will refer to
U as the evolution operator hereafter. The operator H
is usually a generalized Hamiltonian and might contain
terms beyond the true Hamiltonian, such as —pN in the
grand-canonical ensemble or —~J, if we are "cranking"
the system.

There are two formalisms for extracting informa-
tion from the evolution operator: the "thermal" for-
malism (on which we will concentrate) and the "zero-
temperature" formalism (to which the thermal formalism
reduces in the limit P —i oo). In the thermal formalism,
we begin with the partition function

In this section, we describe how to write U in a form that
allows Eq. (2.3) or (2.4) to be evaluated.

A. Path-integral formulation of the evolution
operator

We restrict ourselves to generalized Hamiltonians that
contain at most two-body terms. The Hamiltonian H
can then be written as a quadratic form in some set of
"convenient" operators 0

H =) ..O. + —) V.n.', (2.5)

U = exp( —APH) (2.6)

Then we perform the Hubbard-Stratonovich (HS) trans-
formation on the two-body term for the nth time slice to
give [5]

where we have assumed that the quadratic term is diago-
nal in the D . The meaning of "convenient" will become
clear shortly, but typically it refers to one-"body" opera-
tors, either one particle ("density") or one quasiparticle
("pairing"). The strength of the two-body interaction is
characterized by the real numbers V .

For H in the quadratic form (2.5), one can write the
evolution operator U as a path integral. The exponential
is first split into %i "time" slices, P = KqAP, so that

- Nt

exp —4 H
~ 4 E

OO

dry
I I

exp +PI ). I+ I~' +& + +0(~P
~

V.[i '"
27r ) I

2
(2.7)

where the phase factor s is +1 if V ( 0 and is +i if V ) 0. Each real variable cr „ is the auxiliary field associated
with 0 at time slice n.

The approximation (2.7) is valid through order AP, since the corrections are commutator terms of order (AP)
The evolution operator is then

U = exp —L H 'D '[o]G(o) exp [ APL~ (r~, )] e—xp [ Al3h~ (~i)]— (2.8)

where the integration measure is

Ng

and the one-body Hamiltonian is

'D '[o.] =
I 4 I & h 4 h

%=1 cx
27r )

(2.9a)
6 (r„) = ) (e + s V cr „)Q (2.10)

the Gaussian factor is

G(o.) = exp —) ~V [cr'„
)

(2.9b) It is sometimes convenient to employ a continuum no-
tation
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U= r 1'D [o.] exp
o

« ).I&-I o.'(~)
)

dr 6 (7) (2.11)

IV [o] G(o.)(O(o))((o)
jD'[o] G(o) j(o-)

For the zero-temperature formalism

) = (&,IU. (&, 0)l@,)

(2.15)

(2.16)

where 7 denotes time ordering and

D[a'.] = lim 'D ' [o']
Nt —+ oo

(2.12)

and

U. (&, &/2) 0 U. (p/2, 0) l@0)

(go U (p, 0) $0)
(2.17)

7 exp
p ) hr,

dr h (r) = lim
Ng —+oo - --"

n=1
exp —APh, (r„)

(2.13)

while for the thermal formalism (canonical and grand
canoiucal),

&(o) —= »[U-(& o)1 (2.18)

In the limit of an infinite number of time slices Eq. (2.8)
is exact. In practice one has a finite number of time slices
and the approximation is valid only to order AP. The
case of only one time slice is known as the static path
approximation (SPA); previous work on the SPA and its
extensions can be found in Refs. [8] and [9].

Rewriting the evolution operator as a path integral can
make the model space tractable. Consider the case where
the 0 are density operators. Then Eq. (2.1) is an expo-
nential of two-body operators; it acts on a Slater deter-
minant to produce a sum of many Slater determinants.
In contrast, the path-integral formulation (2.8) contains
only exponentials of one-body operators which, by Thou-
less's theorem [10], takes a Slater determinant to another
single Slater determinant. Therefore, instead of having to
keep track of a very large number of determinants (often
many thousands for modern matrix-diagonalization shell
model codes such as oxBASH [11]), we need deal only
with one Slater determinant at a time. Of course, the
price to be paid is the evaluation of a high-dimensional
integral. However, the number of auxiliary fields grows
only quadratically with the size of the single-particle ba-
sis while the corresponding number of Slater determi-
nants grows exponentially. Furthermore, the integral can
be evaluated stochastically, making the problem ideal for
parallel computation.

B. Monte Carlo evaluation of the path integral

Formulating the evolution operator as a path integral
over auxiliary fields reduces the problem to quadrature.
For a limited number of auxiliary fields, such as in the
SPA with only a quadrupole-quadrupole interaction, the
integral can be evaluated by direct numerical quadrature.
However, for more general cases (typically hundreds of
fields), the integral must be evaluated stochastically us-
ing Monte Carlo techniques.

Using the one-body evolution operator defined by

T2

and

Tr OU (P, O)

(0)
TrU (P, 0)

(2.19)

To evaluate the path integral via Monte Carlo tech-
niques, we must choose a normalizable positive-definite
weight function W, and generate an ensemble of statis-
tically independent fields (a;j such that the probability
density to find a field with values 0., is TV, . Defining the
"action" by

dro (~) —ln ((cr), (2.20)

the required observable is then simply

jV[o] (0) e .
iv P, (0);C;

I 17 [o-] e —~- (2.21)

where N is the number of samples,

4;=e '/W; (2.22)

III. DECOMPOSITIONS OF THE HAMILTONIAN

and 8, = 8, , etc. Ideally TV should approximate
exp( —8) closely. However, exp( —8) is generally not pos-
itive and can even be complex. In some cases, 4, may
oscillate violently, giving rise to a very small denominator
in Eq. (2.21) to be canceled by a very small numerator.
While this cancellation is exact analytically, it is only
approximate in the Monte Carlo evaluation so that this
"sign problem" leads to large variances in the evaluation
of the observable.

There are several possible schemes for both the choice
of R' and the sampling of the fields. We typically choose
W = lexp( —8)l and generate the samples via random
walk (Metropolis) methods.

U (72, Ti) = 7exp I— drh (r)
I

~

we can write Eq. (2.3) or (2.4) as

(2.14) To realize the HS transformation, the two-body parts
of H must be cast as a quadratic form in one-body op-
erators 0 . As these latter can be either density opera-
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tors or pair creation and annihilation operators (or both),
there is considerable freedom in doing so. In the simplest
example, let us consider an individual interaction term

xV = G&G2G4G3 (3 1)

where G, , G, are anticommuting fermion creation and an-
nihilation operators. In the pairing decomposition, we
write (using the upper and lower brackets to indicate the
grouping)

In the application of these methods to the nuclear
shell model, it is particularly convenient to use quadratic
forms of operators that respect rotational invariance,
isospin symmetry, and the shell structure of the system.
We introduce these in the following subsections for both
the density and pairing decompositions.

A. Density decomposition

0 = G&G2G4G3 (3.2a)

We begin by ignoring explicit isospin labels and by
writing the rotationally invariant two-body Hamiltonian
as

=1 tt 2 t t 2

4
= —(aia2 + asa4) ——(aia3 —a3a4)

4

+-I ~ . ~ ]2
(3.2b)

The commutator is a one-body operator that can be
put directly in the one-body Hamiltonian h, . The re-
maining two quadratic forms in pair creation and annihi-
lation operators can be coupled to auxiliary fields in the
HS transformation.

In the density decomposition, there are two ways to
proceed: We can group (1, 3) and (2, 4) to get

H2: ) ) VJ (ab, cd) ) A~~ (ab)A J~ (cd)
abed J M

= —) ) [(1 + & b)(1 + 8.d)]'~' VJ" (ab, cd)
abed J

x ) A', M(at) AJ~(ca),
M

(3.5)

where the sum is taken over all proton and neutron single-
particle orbits (denoted by a, b, c, d) and the pair creation
and annihilation operators are given by

H = G&G3 G2G4 GyG4623t t (3.3a)

(3.3b)

aia48/3 + [a a3 aza4] + (a a3 + a a4)
1 t t 1 t t
2

——G, G3 —G, G4
1 t t

AJM(ab) = ) (j~m~jbmbI JM)a a.
mama

[
t t]JM
)a )6

AgM (ab) = ) (j m jbmbI JM) a~. .a..
mama

= [a, x a, ,]J~.

(3.6a)

(3.6b)
or group (1,4) and (2, 3) to get

II = —G, G4 G2G3+G, G3~24 .t (3.4a)

The VJ(ab, cd) are the angular momentum coupled two-
body matrix elements of a scalar potential V(ri, r3) de-
fined as

t 1 t t 1 t t 2= aiasb34 ——[aia4, aza3] ——(aia4 + a3a3)
2

' 4

+ —(aia4 —a3a3)t (3.4b)

Again the commutator terms are one-body operators, but
now the quadratic forms are squares of density operators
that conserve particle number. We refer to Eq. (3.3)
as the "direct" decomposition and Eq. (3.4) as the "ex-
change" decomposition.

For any general two-body Hamiltonian, we can choose
the pairing or density decompositions for different parts
of the two-body interaction. Moreover, even within a
pure density breakup decomposition, there is still free-
dom to choose between the direct and exchange formu-
lations. Although the exact path-integral result is inde-
pendent of the scheme used, different schemes will lead to
diferent results under certain approximations (e.g. , mean
field or SPA). The choice of decomposition will also af-
fect the rate of convergence of our numerical result as
Nq ~ oo, as well as the statistical precision of the Monte
Carlo evaluation. Most significantly, it affects the Huctu-
ation of 4 in Eq. (2.21) and thus determines the stability
of the Monte Carlo calculation. (See Sec. VI below. )

&~(a~ ~ ) = (v2. (») x 42b(»)1™
xIV(ri ")II@'.(ri) x 4,.(")]' ) (3 7)

(independent of M) while the antisymmetrized two-body
matrix elements UJ (ab, cd) are given by

V& (ab, cd) = [(1+b b)(1+ 8 ~)]
x [VJ(ab, cd) —

( 1) + " V—J(ab, dc)

(3.8)

V~ (ab, cd) = ( 1)'+~' V~ (ab, dc—), (3.9)

without altering the action of H2 on any many-fermion
wave function. However, note that although the

Before continuing discussion of the density decom-
position, we note that the two-body Hamiltonian for
fermion systems is completely specified by the set of anti-
symmetrized two-body matrix elements V&+(a6, cd) that
are the input to many standard shell model codes such as
oXBASH [11]. Indeed, we can add to the VJ (ab, cd) any
set of (unphysical) symmetric two-body matrix elements
VJ (ah, cd) satisfying
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Vg(ab, cd) do not alter the eigenstates and eigenvalues of
the full Hamiltonian, they can (and do) affect the char-

aeter of the decomposition of H2 into density operators,
as is shown below. In what follows, we define the set of
two-body matrix elements V&~(ab, cd) that may possess
no definite symmetries as

we can write Eq. (3.14) as

) ) EK(z, j)(—1) pKM(z)pK —M(j) . (3.17)
ij K

VJ (ab, cd) = VJ (ab, cd) + V~ (ab, cd),

allowing us to write the two-body Hamiltonian as

(3.10)
Upon diagonalizing the matrix EK(i, j) to obtain eigen-
values AK and associated eigenvectors vK, we can rep-
resent H2 as

H2 ———) ) [(1+h~s)(1+ 8,g)] V& (ab, cd)
abed J

H2 = —) .&K(n)( —1) pKM(n) pK M(n), (3.18)

x ) A~M(ab)AIM(cd) . (3.11)
where

pKM(n) = ) pKM(i)z)K (z) . (3.19)

To obtain the density decomposition of H2, we perform
a Pandya transformation to recouple (a, c) and (b, d) into
density operators with definite multipolarity,

pKM(ab) = ) (j m~p&m&~KM)a a~. . . (3.12)
mcz zmb

Finally, if we define

1~-"= g2(1+~ )

x [pKM(n) + ( 1) pK —M(n), (3.20a)

H2 ——H2+ Hi, (3.13)

where a~ = (
—1)~ + a~ . Then H2 can be rewrit-

ten as PKM(n) —=—
/2(1+ 8Mo)

x pKM (n) —(—1) pK -M (n)I, (3.20b)

H2 = —) ) EK(«, bd) ) ( 1) pK —M(«)pKM(bd),
abed K M

(3.14)

then H2 becomes

H2 ) ~K(n) ) [@KM(n) + +KM(n)] (3'21)
M&0

E~(oc, bd) = (—1)"+'*) (
—1) (22+ 1) . . )Qd gc

x —V& (ab, cd) g(1 + h~g) (1 + h,g)
2

(3.15)

and Hi is a one-body operator given by

Hi = ) .& qpoo(a, d),
Gd

(3.16a)

with

'..=--) ) (-1)'"-"(»+1)cad

xVz (ab, bd) g(1+ h s)(1+ h,~) .

(3.16b)

Note that adding symmetric matrix elements is equiva-
lent to using the exchange decomposition for some parts
of the interaction. The freedom in choosing the com-
binations of direct and exchange decomposition is then
embodied in the arbitrary symmetric part of the matrix
elements VJ .

Introducing the shorthand notation i = (ac), j = (bd),

where the particle-hole matrix elements of the interaction
are

H2 ———) ) [(1+h p)(1+ b,z)] V~@,(ab, cd)
abed J

x A JQ MQ (ab) A JT MT (cd).t (3.22)

This completes the representation of the two-body inter-
action as a diagonal quadratic form in density operators.
We then couple auxiliary fields O'KM(n) to QKM and

7KM(n) to PKM in the HS transformation. (The latter
are not to be confused with the "imaginary time" 7 .)

In the treatment thus far, protons and neutrons were
not distinguished from each other. Although the origi-
nal Hamiltonian H2 conserves proton and neutron num-
bers, we ultimately might deal with one-body operators
pKM (a„,b„) and pKM (a, b„) (n,p subscripts denoting
neutron and proton) that individually do not do so. The
one-body Hamiltonian 6 appearing in the HS transfor-
mation then mixes neutrons and protons. The single-
particle wave functions in a Slater determinant then con-
tain both neutron and proton components and neutron
and proton numbers are not conserved separately in each
Monte Carlo sample; rather the conservation is enforced
only statistically.

It is, of course, possible to recouple so that only den-
sity operators separately conserving neutron and proton
numbers [pKM(a„, b„) and pKM(a, b )] are present. To
do so, we write the two-body Hamiltonian in a manifestly
isospin-invariant form
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where, similar to the previous definition (3.6), the pair
operator is

with

AJTMT, , (ab) = ) (jara~, jbnib~ JM)
7A a i 77K b

x( 't, --'tb~TT, )at, , a,
(3.23)

x VJ 7 =i(ab, bd) Q(1+ 8 b) (1+b,g),
(3.26)

Here ( —,t ), etc. , are the isospin indices with t = —
2 for

proton states and t = — for neutron states, and (TT )
are the coupled isospin quantum numbers. The two-body
Hamiltonian can now be written solely in terms of density
operators that conserve the proton and neutron numbers.
Namely,

II2 ———) ) EKT(ac, bd)[pK. T (i) X pKT(j)]
abed K,T=O, l

(3.27)

Here, we define p~M T as

where

A A
/a, =a, +a/, (3.24)

pKM, T:PKM, p+ ( 1) PKM, n (3.28)

ad t=p, n
(3.25) and the E~ T are given by

Eac ( cabc)d= (—l)c'+c" ) (—1) (21 + 1) . . E ) 1(11+ 2)(el+ 8, )a
QC

x — VJ 7 i(ab, cd) + —[VJ T o(ab, cd) —VJ T i(ab, cd)]
1 ~ 1 A S (3.29)

Eaa ( Mc)a=c—(—1)—a+c ) (—1) (21+ 1) . . ) Q(1+hue)(1+8 a)
gd gc

x — VJ T=o(ab, cd) —VJ,T=i( b cd)I (3.3O)

In this isospin formalism, since A JT ~ MT (ab) = (
—1)~ +" + A JT.MT (ba), the definitions of the symmetric and

antisymmetric parts of V&~&(ab, cd), VJT (ab, cd), and UJT (ab, cd) become

VJT (ab, cd) —= — VJT, (ab, cd) 6 ( 1) +'+~'+ —'VJT(ba, cd) (3.31)

Note that these expressions allow less freedom in ma-
nipulating the decomposition since we have to couple pro-
ton with proton and neutron with neutron in forming
the density operators. Also note that EK T o(ac, bd)—
EK T i(ac, bd) is an invariant related only to the phys-
ical part of the interactions, (VgT i + VJT o). We can
choose all EK T i to be zero in the above (by setting
VJ T i VJ T () ) leaving EK T ocompletely deter—mined
by the physical matrix elements. In that case, we can
halve the number of fields to be integrated. However,
while introducing the isovector densities requires more
fields, it also gives more freedom in choosing the unphys-
ical matrix elements to optimize the calculation.

If we now diagonalize the EKT (i, j) as before and form
the operators

1
QKM, T(o() =

+
x[PKM, T(o() + (—1) pK M T(n)], (3.32)

z
PKM T(o')—:—

/2(1+ hM, o)

x [PKM, T(o') —(—1) PK —M, T( )]o,

(3.33)

the two-body part of the Hamiltonian can Anally be writ-
ten as
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) ) ~~r(o) ) QK M, T(~) + sc M,T(o)
KT M&0

(3.34)

In this decomposition, the one-body Hamiltonian 6
of the HS transformation does not mix protons and neu-
trons. We can then represent the proton and neutron
wave functions by separate determinants, and the num-
ber of neutrons and protons will be conserved rigorously
during each Monte Carlo sample. For general interac-
tions, even if we choose nonzero E~ T i matrix elements,
the number of fields involved is half that for the neutron-
proton mixing decomposition, and the matrix dimension
is also halved. These two factors combine to speed up
the computation significantly. In this sense, an isospin
formalism is more favorable, although at the cost of lim-
iting the degrees of freedom embodied in the symmetric
matrix elements UJ

B. Pairing decomposition

In nuclei where the pairing interaction is important, it
is natural to cast at least part of the two-body interac-
tion as a quadratic form in pair creation and annihilation
operators. We demonstrate this for the case where the
Hamiltonian is written in the isospin formalism. Upon
diagonalizing V&r(ab, cd) in Eq. (3.22), we can write

02 = ).~»(~) ) .AJT', Mr, (~)A»;Mr. (~) ~ (3.35)

z
PJT;MT, (A) = — [AJr Mr (o) —A JT MT (o)]

(3.40b)

so that

H2 ) ~»(~) ) IQ JT;MT, (o') + PJT;MT, (~)I
JT MT

(3.4I)

As in the density decomposition, we can then couple the
cr and r fields to Q and P, respectively.

Note that in the pairing decomposition, the one-body
Hamiltonian h(r) used in the path integral is a gener-
alized one-body operator that includes density and pair
creation and pair annihilation operators. The wave func-

tionn

is then propagated as a Hart re e-Fock-Bogoliubov
(HFB) state, rather than as a simple Slater determinant.

In this decomposition, neutrons and protons are in-
evitably mixed together in the one-body Hamiltonian 6
(consider the Q,P terms for T = 0). In fact, 6 also
does not conserve the total number of nucleons; rather
the conservation is only statistical after a large number
of Monte Carlo samples.

For simplicity, we have describ ed how to dec omp ose
the Hamiltonian solely in density operators or solely in
pair operators. However, it is straightforward to mix
the two decompositions with the choice depending on the
type of interactions involved. Consider the "pairing plus
quadrupole" model, namely,

MT, H2 —— gP P ——y—Q Q,
2

(3.42)

where where Pt, P are the monopole pair creation and annihila-
tion operator and Q is the quadrupole-moment operator,

Azr:Mr, (~) = ) r (')Azr Mr, (')t
Pt ) at at (3.43)

Separating At 4 into commutator and anticommutator
terms, we have Q~ = ):(™IQII&) a.'a~ . (3.44)

H2 ——H,' + H,' (3.37)

) . »( ) ) . Jr;Mr, ( )~ A»;Mr. (~)
JT~ MT,

(3.38)

) ~JT(~) ) (Ajr;MT, (~) ) AJT;MT, (&))

(3.39)

1
QJT;MT, (~) = [+Jr Mr (~) + AJT;MT, (&~ )]) (3.40a)

Clearly, Hz is a one-body operator that can be combined
with Hq . The remaining two-body term can be written
as a sum of squares by defining

Naively, it would be most convenient to use a pairing de-
composition for the pairing interaction and a density de-
composition for the quadrupole interaction. This would
require only eight fields for each time slice in the H S
transformation. The pure pairing or pure density decom-
positions would be much more complicated, as the for-
mer would require rewriting the quadrupole interactions
in terms of pair operators and the latter would require
rewriting the pairing interaction in terms of density op-
erators. The numerical examples given in Sec. VI below
will illustrate the behavior of such Hamiltonians under
diferent decompositions.

IV. CALCULATION OF STATIC OBSERVABLES

In the previous sections, we expressed the evolution op-
erator for a two-body Hamiltonian as a path integral over
auxiliary fields in which the action involves only density
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and pair operators. In this and the following section, we
show how to extract observables from this path integral.
The merit of this method will be clear from the com-
pact formulas involved, which require handling only rela-
tively small matrices of dimension N, or 2N„depending
on the type of decomposition used. We derive formu-
las for three diferent approaches that use the evolution
operator to obtain information about the system: the
zero-temperature formalism, the grand-canonical ensem-
ble, and the canonical ensemble. The zero-temperature
and grand-canonical ensemble methods have been ap-
plied, with the density decomposition, to other physical
systems such as the Hubbard model [6]. However, we
believe that the canonical ensemble treatment presented
here is novel.

The zero-temperature approach can be used only to ex-
tract ground-state information. On the other hand, the
grand-canonical ensemble allows finite-temperature cal-
culations, but fluctuations in particle number can be very
significant in a system with a small number of nucleons.
Thus, the canonical ensemble is particularly important in
nuclear systems, where the particle number is small and
shell structure is prominent. The grand-canonical ensem-
ble yields information averaged over neighboring nuclei,
which can have very difFerent properties.

The canonical ensemble is more diKcult than the other
two approaches in two respects. First, the canonical
(fixed-number) trace of U is more dificult to compute
than the wave function overlap of the zero-temperature
formalism or the grand. -canonical trace. Second, observ-
ables are more dificult to extract since Wick's theo-
rem does not apply. We suggest two di8'erent methods
to handle the canonical ensemble: the activity expan-
sion and the integration over real coherent states. The
coherent-state integration method can be applied to cal-
culate canonical trace of any particle number involving
only a negligible increase in computation time relative
to the zero-temperature and grand-canonical approaches.
Unfortunately, its utility is limited by the sign problem.
On the other hand, the activity expansion, which is well
suited (and numerically stable) for calculating nuclei with
a small number of valence particles or holes, is less sus-
ceptible to the sign problem. (Yet a third method for
extracting the canonical trace, based on Fourier analysis,
shows good "sign" statistics and is numerically stable for
midshell calculations; it is therefore suitable when the
activity expansion fails. Details of this method will be
published elsewhere [12].)

For each approach, we also derive the general formu-
las when pair operators (as well as density operators) are
present in the single-particle Hamiltonian, i.e. , when a
pairing decomposition is used for some or all of the inter-
action. As far as we know, there are no known general
formulas for the pairing decomposition formalism. Using
the fermion coherent-state formalism [13], we derive in
Appendix A a set of formulas for the calculation of ob-
servables that are similar to the well-known formulas for
a pure density decomposition. Thus, our methods can
be extended to calculations using general one-body op-
erators in the HS transformation by only doubling the
dimension of the matrices involved.

A. Zero-temperature formalism

We begin with "zero-temperature" observables. The
trial wave function go in Eq. (2.4) is, in principle, any
state not orthogonal to the ground state. In practice, it
is most conveniently a Slater determinant. If we have
N, m-scheme orbitals available and N indistinguishable
particles, go is constructed from X„single-particle wave
functions, each of which is a vector with N, components,
and we write @o as a Slater determinant of a K„x N,
matrix, %0.

In the pure density decomposition, consider the one-
body Hamiltonian 6 = M;~n, a~ (sums over the indices
i, j from 1 to %, are implicit). The evolved wave function

I&(&P)) = exp( —»h) l&o) (4.1)

is then a Thouless transformation of the original deter-
minant, the new state being represented by the matrix
exp( —»M) 4'o. We can therefore represent the product
of evolution operators by N, x N, matrices

exp —6 6 . exp —6 hi

—+ exp (
—»M ) exp (

—»Mi) . (4.2)

Let us now consider the overlap function in Eq. (2.16).
Let U (7'2, wi) be the matrix representing the evolution

P

operator U (72 Ti). Choosing some value w of the imagi-
nary time at which to insert the operator 0, we introduce
the right and left wave functions @R 1, (w) defined by

lqR(~)) = U. (r, o) l@o),
l@~( )) = U.'(» ) l@o) .

Then the required overlap in Eq. (2.16) is

(4.3a)

(4.3b)

(golU~(P, 0)lgo) = (gl. lgii) = det (4.4)

where

4 „(7-)—:U (~, 0)@o, 41,(7-) —= U" (p, v-)Co (4.5)

( t~. ) = @a (+'I, @R)
ba

(4 6)

are the matrices representing g~ and gl, . Note that if
there are two distinguishable species of nucleons pro-
tons and neutrons and we use a decomposition that
conserves the numbers of neutrons and protons, then
there is a separate determinant for each set of single-
particle wave functions and the total overlap is the prod-
uct of the proton and neutron overlaps.

With the basic overlap in hand, we now turn to the ex-
pectation value of an operator 0 for a given field config-
uration [i.e. , Eqs. (2.15) and (2.19)]. By Wick's theorem,
the expectation value of any N-body operator can be ex-
pressed as the sum of products of expectation values of
one-body operators. Hence, the basic quantity required
is
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(A straightforward derivation of this expansion can be
found in [14].) Again, when the decomposition separately
conserves proton and neutron numbers, the expectation
values for proton and neutron operators are given by sep-
arate matrices.

These formulas can be extended to the case where pair
operators are present in the one-body Hamiltonian, i.e. ,

when 6 is of the form

Ns

h = ) (O,~a, a~ + A,~a, a+ .A;~a, a~), (4.7)

Nt

(&oI exp( —&Ph-) l&o)J ~

n=1

where 0, 4, and A are general N, x N, complex ma-
trices. Our G.rst task is to find a simple expression for
(golU (P, 0) I@p) where U (P, 0) = Q

'
~ exp( —QPh ).

Using the fermion coherent-state representation and
Grassman algebra, we derive the expressions in Ap-
pendix A. Here we simply state the results.

If the trial wave function v(0 is a quasiparticle vacuum,
such that P, I/0) = 0 where P, = P . u,~a~ + v,~a, then

is the matrix representing the evolution operator
U (P, O), and M is the 2K, x 2N, matrix representing
h„:

( O„ "oT")I . (4.10)

Here, the evolution operator U (T2, 7y) is represented
by a 2%, x 2%, matrix and the many-body wave function
is represented by a 2N, x N, matrix, independent of the
number of particles present. In analogy to Eqs. (4.3—4.6),
we can write

where

(vr'l (vT )@R = U-(& 0)
I T I

@I.—= U.'(p, r) I T I)
(4.12)

Wol -(p o) &o) = (&~l&R)
1

= det C~C&

x exp — ) Tr [0„], (4.11)
zp "'

( T ~2

det (v* u*) U (P, O)
I(u

x exp — ) Tr[8„]
t' ~p

(4.8) ~i = +i) 1
y

~ ~ ~
y t$ (4.13a)

To calculate the expectation value of a generalized one-
body operator, we proceed as in the pure density case.
Let

~i+N ——+, ) 1
y

~ ~ ~
y tg o (4.13b)

U (P, O) = exp( —APM~ ) . .exp( —APMq) (4.9) Then the one-quasiparticle density matrix is

I Pub R

I R 2 ba

= @R(@,'@R) '@,'
ba

('o 1) t , &
(o—

—, I » I+R(~.~R) '+. I, , -I +~.b

(4.14)

The final step follows from the properties of U in
Eq. (A20). Note that both the overlap and the Green's
function are similar to those of the density decomposi-
tion. However, the enlarged dimension of the representa-
tion matrices causes the overlap to be the square root of
a determinant rather than just a determinant. We know
of no simple way to determine the sign of the square
root. Computationally, it can be traced by watching the
evolution of (QOIU (&, 0)lgo) as U is built up from 0 to
P (Appendix 8), although at the expense of increased
computation. Also, the linear dimension of the matrix
used in the calculation is twice that for the pure density
decomposition case so that the pairing decomposition is
more computationally demanding. However, when the
interaction has a strong pairing character, it has the po-

tential for a more eBective Monte Carlo sampling, and
oR'ers greater freedom in the decomposition, which might
be used to mitigate the sign problem.

B. Grand-canonical ensemble

((~) = Tr U. (P, o) = det [1+U. (P, 0)], (4.15)

For the grand-canonical ensemble, the trace in
Eq. (2.18) is a sum over all possible many-body states
with all possible nucleon numbers, and a chemical poten-
tial in H is required. For the pure density decomposition,
the many-body trace is given by
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(a ag) = ([1+U (P, o)] U~(P, O))(,~ . (4.16)

which can be proved by expanding the determinant [14].
For the expectation value of a one-body operator,

one can recapitulate exactly the argument of the zero-
temperature development and obtain

and

f'u v&( O

)
('ei 0

0

a —aT ) (ut
)I l(vT

0 0
0 0

vtl
z

We have extended these formulas to decompositions
that involve pairing operators (Appendix A). The results
are given in terms of the 2K, x 2N, matrices M, U (P, 0)
representing the Hamiltonians 6 and the evolution op-
erator U(P, O), [Eqs. (4.9 and 4.10)] namely,

0 0
0 0 —E2

(4.2o)

A A ( &pTr U(P, 0) = det [1 + U(P 0)] ' exp
~

— Tr[e ] ~

(4.17)

To motivate this formula, consider the simplest case of
one time slice where U = exp( —h, ) and 6 is Hermitian
and in the form (4.7). Then, 6 can be diagonalized by a
HFB transformation

In the diagonal form, Tr[exp( —h)] can be identified easily
as

[(1 + e '*
)e o "]e

1
OT ~

(a at)+ —Tr[O]
2

—M) io

]
—

o Tr[Oj (4.21)

where

(4.18)

(4.19)

due to the invariance of the determinant with respect to
similarity transformations. Here, as in the overlap formu-
lae for zero-temperature approach, the grand-canonical
trace is given as the square root of a determinant, so that
the evolution of the sign is important (Appendix B).The
formula for the observables can be calculated from

(»'»). =
—, (((i+U(po)) 'rr(p, o))) —

—, I, o I
fr+U(()o))-'v(po)

~ r(1 0
= ([1+v(p, o)]-'v(p, o)), (4.22)

C. Activity expansion for the canonical ensemble

As mentioned in the beginning of this section, the
grand-canonical ensemble may lead to large fluctuations
in the particle number for systems with few particles, and
so is particularly ill suited for small nuclear systems, and
although the particle number does not fluctuate in the
zero-temperature approach, that formalism can only give
ground-state results. The canonical ensemble is therefore
important for studying thermal behavior, as well as the
ground state of large systems.

In the canonical ensemble, we have to find the trace of
U (P, 0) over all states with a fixed particle number K„
(actually fixed proton and neutron numbers). We dis-
cuss two methods of achieving this: the activity expan-
sion presented here and the integration over real coherent
states presented in the following subsection.

Consider first the case when only density operators are

Z(P, A) =TrA "e ~ =) A "Ziv (P).
N„

(4.23)

In our matrix representation,

Tr A U (P, o) = det(1 + Av) . (4.24)

If Eq. (4.24) is expanded in powers of A, the coefficient
of A " is just the canonical trace of U (P, o) over N„
particles, so that det(1 + AV) is the generating function
for the canonical trace. Thus,

present in the one-body Hamiltonian h. From the grand-
canonical ensemble formulas (4.15), one can see that the
canonical trace is just the sum of all the %„xN sub-
determinants. More explicitly, we consider the activity
expansion: For some parameter A, let
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&sr. ())) = / v)~1+(~)&~ (~.) (4.25)

where

det [1+AU (p, 0)] = ) A "(N„(o') .
Nv

(4.26)

det(1 + AU) = exp Tr ln(l + AU)

( ~
( 1)n i

=exp' )
n=1

A" Tr [U"]
)

(4.27)

This expansion converges to the generating function be-
cause Z(P, A) is a polynomial in A of finite order (i.e. , N„

The trick now is to find simpler expressions for (N„,
instead of doing the explicit sum over the determinants.
To do this, write

can be at most N, ). The coefficient of A in the expo-
nential is readily found. For a given particle number N„,
we need only calculate matrix traces up to Tr[U "] and
the coefBcient of A can be extracted accordingly.

For one-body expectation values, using again the
grand-canonical trace as the generating function for cal-
culating observables and collecting all terms with coefB-
cient A ", we arrive at

(a ~h) N
= ).( )" (U")h. &N- (&)/CN(&)

(4.28)

The expectation value of two-body operators,
(p kp, g(o' ))N, is nontrivial as Wick's theorem must be
modified, but again one can simply collect the terms with
coe%cient A " and obtain

N„ N„

(a aha, a") N
——) ) (—1) +"

(Uh U~, —U~ Uh, ) ~N (e
n=1 m=1

(4.29)

This form of the activity expansion works best for N„( N, /2 (mostly empty model spaces). When N„) N, /2
(mostly filled spaces), it is more efficient to expand in the activity of the hole states. In this case, we define

and, as in Eq. (4.24),

Z (P, A) = Tr[A ' e P ], (4.30)

Tr[A U(P, O; o)] = det[A+ U] . (4.31)

The coef6cient of A is the partition function for N holes,

det[A+ U] = det[U] exp ) —
(—1) iA Tr[U ]

= ) (4.32)

the expectation value of a one-body operator is

N

(P&j )N h&4s ) ( 1) Ujx ~N n/~N—
and the expectation of a two-body operator is

( ijPPl)kNhnles —) ~j k ( 1) Uli CN n/'CN ) + ) ( 1—) (U i Ul k Uli Uj k (N rn nA N——(4.34)

When pairing operators are involved, we use Eq. (4.17) for the grand-canonical trace, which becomes the generating
function for the corresponding canonical trace. As an illustration, we display the formula for the expansion in particle
activity,
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Tr A U
pl
1) qP+

Pl r'&1

') +
1

S12 )

1

X~1)
iU A2

1

p ) /S11 S12) 2

1 1 I I S12 S22
A

f1 Pl (1 S' & '(S P&~p, + Ip S-~ ISi. 1~) 4 )

n

(1 Si2) ' (1 (1 pl
det

/ S22 f
exp/ —Tr ln

/
]+AY

(1
det S 'exp —) Tr[Y ](—1)

(2
(4.35)

where the definitions of S,S ) S,S are obvious,
and

~0) is the N„-fermion state with the levels 1, . . . , N„oc-
cupied, and C is a normalization constant,

(1 S' l '(S" pl
p S22 I I S12)

(4.36)

The expectation values of one- and two-body operators
can then be derived as in the pure density decomposition.

~ h

p=N +1

D. Canonical ensemble via coherent states (4.39)

We make use of the operator

iX) (Xi
det(1+ X~X) '+' (4.37)

C„=~- ./'I "-+i r " "+i
2 )

which can be shown [15] to be a resolution of unity in the
Hilbert space of N fermions occupying N, levels. Here,
X~h are the real integration variables, ~X) are the real
coherent states,

The canonical trace can then be cast in a form of expec-
tation with integration over the variables Xph. For any
operator 0,

iX) = exp ) X„ho,toh, i0),
hp

Tr[O] = C dx
det(1 + X~X) ~ +' (4.40)

h = 1, . . . , N„, p= N„+1, . . . , N, , (4.38)
where dX = Q & dX~h. The thermal canonical expecta-ph
tion is then

(o) = Tr[Oe ~
] f 17[o]G(o)dX(X~U~(P, O)O~X)/det(1+ X X) '~ +

Tr[e ~+] f 17[o]G(o)dX(X(U (P, 0) (X)/ det(1 + X X) &2+
(4.41)

We can compute the overlap and the observable in
(4.41) as in the zero-temperature formalism, but we now
have to do the Monte Carlo integration over the fields
Xph as well. However, the number of these fields scales
only as N, , which is about the same as the number of 0
fields in one time slice, so that introducing the coherent-
state integration is not much more computationally ex-
pensive than the zero-temperature formalism. The ad-
vantage of coherent states is that we do not have to find

Tr[U(P, O) ]. However, the integration of the coherent
states may aggravate the sign problem, as will be dis-
cussed in Secs. VI and VII.

V. DYNAMICAL CORRELATIONS

In the previous section, we discussed how to extract
the expectation value of a one-body operator (0) and, by
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use of Wick's theorem and its extension to the canonical
case, equal-time two-body operators (AH), etc. A great
deal of the interesting physics, however, is contained
in the dynamical response function (Ot(t)O(0)) where

sa

O(t) = e ' Oe' . In our calculations, we evaluate the
imaginary-time response function (Ot(iw)O(0)) and from
it deduce the associated strength function, f&(E).

In the zero-temperature formalism, the strength func-
tion is

f D'[ol&(~)»[U-(»o)] '

f 'D [tT] G (a.)Tr [U (P, 0)]

(5.6a)

(5.6b)
f-(E) —= ).~(E —Et + E )l(floli)l'

f
(5.1)

~a(E) —= g ).~(E —Et + E')e 'I(&IOli) I' (5 2)
i,f

where i is the ground state, while in the canonical or
grand-canonical ensemble,

P

We now proceed to find 0 (r). For the purpose of
illustration, we show the formulas for the pure density
decomposition (formulas for the general case can be de-
rived similarly). For the simplest case when 0 = at or
0 = a;, it can be shown that [14]

R(v-) = (Ot (i~)0(0)) = f~(E)e dE . (5.3)

Thus, the imaginary-time response function is related to
the strength function by a Laplace transform,

at (nAP) = ) [U (nAP, 0) i]~at,

a, (nAP) = ) U (nAP, O),~a~ .

(5.7a)

(5.7b)

Tr[e —l~ — &~Ae —~B]
Tr[e PH]—

f&[ ]G( )T [U-(»o)] '
Tr [U (P,O)]

f &[~]G(~)»iU-(p o)1
(5.4)

Upon defining

0 (r) =—U (7., 0) 'OU (r, 0), (5 5)

we have an expression suitable for Monte Carlo evalua-
tion,

Recovering the strength function from B by inversion
of the Laplace transform is an ill-posed numerical prob-
lem. DifFerent methods have been proposed to surmount
this difficulty [16,17]. We resort to making the best
"guess" for the strength function via the classic maxi-
mum entropy (ME) method [18,19), which was first intro-
duced to recover strength functions in Monte Carlo calcu-
lations by Silver et al. [17]and has since been widely used
in similar condensed matter simulations. It is in essence
a least-squares fit biased by a measure of the phase space
of the strength function.

In ME methods, the function to be minimized is
—o.S, where y is the usual square of the residuals,

S is the entropy of the phase space (not to be confused
with the action in the auxiliary field path integral), and n
is a I agrange multiplier. In classic ME o. is determined
self-consistently. The method, described briefIy in Ap-
pendix C, also can yield error estimates for the extracted
strength function.

To calculate the imaginary-time response, consider

A(tr)R(0)) and write the thermal expectation as a path
integral:

(A(ir) B(0))

In this way, the creation and annihilation operators can
be "propagated" back to r = 0. Any operator 0 (7 )
can be first expressed in a (w) and a" (i ) and therefore
can be propagated back and expressed in a and a~. For
example, suppose 0 = C,~a,. a~ is a one-body operator.
Then

0 (v.) = U (~, 0) 'OU (r, 0)
= [U (r, 0) 'CU (~, 0)];,.a,"a,

(5.8)

(5.9)

Thus, the response function can be measured in the same
way as the static observables.

VI. COMPUTATIONAL DETAILS AND
ILLUSTRATIONS

A. Monte Carlo methods

Monte Carlo evaluation of the path integral requires a
weight function. We have tried two difFerent choices for
the weight function, each with advantages and disadvan-
tages.

One choice for the weight function is a Gaussian, with
the the static mean-field solution as the centroid, and the
widths given by the random phase approximation (RPA)
frequencies. Thus, much of the known physics is embod-
ied in the weight and the Monte Carlo evaluates correc-
tions to the mean-field + RPA approximation. Further,
it is simple to efficiently generate random field configu-
rations with a Gaussian distribution.

Unfortunately, Gaussian sampling has several disad-
vantages. First, finding the RPA frequencies can be ex-
tremely time consuming since we have to calculate and
diagonalize the curvature matrix at the~~, i ~p, j
mean-field solution. (Here, n, p run through the num-
ber of quadratic terms in the Hamiltonian and i,j run
through the number of time slices. ) For any general in-
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4; = exp[ —iIm(8;)] . (6.1)

The Metropolis algorithm is free of the disadvantages for
the Gaussian weight function, in that it will eventually
sample the entire space where

~
exp( —8)

~

is significant.
The main disadvantages of Metropolis are its ineKciency
as currently implemented and the "sign problem. " Let
us define the denominator of Eq. (2.21) by (4):

1(4)—:—) exp[ —i Im(8, )] . (6.2)

teraction, the curvature matrix has a large dimension,
N, Nq. Second, the Gaussian has to be modified when
there is spontaneous symmetry breaking in the mean
Belds (such as quadrupole deformation). Otherwise, the
Goldstone modes in the the RPA frequencies (e.g. , zero
eigenvalues corresponding to shape rotations) will de-
stroy the normalizability of the weight function. Finally,
multiple mean-field solutions well separated from each
other can also pose a problem, so that multiple Gaus-
sians may be needed.

A more satisfactory route is to choose
~
exp( —8)

~

G(0)~((U (P, O))~ as the weight function and to use a
stochastic random walk such as the Metropolis algorithm
to generate the fields. The expectation of an observable
is then given by Eq. (2.21) where

by the ratio of ( in the new and old configurations. This
alternative algorithm needs only some 200 thermaliza-
tion sweeps and 10 decorrelation sweeps; i.e. , it is 10
times more efFicient than the previous method. In ad-
dition, boundaries where

~
exp( —8)

~

= 0 can confine the
first random walk algorithm, while they do not affect the
second.

The random walk can thermalize faster if it starts from
a configuration where the weight W(a) is large. Usually
we start from the static mean fields, given by

o. „=0. , n = 1, Nq,

a = —s sgn(V )(0 )- .
(6.3a)

(6.3b)

One can show that for canonical and grand-canonical
calculations, the static mean field 0 is a saddle point of
the weight function,

~P(~)&(~)]
ac, i

(6.4)

For the zero-temperature approach, we also choose the
self-consistent field solution cr, although Eq. (6.4) is not
rigorously satisfied. This is preferable to starting the
fields at zero, which may be far from configurations of
significant weight.

The mean-Beld solution (6.3) can be found iteratively,

If (4) (( 1, the large fiuctuations defeat any attempt at
a Monte Carlo evaluation. This "sign problem" will be
addressed in detail in the examples illustrated below.

For the Metropolis algorithm, we take random steps
in the fields time slice by time slice, following a sweeping
procedure introduced by Koonin et al. [4]. For the Monte
Carlo results to be valid, one requires that the points
in the random walk be both distributed as the weight
function and be statistically independent. The first re-
quirement translates into starting the fields in a region of
statistically significant weight; if the initial configuration
has a small weight, a number of initial "thermalization"
sweeps are usually needed to relax the fields to this re-
gion. The second requirement means that the walker
must sweep through the field. s many times to decorrelate
the samples.

The number of thermalization sweeps and decorrela-
tion sweeps increases with system size, and the choice of
rand. om walk procedure greatly affects the sampling e%-
ciency. In the early stage of investigation, we allowed all
fields o at one time slice to change with equal proba-
bility within a certain step size. The acceptance is then
determined by the ratio of the weight

~
exp( —8)

~

of the
old and new configurations, and we adjusted the step size
to give an average acceptance probability of 0.5. The cal-
culations of Sd-shell nuclei described below then needed
approximately 2000 thermalization sweeps and up to 200
decorrelation sweeps between samples. In our later work,
we used another random walk algorithm, in which a fixed
number of fields at one time slice are randomly chosen for
updating; those chosen are generated from the Gaussian
distribution in Eq. (2.9b) while the others are kept at
their previous values, and the acceptance is determined

(o },+i ———s sgn(V )(0 )-, (6.5)

For the systems we have tested, Eq. (6.5) usually can-
verges within 100 interactions starting from o = 0. For
larger systems and at lower temperature, convergence is
slow and. sometimes unstable or barely stable. In that
case taking

a, = —s sgn(V )(0 ) (6.6)

for a starting configuration also leads to a shorter ther-
malization time than the choice of 0 = 0.

B. Examples

We now describe several examples to demonstrate our
methods for calculating nuclear properties. Two major
considerations arise in the implementation: the choice
of decomposition scheme and the choice of ensemble.
Different decomposition schemes involve different dimen-
sions of matrices and numbers of fields, which control the
computational speed. Also, the rates of convergence as
AP ~ 0 are different and determine the number of time
slices to be used. Finally, and perhaps most importantly,
this choice also affects the "sign problem" associated with
the statistical stability of the calculation. Different de-
composition schemes will be compared in examples 1 and
2 below.

The choice of ensemble among zero-temperature,
canonical, and grand-canonical ensembles usually does
not affect the issues noted above. Instead, it depends
on the kind of properties to be calculated. The zero-
temperature formalism with a good trial wave function
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is effective in projecting out the ground state and is suit-
able for calculating ground-state static observables. For
calculating finite-temperature properties, the canonical
ensemble is physically most relevant but also is most dif-
ficult to implement. Examples 1, 2, and 3 below demon-
strate the grand-canonical, zero-temperature, and canon-
ical ensembles, respectively.

Finally, we choose a particular nucleus, Ne, to
demonstrate the calculation of the dynamical responses
for different operators and recover the strength function
by the ME method. The examples shown below were
done with 3000—6000 samples generated on the passively
parallel Touchstone Gamma and Delta computers at Cal-
tech.

Example 1:
Monopole paining interaction in the sd 8hell

I
I

I 1 I I I I I

sity-

0 I 1 I I I I I
I

I I1 I & I I
I

I I I

5—:lp
6—

&~exact

/2

pair

A
7

v

-17
0 0.4

I I I I I I I I I I I I I I I I I I I I I I I4I I I I I I I I I s

1.20.80.8 1.2 0 0.4

FIG. 1. Calculations in the grand-canonical ensemble for
protons only in the sd shell with monopole interaction (all
six E~=o matrix elements of the Wildenthal interaction), at
(N„) = 3.17, P = 1. Shown are (H) and (1 ) as functions of
AP for three different decompositions: pure pairing decom-
position; pure density decomposition, and a half-density and
half-pairing decomposition. Solid diamonds at b,P = 0 are
the exact results obtained by direct diagonalization.

We have described the considerable fIexibility in writ-
ing the two-body interaction in quadratic form, e.g. , den-
sity versus pairing decomposition and direct versus ex-
change decomposition. To illustrate this fIexibility, we
consider protons only in the sd shell (%, = 12), and keep
only the J = 0 terms in Eq. (3.5); the values of Vz —o and
single-particle energies are taken from the Wildenthal in-
teraction [1]. We first recouple the Hamiltonian into a
quadratic form in the density operators in Eq. (3.21);
because all possible density operators are required, there
are 144 fields for each time slice. We then use the pairing
decomposition in Eq. (3.41); after diagonalization only 6
fields are required. Finally, we write the two-body inter-
action as H2 ——2H2+ 2H2 and decompose the first half
using densities and the second half using pairs; the total
number of fields in this case is 150. It turns out that this
system is 99% free of the sign problem [i.e. , Re(C';) ) 0
99'%%uo of the time], independent of the decomposition.

All three calculations were performed in the grand. —

canonical ensemble using a Gaussian weight function
around the static mean field, at an inverse temperature
of P = 1 (here, and henceforth, we measure all physi-
cal energies in MeV) and fixed chemical potential. The
expectation value of the proton number, energy, and J
are given in Fig. 1 as a function of AP. As the number
of time slices increases (i.e. , AP -4 0), all three decom-
positions converge to the exact answer, demonstrating
their mutual equivalence in the continuum limit. Note,
however, the different rates of convergence.

2. Example 2: 24Mg tsith schematic forces

Next we consider Sd-shell nuclei with a schematic pair-
ing + multipole density interaction, where the multipole
force is separable; it is the same interaction used in [7]:

1
H2 g IT IT, POPO, OPO, O

T, =—1,0, 1

M
X2 ) P2,MP2, M( 1)—

2

1
X4 ) p4, Mp4, —M( —1)

2
(6.7)

where

PT — ) (2tl 2t2i1&z)aj mt aj mt (6.8)

and

PK, M = ) &K(2132)PK,M, T=O(21 22) ~ (6.9)

This Hamiltonian was also decomposed in several ways.
We first decomposed the pairing interaction as pair op-
erators and the multipole force as density operators. In
this way, the number of fields is kept to a minimum (only
21 per time slice). The pair operator PT o mixes pro-
tons and neutrons and therefore one matrix representing
the mixed neutron and proton wave function is needed.
In addition, the pairing decomposition requires matrices
whose dimension is 2X„so that the matrices involved in
this calculation are 48 x 48.

We calculated Mg (four valence protons and four va-
lence neutrons) in the zero-temperature formalism, i.e. ,
using the evolution operator at large P to project out the
ground state from a trial state @o. Since h is Hermitian
[here P has the property pKt M

——pK M( —1) ], in the

static path ( = (goi exp( —Ph) iso) is always positive def-
inite and 4; = 1. However, for calculations with more
than one time slice (4) becomes very small, so that we
can only obtain sensible results in the SPA. These re-
sults turned out to be extremely good, relaxing to the
right energy and angular momentum (Fig. 2). However,
the success of the static path is case specific and not well
understood. For example, we have also tried. the case of
just multipole interactions among four protons in the Sd
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shell ( Mg), and find that the SPA relaxes to an energy
2 MeV higher than the ground state.

In a second scheme, we transformed the pairing part
of the interaction (6.7) into a quadratic form in the den-
sity operators. In this transformation, we used only den-
sity operators that conserve proton and neutron numbers
(3.24—3.34), and chose all E~ T i elements in Eq. (3.27)
to be zero so that only isoscalar density operators were
present in the quadratic form.

In this case, the interaction is in a much more com-
plicated form due to the Pandya transformation of the
pairing interaction, and one needs 144 fields per time
slice (as compared to 21 fields needed in the first de-
composition). However, an advantage lies in the separa-
tion of the Slater determinants for protons and neutrons
since only density operators that separately conserve neu-
tron and proton numbers are present. In the 8d shell,
the dimension of matrix involved is only 12 x 12. For
this particular interaction, an even more desirable prop-
erty of the second scheme is that the eigenvalues A~ in
Eq. (3.34) found by diagonalizing E~ in Eq. (3.27) satisfy
sign(Att. ) = (—1) + . We prove in the next section that
this property guarantees ((o) to be positive definite for
even-even nuclei if a suitable trial state is chosen. This
allows calculations with any number of time slices that
are free from any sign problem.

We performed the calculation using the zero-
temperature formalism at different P and AP values,
choosing erst the Hartree Slater determinant as the trial
wave function. The SPA calculation and that with
bP = 0.125 are shown in Fig. 2. We have also per-
formed calculations at AP = 0.5 and AP = 0.25. These
results are not shown but lie between the SPA and the
AP = 0.125 results, and show a convergence to the re-

suit at AP = 0.125. At AP = 0.125, the energy relaxes
to the right energy, whereas the SPA also relaxes, but to
a much higher energy.

We repeated these last calculations with a di8'erent
trial wave function: a Slater determinant of the orbitals
(j, m) = (2, +2), (2, +2). Although a difFerent relax-
ation curve is traced out by the results at AP = 0.125,
it also converges to the same exact result (Fig. 2). The
choice of the trial state is therefore important for de-
termining the rate of relaxation of the zero-temperature
approach, although the final result is independent of the
trial state as expected. In this case, although the Hartree
state is lower in energy than the maximal prolate state
(compare (II) at P = 0), it contains some high angular
momentum components (compare (J ) at P = 0), so that
it relaxes more slowly and reaches the ground state at a
larger value of P.

8. Example 8:
Canonical calculations of 1Ve and Mg

Next, we demonstrate the canonical ensemble for the
same interaction (6.7) using the pure density decompo-
sition as described in example 2. We calculate Ne
because it is small enough to allow for an exact diag-
onalization to give all the states of H, since we are con-
cerned with both ground-state and thermal properties.
The canonical trace for this path integral in also posi-
tive definite (see Sec. VII), allowing the calculations to
be done using many time slices.

The results for calculations with AP = 0.25, 0.125, and
0.0625 are shown in Fig. 3. The convergence as a function
of AP is also apparent. Note that particular attention
should be given to the extrapolation at high tempera-
ture. Howev'er, it is not hard to increase the number of
time slices to decrease the error at high temperature. For
example, for P = 0.5, AP = 0.0625 amounts to only eight
time slices. Similar results on Mg in the canonical en-
semble are shown in Fig. 4. The relaxation to the ground

-54
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ct V
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15—
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FIG. 2. Zero-temperature calculations of Mg with the
schematic interaction (6.7). Note the relaxation of (H) and
(J ) as P increases. Hollow triangles are static path calcu-
lations in the pure density decomposition; solid diamonds
are static path calculations by decomposing the pairing in-
teraction into pair operators and the multipole interaction
into density operators. Solid circles and hollow squares
are both calculations in a pure density decomposition with
AP = 0.125, using the Hartree solution and the maximal pro-
late state, respectively, as the trial wave function. The solid
line segments indicate the exact ground-state results.

-30
-M(a)-

I I I I I I I I -5
0

I I I I ~ I I I I I ~ I I I I I I I I I I I I I

1 2

FIG. 3. Canonical ensemble calculations of Ne with the
schematic interaction (6.7) at AP = 0.25, 0.125, and 0.0625
and the exact results; (H) and (2 ) are shown as functions of
P. These calculations were done in a pure density decompo-
sition.
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to the exact results can be seen. The moments of inertia
fitted from the three sets of data are 5.10, 5.30, and 4.95,
compared to 4.74, the value from the exact curve. By
adding the term linear in J„we break the time-reversal
symmetry of h(cr), which is related to the sign properties
of the weight function ((cr). (C) decreases from 1 to 0.55
when w is increased from 0 to 1.5 at AP = 0.125 while it
decreases from 1 to 0.52 at AP = 0.03125.
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1 2 Encamp te g:
Response and strength functions for ss¹

FIG. 4. Similar to Fig. 3 for Mg.

state can be compared with the zero-temperature result
in Fig. 2; however, now the results at small values of P
are also physically significant.

In the calculation of Ne, the activity expansion
method is numerically stable. However, instabilities ap-
pear for sd nuclei when the number of proton or neutron
valence particles (or holes) is greater than 4. The insta-
bility is signaled by the deviation of (N„) and (N ) from
integers. In those cases, the expansion in Eq. (4.27) or
(4.35) gives the canonical trace as the small difference
between very large numbers, so that midshell nuclei can-
not be calculated directly by those equations. We have
developed an alternative Fourier expansion technique to
extract the canonical trace that gives satisfactory results
[12].

The real coherent-state method for the canonical trace
for Mg gives the same results as the activity expansion.
However, (4;) is not always unity due to the need to
integrate over the coherent states in Eq. (4.40) (as will
be explained in the next section). It changes from 0.70
to 0.23 for P changing from 0.5 to 1.0 at AP = 0.25.

We have also studied rotating nuclei in the canonical
ensemble by adding a Lagrange multiplier to the Hamil-
tonian, H' = H —~J, where J, is the z component of the
angular momentum and w is the cranking frequency. The
calculations at P = 1 for 2 Ne with AP = 0.125, 0.0625,
and 0.03125 are shown in Fig. 5, where the convergence

Finally, we demonstrate calculation of the imaginary-
time response functions and the reconstruction of the
strength functions. The calculation for Ne is done by
the activity expansion method in a pure density decom-
position; the Hamiltonian is that of Eq. (6.7). The canon-
ical ensemble is more suitable than the zero-temperature
formalism for measuring the dynamical response, be-
cause in the latter case many "boundary" time slices
are needed to project out the ground state on both the
left and the right, and extra time slices would have to
be introduced in the middle to measure the response.
In contrast, the cyclic property of the trace allows full
use to be made of every time slice in the canonical en-
semble. We choose P = 2.5 (the system has already
reached the ground state at this low temperature, as can
be seen from Fig. 3) and calculate the response functions
at AP = 0.125 and AP = 0.0625 for several one-body op-
erators: the isovector- and the isoscalar-quadrupole op-
erators Q„= Q„—Q„, Q, = Qz + Q„, and the isoscalar
and isovector angular momentum operators J, = J„+J„,
J = J„—J . We choose this latter 1+ operator purely
out of convenience; J, is just the total angular momen-
tum, which we verified to produce a constant response
equal to (J2), which follows from the rotational invari-
ance of H.

The response functions are shown in a semilog plot
in Figs. 6(a,c,e). For these Hermitian operators, B(7) is
symmetric about r = P/2, and so it is shown only for 7. &
P/2. The slope of the plot is approximately the energy of
the dominant strength. The J„and Q„responses relax
more rapidly than does the Q, response, indicating that

Ne /=1.0

-20 40
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-26

-28&

20
V
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N

V

FIG. 5. Finite-temperature cranked calcu-
lations of Ne with the schematic interaction
(6.7) in the canonical ensemble using a pure
density decomposition. Here P = 1, with
AP = 0.125, 0.0625, and 0.03125. The exact
cranking curve is also shown.
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TABLE I. ME extraction of the moments of the strength functions corresponding to Figs. 6 and
7. The extrapolated (AP —+ 0) total strength and first two moments are compared with the exact
results for the ground state of Ne.

Q(r) Q(o)

Q„(r) Q„(0)

J-(r) J-(o)

A(2 (r) &/&

a,g, (r)at(, (0)

a, y, (r)a, ), (0)

total strength
(~)
(~')

total strength
(~)
(~')

total strength
(~)
(~')

total strength
(~)
(~')

total strength
(~)
(~')

total strength
(~)
(~')

AP = 0.125
27.3 + 0.2
2.33 + 0.08
8.09 + 1.2
6.26 + 0.03
7.24 + 0.15
59.9 + 3.9
16.3 + 0.1

8.49 + 0.25
89.8 + 9.04
1.59 + 0.01
9.84 + 0.12

98.0 + 2

4.47 + 0.01
—3.15 + 0.02
10.28 + 0.05
1.702 + 0.004
—3.19 + 0.01
10.43 + 0.06

AP = 0.0625
25.9 + 0.1

2.77+ 0.08
10.5 + 1.2

6.78 + 0.02
7.77 + 0.10
66.6 + 2.5

16.05 + 0.08
9.44 + 0.19
107.7 + 6.4
1.62 + 0.07
10.32 + 0.09
107.5 + 1.4
4.42 + 0.09

—3.00 + 0.02
9.71 4 0.04

1.745 + 0.003
—3.22 + 0.02
10.65 + 0.04

extrap.
24.5
3.22
12.9
7.29
8.31
73.4
15.8
10.39
125.6
1.64
10.80
117
4.37

—2.86
9.14
1.?88
—3.25
10.87

exact
25.1
3.46
15.4
6.96
8.38
73.8
15.9

10.39
119.6
1.59
10.98
121
4.41

—2.81
10.08
1.773
—3.16
11.62

the two isovector operators couple to states with higher
excitation energy than does the Q, operator. Since Ne
has a J = 0, T = 0 ground state, the states excited by
an operator will carry the J and T quantum numbers of
the operator. The plots are therefore consistent with the
existence of a low-lying 2+ state.

The ME reconstructions of the most probable strength
function for the diferent one-body operators are shown in
Figs. 6(b,d, e). The reconstruction is performed for each
response function measured at each AP value. The fig-
ures show the convergence in AP of the resulting strength
functions to the exact strength function. Note the move-
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FIG. 6. Canonical ensemble calcula-
tions of the response functions for Ne

(P = 2.5) at discrete imaginary time us-

ing AP = 0.125, 0.0625, in a pure density
decomposition. The exact results are cal-
culated in the ground state (a), (c.), (e)
The isoscalar quadrupole (Q = Q„+ Q ),
isovector quadrupole (Q„= Q„—Q ), and
the isovector angular angular momentum

(J„=J„—J„)responses. The corresponding
most probable strength functions recovered
by the ME method are shown in (b), (d), (f),
respectively. The exact strength functions
calculated from ground state are plotted as
discrete lines with the height indicating the
integrated strength of the delta functions.



1536 LANG, JOHNSON, KOONIN, AND ORMAND 48

Ne ii=2.5

A

CV

aS

+

v

I I ~ I5
pc

-10
-15
-20

CV

lA+
aS

-30
0

12

10—

C4

aS
v 2

0 I ~

0
10

A

cD
CV

6

aS
v

s I s I I I I I I

1
I I I I I I ~ I I

2

5
25 1.6—

1.2—

0.8—

04—

0

12.

8-

4-
2-
0
-7.5

2.5

1.5-

0.5-

,t
'. I

J

' i
ki 12

-5.5 -3.5 -1.5

6f3W. 125
APM. 0625
exact

16
(b)

2.0

(d) .-

0.5 2.5

FIG. 7. Similar to Fig. 6 but for the sin-
gle-particle pickup and stripping response.
(a), (c), (e) The imaginary tiine stripping re-
sponse for the j = — orbital and the pickup
responses of the j =

2 and j =
~ orbitals,

respectively. The corresponding most proba-
ble strength functions recovered by the ME
method are shown in (b), (d), (f), respec-
tively. The exact response and strength func-
tions are calculated for the ground state.
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ment of the peaks towards the exact position and also
the decrease in the widths as AP decreases.

The average nth moments of the strength function,
defined by

M„=) cu,
"f(~,), (6.10)

can be found in the Monte Carlo integration over all the
possible distributions of the f; Their un. certainties can
be determined similarly. The first moment (Mi) and the
second moment (M2) of the strength functions are listed
in Table I for different operators and different AP. The
extrapolated moments (Ap —i 0) and the exact results
for the ground-state transitions are also shown.

The single-particle pickup and stripping response func-
tions for diferent orbitals are given in a semilog plot
in Figs. 7(a,c,e) and Fig. 8. The strength functions ex-
tracted from these responses are related to the excitation
spectrum in the neighboring nucleus with one additional
particle or hole. The stripping and pickup responses are
the same for protons and neutrons as the ground state
of Ne is isoscalar, and the final states have the an-
gular momentum of the single nucleon that is added or
removed. We see from Fig. 7 that both the pickup and
stripping responses for the j =

2 orbital and the pickup
response for the j =

2 orbital converge to the exact re-
sults as AP becomes small; the ME reconstruction of the
corresponding strength functions in Figs. 7(b,d, e) also
show a convergence to the exact results. The extracted

moments are listed in Table I. However, the responses
for the j =

2 orbital show an anomalous behavior: They
are close to the exact result at w = 0, and then, with a
sudden change in slope, follow the responses of the j =

2
orbital. A possible reason is that angular momentum is
not conserved sample by sample in the calculation, but
rather only statistically. The J =

2 states for Ne and
Ne nuclei are much lower in energy than the J =

states (because the j =
z orbital is lower than the j =

2

A

CV

+
aS

CaI

aS
v

I5

00 ~

hP=0. 125

b,P=O.0625
exact

000 ~
00 ~

00 ~

041
00 ~

0

s ~ a I I I I I I I I I I s s I ~ s a0
0 0.2 0.4 0.6 0.8 1

Ne (=2.5
I I I

I
I I I

I
I I I

I
I ~

I
I I5

A
0 -0g

5

~10—
+

aS

~ -15-
(b)-

-20 I I I I ~ I I I I I I I I I I I ~

0 0.2 0.4 0.6 0.8 1

FIG. 8. Similar to Figs. 6, 7 but showing the imaginary
time pickup and stripping responses of j = — orbital. The
response functions are in agreement with the exact curve for
small 7, but then abruptly follow the j = —response at larger
7.
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orbital by 5.6 Mev), so that if a small admixture of the
J =

2 states "leaks" into the intermediate states for the
j =

2 response, it will dominate with an exponentially
growing correlation function. (The j =

2 orbital is much
closer to the j =

2 orbital in comparison, only 0.8 MeV
higher. )

Note the requirement of a negative coupling constant for
the density operator with its time-reversed partner and
the time-reversal invariant form of the remaining one-
body part.

For application to the shell model, we refer to
Eq. (3.17), so that, in the density decomposition,

pxM( ) = (—1) +
pre —M( (7.5)

VII. SIGN PROBLEM AND FUTURE
DEVELOPMENTS

The requirement of a negative coupling constant for the
density operators leads to a sign rule for the A~, namely,

We have seen in the examples above that the sign prop-
erties for the function G(o)((cr) are crucial to the sta-
bility of the calculation, and may frustrate attempts to
apply the Monte Carlo path integral to any general two-
body interaction. In general, if we choose an arbitrary
two-body interaction and arbitrarily decompose it into
pair or density operators, (4) vanishes rapidly as P in-
creases or as the number of time slices Nq increases at
a fixed P. For example, with the Wildenthal interac-
tion and for any calculation for P & 1 with more than
three time slices, the noise due to the sign completely
swamps the signal. This "sign problem" is well known in
auxiliary-field path-integral calculations [20] and fermion
quantum Monte Carlo more generally. If there is no ex-
plicit symmetry to enforce the positivity of g, (4) de-
cays exponentially as a function of P, and the problem is
more severe for smaller AP, so that it is very diKcult to
calculate low-temperature properties.

Only a handful of interacting fermion systems are
known to give rise to a positive-definite path integral:
the one-dimensional Hubbard model, the half-filled Hub-
bard model, and the attractive Hubbard model at any
dimension and filling [3]. We will show in the following
that an important class of interactions for the nuclear
shell model has a positive-definite path-integral represen-
tation for even-even nuclei. It arises from the symmetry
between time-reversed. single-particle orbitals and may
serve as a starting point in understanding and control-
ling the "sign problem. "

We first define the "time-reversed" partner of each cre-
ation and annihilation operator to be

sgn(A~ ) = (—1) (7.6)

h = —5 y [(o +ir )p + (o. —ir )p ]

+ecxpn + e~pa. (7.7)

so that p and p couple to complex-conj ugate fields.
[If some part of the interaction does not satisfy (7.6),
then there will be terms in h that are of the form
i(o + i7 ) p + i(cr —ir )p, and the above statement
is not true. ]

We represent the single-particle wave function by a vec-
tor of the form

m&0,
(gm) (7.8)

with states with m ) 0 in the first half of the vector
and their time-reversed orbitals in the second half. Due
to Eq. (7.3) and the fact that time-reversed operators
are coupled to complex-conjugate fields, the matrix M;
representing h, has the structure

As we will show below, the Hamiltonian (7.3) gives rise
to a one-body Hamiltonian in the path integral, h, that
is symmetric in time-reversed orbitals. Time-reversed
pairs of single-particle orbitals thus acquire complex-
conjugate phases in the propagation, guaranteeing a
positive-definite overlap function g.

After the HS transformation on Eq. (7.3), the lin-
earized Hamiltonian is

(7.1a)

(7.1b)

( A; B, ~M;=
i

(7.9)

Note that and one can easily verify that the total evolution matrix

a, m = —a,- (7.2)

due to the spin-half statistics.
The class of Hamiltonians that give rise to a positive-

definite path integral are of the form

1—) X p p +e p +e p (7.3)

p = ~ „-a,.a,-.
22

(7.4)

where y ) 0, e can be generally complex, and p is a
general density operator of the form

exp( —M;AP) =
~

f P (7.10)

is of the same form. Here, A, B, P, Q are matrices
of dimension K, j2. One can show that this matrix has
pairs of complex-conjugate eigenvalues e, e' with respec-

t'ul (-v* )tive eigenvectors
~ ~

and
~ „~. In the case where eEu*r

is real, it is doubly degenerate since the two eigenvectors
are distinct.

For the grand-canonical ensemble, the overlap function
is given by



1538 LANG, 3'OHNSON, KOONIN, AND ORMAND 48

C=det 1+
~

ql N, /2

(1+e;)(1+e,*) & 0 .

(7.11)

If only particle-type (neutron-proton) conserving density
operators are present in Eq. (7.3), each type of nucleon
is represented by a separate Slater determinant having
the structure (7.10), and therefore ( = („x( ) 0, since
(„&0 and („)0.

In the zero-temperature formalism, if the trial wave
function for an even number of particles is chosen to con-
sist of time-reversed pairs of single-particle states,

a bl
@o =

I ) (7.12)

where a, b are matrices with dimension ( 2 x 2" ), then
4'eU4'o is a N„x N„matrix with the structure (7.10),
and the overlap function again satis6es

( = det[@toUC 0] & 0 . (7.i3)

exp( —M, Ap) ~
=

(7.i4)

We have found empirically that ( is positive definite for
even-even systems, although we lack a rigorous proof. A
special case of the Hamiltonian (7.2) exists in which the
overlap function is positive definite also for odd-odd N =
Z nuclei. The required condition is that only isoscalar
density operators are present in Eq. (7.2). This leads to
a further symmetry that protons and neutrons couple to
the same field in Eq. (7.7) and therefore the evolution
matrices satisfy U~ = U = U. In the zero-temperature
formalism, if we choose the trial wave function for proton
and neutrons to be time-reversed partners of each other,
so that

(7.15)

If only particle-type conserving operators are present,
then time-reversed pairs of trial wave functions can be
chosen for both protons and neutrons in an even-even
nucleus, giving rise to ( = („x(„&0. Note that while
the overlap function is positive definite in the grand-
canonical ensemble for any chemical potential (and thus
any average number of particles), it is true only for an
even (or even-even if involving a type-conserving decom-
position) system in the zero-temperature formalism with
a suitable trial wave function.

In the canonical ensemble for N particles, a Gxed-
number trace is involved and therefore

and ( = („xg„& 0. On the other hand, for the canonical
ensemble, one can prove that Eq. (7.13) is real. Given
that („=(„,( is a square and is therefore positive.

For a system with general form (7.3), if we perform the
canonical trace by integration over real coherent states,
then there is an extra operator, exp(X„h at ah), multiply-
ing the evolution operator. Time-reversed states couple
to diferent real fields in the extra operator, and a sign
problem arises, as seen in example 3 above.

Cranking also causes the sign to depart from unity. In
cranking, the Lagrange multiplier term u J is added to h
in Eq. (7.7), destroying the property that time-reversed
operators are coupled to complex-conjugate numbers (be-
cause J, = —J,). Notice, however, that cranking with
an imaginary Lagrange multiplier in J, will preserve the
time-reversal symmetry and will give rise to a positive
path integral.

In suminary, for a Hamiltonian of the form (7.3), the
above proof guarantees the overlap function to be pos-
itive for any nucleus in the grand-canonical ensemble,
and for even-even nuclei in either the canonical ensem-
ble or zero-temperature formalism (with suitable trial
wave function). It also guarantees positivity for odd-odd
N = Z systems when only isoscalar density operators are
involved.

The Hamiltonian (6.7) satisfies (7.6) upon decomposi-
tion of the paring interaction using density operators and
involves only isoscalar operators, so that ( is positive for
even-even and N = Z nuclei. For other systems, (4) de-
creases as a function of P. At AP = 0.0625, (4) = 0.4
at P = 1.5 for Na, and (4) = 0.2 at P = 2.0 for Na.
Thus, even for odd-A nuclei, the sign properties of (6.7)
are still much better than that of a general interaction vi-
olating the criteria (7.6). For example, using the Wilden-
thal interaction, (4) drops to several percent at P = 1
for any nucleus.

Arbitrary two-body interactions do not satisfy the sign
rule (7.6), and when the rule is violated, (4) rapidly de-
creases as a function of P. Note that monopole pairing
plays an important role here. The pairing interaction can
be written as

(7.17)

—e) .(—1) Swc~(~)S sc—M(~)(—1) (7.18)

Therefore, if the pairing interaction is strong enough
compared to the remaining interactions, the sign rule can
be satisfied.

It produces a constant shift in every y in Eq. (7.3), as
may be seen also from the multipole decomposition of
the pairing force:

and then

(~ = det[%, „U@0,~]

= det[atP a+ at+ b —btg*a+ btP*b] = (*,
(7.i6)

VIII. CONCLUSION

We have developed a general framework for carrying
out auxiliary-field Monte Carlo calculations of the nu-
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clear shell model. In this framework we evaluate ground-
state or thermal observables, using pairing or density
fields or both.

Although the use of pairing fields naturally embod-
ies important aspects of the residual interaction, these
calculations are more difBcult due to the larger matrix
dimension needed and. the extra effort to keep track of
the sign of the overlap function as the wave function is
propagated. Furthermore, for calculations with multiple
time slices, the Monte Carlo method with a pairing de-
composition suffers from severe sign problems. However,
pairing fields are suitable for carrying out static path or
two-time-slice calculations where the linearized Hamilto-
nian is Hermitian, thereby enforcing the positivity of the
overlap function. This can be easily verified by observing
that for Hermitian h, h, and hb, with real eigenvalues
E;, E, , andE. ..

Tr[e ~"]=) e ~ ')0

No. PHY91-15574, and by the DuBridge Foundation
(W.E.O.). We are grateful for discussions with P. Vo-
gel and D. Dean and thank B. Girish for his help with
the Intel parallel supercomputers.

APPENDIX A: DERIVATION OF THE OVERLAP
FORMULAS FOR PAIRING FIELDS

We consider operators of the form

U = exp( —APhN. , ) exp( —APh1v, 1) .exp( —APh1),

(Al)

where each hz is a quadratic operator,

Ns

hz ——) 8(t),~a, a~ + A(t),~a]a + A(t),~a;az .

(A2)

Tr[e 2" e &"'] = ) e & * (z ~e 2"'~i ) & 0.
&a

(8.2)

In these cases, there is no sign problem and also there is
no need to keep track of the evolution of the sign.

For the density decomposition, we have found a class
of interactions which give rise to a positive definite in-
tegrand upon the HS transformation. For these inter-
actions, stable calculations can be carried out for many
time slices to extrapolate to the exact results (Ap —1 0).
This class of interactions includes the phenomenological
pairing-plus-multipole interaction used widely. We have
carried out calculations with such interactions in the sd
shell, demonstrating the power of the method in calculat-
ing both static and dynamical properties in the ground
state and at finite temperature; high spin nuclei were also
studied by cranking. The calculations converge to the
exact results (as found by direct diagonalization) with
increasing number of time slices. Although the nuclear
wave function is not found explicitly in these calculations,
many nuclear properties can be obtained.

For general shell model interactions, it appears that the
sign or phase property of the integrand is the major fac-
tor determining successful application of the Monte Carlo
sampling. Successful calculations are usually confined
to high-temperature studies. We have demonstrated the
freedom one has in the decomposition scheme of the two-
body interaction and found that the behavior of the sign
can be different in the various schemes. The next cru-
cial step is to explore whether we can manipulate these
degrees of freedom to enable stable calculations of nuclei
using general forces.

Without loss of generality, we choose L, A to be anti-
symmetric (4 = —4, etc.). We follow the develop-
ment of Berezin [13], who considered the special case
U = exp( —iht) with h Hermitian; we take the general
case.

We calculate the grand-canonical trace

TrU = ) (i[U(i)

(the sum is over all states of all particle number) by using
the fermion coherent-state (FCS) representation of unity
[21],

d( d(* exp —) (*( i()((i. (A4)

Here ( are Grassman variables and the ~() are fermion
coherent states. Then

TrU = d( d(* exp
~

—) ('( ((~U~(). (A5)

/' ~11~12)
) (A6a)

—:exp[ —M(&z) AP]
x exp[ —M(2Vz —1)AP] . exp[ —M(1)AP], (A6b)

where

We need the FCS representation of U. In what imme-
diately follows we show that if U is the matrix represen-
tation of U, that is
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(A7)



LANG, JOHNSON, KOONIN, AND ORMAND 48

1 . ('B" B»l ('( )
(&IUI&& = Cexp —(& &*)

I B21 B22

(A8)

( ))
— (™)I

and so in general

(A16)

with

~11 U22 U21

B21 (U22 )
T

@12 U 22
)

~22 U12U22
(A9a)

(A9b)

(ab
I b I

= exp(&Phi) . .exp(&PhN )

x exp( AP—hg, ) exp( —APhi)

exp( +PM1) .exp( —APMiv, )
(al

( ~p "'.
C = det(U ) ~ exp — ) TrO(n)

)2
(Alo)

Then

(Ull U12 ) (
U'21 U22 (A17)

(&IU:I&& = RIUI(&&-

(&lat UI&& = 4(&IUI&&

(&Ia-UI(& =
Z .RIUI&&.

(Alla)

(Allb)

(Allc)

(Aild)

Next, we derive expressions for a U, at U, as linear corn-

binations of Ua, Uat . Then, with the ansatz (A8) for

((IUI(& as a Gaussian in the Grassman variables (, (*, we

use (All) to derive the elements B of the Gaussian given
in (A9).

To do this, we introduce the operators b, b (which are
not necessarily Hermitian conjugates),

In this case the trace becomes a Gaussian integral over
Grassman variables; the result is given beginning with
Eq. (A29) below. However, to come to that point we
must derive Eqs. (A8) —(A10).

To this end, we employ the standard rules for operating

) ~ ((I with at, a:

11 12
b = U ~a~+U ~a

21 22 tb = U ~a~+U ~a

(A18a)

(A18b)

where the summation on p is implicit. Upon inserting
(A18) in (A12b), and using the ansatz (A8), one can
straightforwardly derive the B's in terms of the U)s as
given in (A9).

Although we do not show it in detail, we note that
B is antisymmetric (B = —B11,B = —B,etc.),
which can be proved using

and

I(o 1 ll M I&o
'r (A19)

I

=(U )i' 'r E' 'r (A20)

Now we must show the normalization C is of the form
(A10). To do so, we find a diff'erential equation for C.
Letting

Then

b~—:U a~U)

a U=Ub,

b = U atU.

atU = Vb

(A12a)

(A12b)

we define

U„+1 ——exp( —APh„+1)U„,

U (t) = exp( th +—i)U

(A21)

(A22)

and we seek b, b as linear combinations of at, a.
Define

a r =e" ae (A13)

and so U +1 ——U (KP). Taking the expectation value of
(A22) between FCS's, invoking (All), and equating the
parts independent of (, (*, one obtains

Then

a (r) = Ih, a (~)], (A14)

—lnC„(t) = —T A(n+ 1)B „(t)

Upon difFerentiating (A10), one obtains

(A23)

and similarly for at (w). Putting all the a (7 ), at (v) into
a single vector, and using the representation (A2) for h,
one finds

d 1 d 22 1—inc (t) = —Tr —lnU22(t) ——Tro
dt 2 dt 2

Using U (t) = exp( —M +it)U', one derives

(A24)

( a(r) l r a(~) l'
q at(r) r q at(r) r

with M given by (A7).
Solving the difFerential equation (A15),

(A15)
—U = —2A+1U „+0 U
dt

(A25)

and (A24) becomes (A23). Thus Eq. (A10) satisfies the
difFerential equation for C, and it just remains to estab-
lish the overall normalization. This is found by choosing
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M = 0, so that U = 1, t = 1, and

((iUi() = exp —) (A26)

which is ((i(). Thus we have established the form (AS)
for ((iUif).

The integral (A5) is straightforward (see Berezin [13]);
the magnitude is

written using

U22 U12 )
detU = det

i

U12 U22
t~( ~( 1)N, (A2S)

Upon introducing (A2S) into (A27), performing some al-
gebra, and using relationships &om (A20), one arrives
at

( Bl1

l
TrU = C det B2

1
~12

)l
(A27) ( ~p Ng

TrU = det(1 + U) & exp i

— Tr ) O(n), (A29)

The phase of TrU, though critical, is more difBcult to
obtain (see Appendix B for details).

One can rewrite (A27) in a more compact form. The
constant t contains the factor det(S22) 2, which can be

where, again, U is the matrix in (A6) representing the
evolution operator U.

As for the density case, one can introduce an activity
expansion to project out an exact particle number,

Tr(A U) = det 1+
i 1 ~

U' exp — ) TrO(n)(~ 0& ' f ~P"'
EO X) ( 2 „:, )

(A30)

(1 0&
Because the matrices 1 and U are of dimension 2N, x 2N„one can write A+'i = det

i
1

i
and (A30) becomes0 A~)

Tr A U =det + U x exp — Tr0 n(1 0& (~ Oi i ~P "'-
qO A) iO 1) 4

2 -
)

(A31)

This can be expanded into a polynomial in A, which then gives the canonical ensemble.
Finally, we give the expectation value of (gliUi@q). First we note that the vacuum expectation value (OiUiO) is the

term in (A31) independent of A,

(OiUiO) = det
i U22 ~

exp — ) Tr8(n)
(1 0&" & ~P

)
& ~p= det (0 1) U

i ~

exp — ) Tr8(n)k1) ( 2 )

(A32a)

(A32b)

Any quasiparticle excitations can be represented as Hartree-Fock-Bogoliubov vacua for properly de6ned new quasi-
particle operators, which corresponds to doing a similarity transformation on the matrices. If i@,) is the vacuum to
the quasiparticle annihilation operator P;; i.e. ,

P;i@g) = 0, P; = u;~a~ + v;~a. , (A33)

then

( ap= det (v u*) U
i

z,
i

exp — ) Tr8(n)&" ) (A34)
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APPENDIX 8: SIGN OF THE OVERLAP FOR
PAIRING FIELDS

The formulas derived in Appendix A for calculating
the overlap ( (p) = (QL, IU(p, 0; cr)IQR) in the zero-

temperature formalism and Tr[U (P, O)] in the thermal
formalisms all involve the square root of a determinant,
leaving the phase of ( (P) undetermined by a factor of
+1. This ambiguity is irrelevant for the Monte Carlo ran-
dom walk as we typically take I(I as the weight function,
but the phase must be known unambiguously for cal-
culation of observables, as important cancellations may
result.

We determine the phase by following the evolution of
( (w) and its derivatives with respect to w as w goes
from 0 to P. For example, if ( (7) were purely real,
zero crossing [with ('(7 ) g 0] would indicate a change in
the phase by —1. The initial phase at ~ = 0 is real and
positive. Following the evolution is computationally ex-
pensive, but as most of the time is spent on the random
walk, where the phase is irrelevant, the overall computa-
tional time is negligible.

In what follows we give the formulae for up to fourth
derivatives for each of the diferent formalisms.

then

f(t) = det[1 + e "+' U] 2

x exp — ) Tr[8;] ——Tr[8~+&]
2 2 )

(B2)

ln(f) = —Tr[ln(1+ e "+' U)]
1

2

~p ) Tr[O;] ——T [0„+,] .

OG

Bt [1 + e ~ U] Me M~U[1 + M~U]

Using the abbreviation M = MA. +q, 0 = OA.+i, let

G = (1+ — 'U) — —jvL'U = 1 (1
—~'U)

(B4)

1. Grand-canonical ensemble = —(1 —C)MC . (B5)

Define

f(t) = ( (kKP+ t) = Tr[e ""+"U (khan, 0)]; (Bl)
The derivatives of 1n(f) can be expressed in terms of

the matrices C and M,

g, = = ——Tr[MC] ——Tr[8],Oln(f) 1 1

Bt 2 2

g2 = = —Tr[M(l —G)MG],
82 1n(f) 1

Bt2 2

gs—: = ——Tr [MC M(l —C, )M(1 —2G)],
0 ln(f) 1

Bt3 2

g4 = ————Tr[M(1 —C)MCM(1 —C)M(l —2G)]0 ln(f) 1
Bt4 2

——Tr [MGM(1 —G)MGM(l —2G)] —Tr[GM(1 —G)M(1 —G)MGM] .
2

Then ( (king + t) is given by

( t' t' t4
(kap+ t) = f(t) = f(0) exp

I
a&t + &2 2i

+ &s
&~

+ a44i +

(B6)

(B7)

(B8)

(B9)

(B10)

2. Zero-temperature formalism

In this case

f(&) = C-(k&P+ t) = (Ale ""+"U(k&& o ~)l&~) = (@~le """'I&R)
e™„t@ ]

—
e

—— 2, (T [Oj ——T [0 ~ j)

(B11)

(B12)
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ln(f) = —Tr[ln(@L,e "+' NR)] — ) Tr[O, ]
——Tr[Oa+1] .=1 —Mg jt 5p t

i=1
(B13)

Let

M—t@ [@
—Mt@

]
—1@ (B14)

BG
Bt

—Mt@ [@ Mt@—
]
—1@ M Mt@—

[@
—Mt@

]
—1@ M —Mt@ [@ Mt@—

]
—1@

= GMG —MG = —(1 —G)MG. (B15)

Then

0ln( f) 1 1
gy Bt 2

= ——Tr[MG] ——Tr [0],
2

(»6)

where S is the entropy of image f relative to the default
model. If the image is discretized to f, (i = 1, . . . , r),
then

and so on and all formulas are the same as in the grand-
canonical ensemble (B6—9), except that the matrix G is
now diferent. In fact, in both cases G can be shown to
be the matrix for the Green's function, i.e. ,

and

S(f, m) = ) [f~ —m~ .—f~ ln(f~/m~)] (C2)

where

C,, = (ntn, ), (B17)
Z~(n, m) = f ~ exp[nS(f)]

d u exp[nS(u )],

3. Canonical ensemble

(B18a)

(B18b)

where the last step follows from a change of variable
u, = ~f; (Zs ha.s no relation to the nuclear partition
function. )

In the presence of data, we gain some knowledge about
the image. Assuming a Gaussian distribution of errors in
the data D;, the probability for f is

In Eq. (4.35), the undetermined sign involves only the
vacuum expectation (O~U(P, O) ~0). Once it is determined,
the sign for Tr[U(p, 0)] is known. We can use the equa-
tions for the zero-temperature formalism to obtain the
sign of (O~U(P, O) ~0).

pr(f) = exp[nS —-'y (f)]+S +L

where

~'(f) = ) .[d'(f) —D')(d. (f) —D, ]G,, ',

(c4)

(c5)

APPENDIX C: MAXIMUM ENTROPY
EXTRACTION OF THE STRENGTH FUNCTION

G,i = (q, 1b) is the correlation matrix of the errors in the
data, and

We use the maximum entropy (ME) method to recon-
struct the strength function from the response function.
Here we give a brief description of the classic ME method;
details can be found in the paper by Gull [19].

The ME method is a Bayesian approach for reconstruc-
tion of positive additive images f from noisy data. In
our case the image is the strength function f(w). The
noisy data, D~ = d~ + g~, are the measurements of the
response function B(r) at the discrete imaginary times,
where d~. = R(jAP) and 11~ is the noise in the data. In
the absence of any data, the most probable image is cho-
sen to be a default model m. Skilling [18] proved that, in
that case, the only consistent choice for the probability
of an image f is determined up to a parameter n:

d D exp[ —-'y2 (f)] . (c6)

pr(n~D, m) oc ZgZq Z~ (C7)

For a given choice of o. , the most probable image can
be found by maximizing o;S—

2 p, giving rise to the term
"maximum entropy" method. However, o. is not prede-
termined. Rather, it is varied until y at the maximum
of o.S —zy is approximately equal to the total number
of data D, . But this assignment of o. is ad hoc and, ac-
cording to Gull [19], usually leads to an underfitting of
the data. In the classic ME, o. is fixed by maximizing the
probability of o. given the data set D, and the default
model m:

pr (f ) = exp [n S(f, m)]/Z(n, m), (C1) where
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1d"f f 2 exp(nS —zy )
R( ) ) f (—Mi7+~T Alai ) (C11)

d"u exp(nS —-'y ) . (C8) while for Hermitian operators it is

After ki is fixed, we can find the most probable f by
maximizing nS —2y, or we can find the average f by
Monte Carlo sampling using the integrand of (C4) as
weight function. Information about the uncertainty in

f can also be obtained from Monte Carlo sampling. In
the particular application at hand, we would like to know,
for example, the uncertainty in the location of the peaks
in f, or in the moments M = f f (ko)ko dw/ f f (~)de

I et us now return to the problem of extracting the
strength function. Since the imaginary-time response
function R(w) is given at discrete times, we can only allow
a limited amount of parameters in the strength function
f, which we do by discretizing f(ko) to f, at ko;. To al-
low for some smoothness, we choose a Gaussian function
centered around each u;, rather than a delta function.
Given the imaginary-time response function, we bound
the range of ko over which the f is significant by ko

and u, and choose the w; to be evenly distributed
between them. The number of f, n, should not ex-
ceed the number of data D; we have, which is the total
number of time slices,¹.We choose the width of each
Gaussian, Bur, to be half of the spacing between the ko s.
For a non-Hermitian operator 0, the strength function
f (ko) is related to f; by

f (w) = ) f; exp[ —
2 (w —w;) jA w], (C9)

Akd 2 ir

while for a Hermitian operator, f( ko) = e—/ f(ko) in
the canonical ensemble, and we choose

R(~) —) f, ( ( &iIii) + (/3 &)~i g ( 2 &) +~
)

(C12)

d u exp(o. S) d u exp —2c) u,'

(C13)

The condition " ——0 then becomes

1

ZQ
d u Sexp(nS —-y ) = 1 OZ9

Zs o.

(C14)

and the average image (f;) is given by

We choose the default model m;, i = 1, . . . , n, to
be a constant fixed by R(0), which is related to the to-
tal strength. The data D~ are the values of R(7) for
w = jAP measured from the Monte Carlo sampling. The
error correlation function can also be measured in these
calculations.

To maximize the probability (C7), we have to know
the dependence of Zg and Zg on o.. Some simplification
can be had by calculating Zs in the saddle point approx-
imation. There is a saddle point in S(u2, m) at u2 = m,
with the second derivatives & & [„2 = —4h, ~, which

leads to the approximate integral

f ( ) ) ~ f P/2(~ —(u, )
[

—i/2(w —ur;) /Ace (f') =
g

d"u f, exp(nS —-'y ) . (C15)

—i/2(~+(u, ) /Aru2]

Ako i/ 27K

(C10)

The response R(7 ) generated by f (cu) is, for non-
Hermitian operators,

We do these integrals by Monte Carlo sampling of u, with
exp(nS ——y ) as the weight function. The value n is
determined by the self-consistent condition (S)
When n is known, the average distribution (f;) = (u;)
and the uncertainty bf; = g(f2) —(f,)z is also given in
the course of the Monte Carlo evaluation of (C15).
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